1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <linux/clk-provider.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/component.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/i2c.h> 28 #include <linux/io.h> 29 #include <linux/of_address.h> 30 #include <linux/of_platform.h> 31 #include <linux/pm_runtime.h> 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_bridge.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_mipi_dsi.h> 37 #include <drm/drm_of.h> 38 #include <drm/drm_panel.h> 39 #include <drm/drm_probe_helper.h> 40 #include <drm/drm_simple_kms_helper.h> 41 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 #define DSI_CMD_FIFO_DEPTH 16 46 #define DSI_PIX_FIFO_DEPTH 256 47 #define DSI_PIX_FIFO_WIDTH 4 48 49 #define DSI0_CTRL 0x00 50 51 /* Command packet control. */ 52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53 #define DSI1_TXPKT1C 0x04 54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63 /* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67 /* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 78 # define DSI_TXPKT1C_CMD_CTRL_TX 0 79 /* Command with BTA for either ack or read data. */ 80 # define DSI_TXPKT1C_CMD_CTRL_RX 1 81 /* Trigger according to TRIG_CMD */ 82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83 /* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91 # define DSI_TXPKT1C_CMD_EN BIT(0) 92 93 /* Command packet header. */ 94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95 #define DSI1_TXPKT1H 0x08 96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101 # define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104 #define DSI1_RXPKT1H 0x14 105 # define DSI_RXPKT1H_CRC_ERR BIT(31) 106 # define DSI_RXPKT1H_DET_ERR BIT(30) 107 # define DSI_RXPKT1H_ECC_ERR BIT(29) 108 # define DSI_RXPKT1H_COR_ERR BIT(28) 109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123 #define DSI1_RXPKT2H 0x18 124 # define DSI_RXPKT1H_DET_ERR BIT(30) 125 # define DSI_RXPKT1H_ECC_ERR BIT(29) 126 # define DSI_RXPKT1H_COR_ERR BIT(28) 127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131 # define DSI_RXPKT1H_DT_SHIFT 0 132 133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134 #define DSI1_TXPKT_CMD_FIFO 0x1c 135 136 #define DSI0_DISP0_CTRL 0x18 137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141 # define DSI_DISP0_LP_STOP_DISABLE 0 142 # define DSI_DISP0_LP_STOP_PERLINE 1 143 # define DSI_DISP0_LP_STOP_PERFRAME 2 144 145 /* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148 # define DSI_DISP_HACTIVE_NULL BIT(10) 149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150 # define DSI_DISP_VBLP_CTRL BIT(9) 151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152 # define DSI_DISP_HFP_CTRL BIT(8) 153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154 # define DSI_DISP_HBP_CTRL BIT(7) 155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156 # define DSI_DISP0_CHANNEL_SHIFT 5 157 /* Enables end events for HSYNC/VSYNC, not just start events. */ 158 # define DSI_DISP0_ST_END BIT(4) 159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160 # define DSI_DISP0_PFORMAT_SHIFT 2 161 # define DSI_PFORMAT_RGB565 0 162 # define DSI_PFORMAT_RGB666_PACKED 1 163 # define DSI_PFORMAT_RGB666 2 164 # define DSI_PFORMAT_RGB888 3 165 /* Default is VIDEO mode. */ 166 # define DSI_DISP0_COMMAND_MODE BIT(1) 167 # define DSI_DISP0_ENABLE BIT(0) 168 169 #define DSI0_DISP1_CTRL 0x1c 170 #define DSI1_DISP1_CTRL 0x2c 171 /* Format of the data written to TXPKT_PIX_FIFO. */ 172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173 # define DSI_DISP1_PFORMAT_SHIFT 1 174 # define DSI_DISP1_PFORMAT_16BIT 0 175 # define DSI_DISP1_PFORMAT_24BIT 1 176 # define DSI_DISP1_PFORMAT_32BIT_LE 2 177 # define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179 /* DISP1 is always command mode. */ 180 # define DSI_DISP1_ENABLE BIT(0) 181 182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184 #define DSI0_INT_STAT 0x24 185 #define DSI0_INT_EN 0x28 186 # define DSI1_INT_PHY_D3_ULPS BIT(30) 187 # define DSI1_INT_PHY_D3_STOP BIT(29) 188 # define DSI1_INT_PHY_D2_ULPS BIT(28) 189 # define DSI1_INT_PHY_D2_STOP BIT(27) 190 # define DSI1_INT_PHY_D1_ULPS BIT(26) 191 # define DSI1_INT_PHY_D1_STOP BIT(25) 192 # define DSI1_INT_PHY_D0_ULPS BIT(24) 193 # define DSI1_INT_PHY_D0_STOP BIT(23) 194 # define DSI1_INT_FIFO_ERR BIT(22) 195 # define DSI1_INT_PHY_DIR_RTF BIT(21) 196 # define DSI1_INT_PHY_RXLPDT BIT(20) 197 # define DSI1_INT_PHY_RXTRIG BIT(19) 198 # define DSI1_INT_PHY_D0_LPDT BIT(18) 199 # define DSI1_INT_PHY_DIR_FTR BIT(17) 200 201 /* Signaled when the clock lane enters the given state. */ 202 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 203 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 204 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 205 206 /* Signaled on timeouts */ 207 # define DSI1_INT_PR_TO BIT(13) 208 # define DSI1_INT_TA_TO BIT(12) 209 # define DSI1_INT_LPRX_TO BIT(11) 210 # define DSI1_INT_HSTX_TO BIT(10) 211 212 /* Contention on a line when trying to drive the line low */ 213 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 214 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 215 216 /* Control error: incorrect line state sequence on data lane 0. */ 217 # define DSI1_INT_ERR_CONTROL BIT(7) 218 /* LPDT synchronization error (bits received not a multiple of 8. */ 219 220 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 221 /* Signaled after receiving an error packet from the display in 222 * response to a read. 223 */ 224 # define DSI1_INT_RXPKT2 BIT(5) 225 /* Signaled after receiving a packet. The header and optional short 226 * response will be in RXPKT1H, and a long response will be in the 227 * RXPKT_FIFO. 228 */ 229 # define DSI1_INT_RXPKT1 BIT(4) 230 # define DSI1_INT_TXPKT2_DONE BIT(3) 231 # define DSI1_INT_TXPKT2_END BIT(2) 232 /* Signaled after all repeats of TXPKT1 are transferred. */ 233 # define DSI1_INT_TXPKT1_DONE BIT(1) 234 /* Signaled after each TXPKT1 repeat is scheduled. */ 235 # define DSI1_INT_TXPKT1_END BIT(0) 236 237 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 238 DSI1_INT_ERR_CONTROL | \ 239 DSI1_INT_ERR_CONT_LP0 | \ 240 DSI1_INT_ERR_CONT_LP1 | \ 241 DSI1_INT_HSTX_TO | \ 242 DSI1_INT_LPRX_TO | \ 243 DSI1_INT_TA_TO | \ 244 DSI1_INT_PR_TO) 245 246 #define DSI0_STAT 0x2c 247 #define DSI0_HSTX_TO_CNT 0x30 248 #define DSI0_LPRX_TO_CNT 0x34 249 #define DSI0_TA_TO_CNT 0x38 250 #define DSI0_PR_TO_CNT 0x3c 251 #define DSI0_PHYC 0x40 252 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 253 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 254 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 255 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 256 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 257 # define DSI1_PHYC_CLANE_ULPS BIT(17) 258 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 259 # define DSI_PHYC_DLANE3_ULPS BIT(13) 260 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 261 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 262 # define DSI0_PHYC_CLANE_ULPS BIT(9) 263 # define DSI_PHYC_DLANE2_ULPS BIT(9) 264 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 265 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 266 # define DSI_PHYC_DLANE1_ULPS BIT(5) 267 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 268 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 269 # define DSI_PHYC_DLANE0_ULPS BIT(1) 270 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 271 272 #define DSI0_HS_CLT0 0x44 273 #define DSI0_HS_CLT1 0x48 274 #define DSI0_HS_CLT2 0x4c 275 #define DSI0_HS_DLT3 0x50 276 #define DSI0_HS_DLT4 0x54 277 #define DSI0_HS_DLT5 0x58 278 #define DSI0_HS_DLT6 0x5c 279 #define DSI0_HS_DLT7 0x60 280 281 #define DSI0_PHY_AFEC0 0x64 282 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 283 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 284 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 285 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 286 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 287 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 288 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 289 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 290 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 291 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 292 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 293 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 294 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 296 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 298 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 300 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 301 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 302 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 303 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 304 # define DSI1_PHY_AFEC0_RESET BIT(13) 305 # define DSI1_PHY_AFEC0_PD BIT(12) 306 # define DSI0_PHY_AFEC0_RESET BIT(11) 307 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 308 # define DSI0_PHY_AFEC0_PD BIT(10) 309 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10) 310 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 311 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 312 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 313 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8) 314 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 315 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 316 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 317 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 318 319 #define DSI0_PHY_AFEC1 0x68 320 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 321 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 322 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 323 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 324 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 325 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 326 327 #define DSI0_TST_SEL 0x6c 328 #define DSI0_TST_MON 0x70 329 #define DSI0_ID 0x74 330 # define DSI_ID_VALUE 0x00647369 331 332 #define DSI1_CTRL 0x00 333 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 334 # define DSI_CTRL_HS_CLKC_SHIFT 14 335 # define DSI_CTRL_HS_CLKC_BYTE 0 336 # define DSI_CTRL_HS_CLKC_DDR2 1 337 # define DSI_CTRL_HS_CLKC_DDR 2 338 339 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 340 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 341 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 342 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 343 # define DSI_CTRL_CAL_BYTE BIT(9) 344 # define DSI_CTRL_INV_BYTE BIT(8) 345 # define DSI_CTRL_CLR_LDF BIT(7) 346 # define DSI0_CTRL_CLR_PBCF BIT(6) 347 # define DSI1_CTRL_CLR_RXF BIT(6) 348 # define DSI0_CTRL_CLR_CPBCF BIT(5) 349 # define DSI1_CTRL_CLR_PDF BIT(5) 350 # define DSI0_CTRL_CLR_PDF BIT(4) 351 # define DSI1_CTRL_CLR_CDF BIT(4) 352 # define DSI0_CTRL_CLR_CDF BIT(3) 353 # define DSI0_CTRL_CTRL2 BIT(2) 354 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 355 # define DSI0_CTRL_CTRL1 BIT(1) 356 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 357 # define DSI0_CTRL_CTRL0 BIT(0) 358 # define DSI1_CTRL_EN BIT(0) 359 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 360 DSI0_CTRL_CLR_PBCF | \ 361 DSI0_CTRL_CLR_CPBCF | \ 362 DSI0_CTRL_CLR_PDF | \ 363 DSI0_CTRL_CLR_CDF) 364 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 365 DSI1_CTRL_CLR_RXF | \ 366 DSI1_CTRL_CLR_PDF | \ 367 DSI1_CTRL_CLR_CDF) 368 369 #define DSI1_TXPKT2C 0x0c 370 #define DSI1_TXPKT2H 0x10 371 #define DSI1_TXPKT_PIX_FIFO 0x20 372 #define DSI1_RXPKT_FIFO 0x24 373 #define DSI1_DISP0_CTRL 0x28 374 #define DSI1_INT_STAT 0x30 375 #define DSI1_INT_EN 0x34 376 /* State reporting bits. These mostly behave like INT_STAT, where 377 * writing a 1 clears the bit. 378 */ 379 #define DSI1_STAT 0x38 380 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 381 # define DSI1_STAT_PHY_D3_STOP BIT(30) 382 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 383 # define DSI1_STAT_PHY_D2_STOP BIT(28) 384 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 385 # define DSI1_STAT_PHY_D1_STOP BIT(26) 386 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 387 # define DSI1_STAT_PHY_D0_STOP BIT(24) 388 # define DSI1_STAT_FIFO_ERR BIT(23) 389 # define DSI1_STAT_PHY_RXLPDT BIT(22) 390 # define DSI1_STAT_PHY_RXTRIG BIT(21) 391 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 392 /* Set when in forward direction */ 393 # define DSI1_STAT_PHY_DIR BIT(19) 394 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 395 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 396 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 397 # define DSI1_STAT_PR_TO BIT(15) 398 # define DSI1_STAT_TA_TO BIT(14) 399 # define DSI1_STAT_LPRX_TO BIT(13) 400 # define DSI1_STAT_HSTX_TO BIT(12) 401 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 402 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 403 # define DSI1_STAT_ERR_CONTROL BIT(9) 404 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 405 # define DSI1_STAT_RXPKT2 BIT(7) 406 # define DSI1_STAT_RXPKT1 BIT(6) 407 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 408 # define DSI1_STAT_TXPKT2_DONE BIT(4) 409 # define DSI1_STAT_TXPKT2_END BIT(3) 410 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 411 # define DSI1_STAT_TXPKT1_DONE BIT(1) 412 # define DSI1_STAT_TXPKT1_END BIT(0) 413 414 #define DSI1_HSTX_TO_CNT 0x3c 415 #define DSI1_LPRX_TO_CNT 0x40 416 #define DSI1_TA_TO_CNT 0x44 417 #define DSI1_PR_TO_CNT 0x48 418 #define DSI1_PHYC 0x4c 419 420 #define DSI1_HS_CLT0 0x50 421 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 422 # define DSI_HS_CLT0_CZERO_SHIFT 18 423 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 424 # define DSI_HS_CLT0_CPRE_SHIFT 9 425 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 426 # define DSI_HS_CLT0_CPREP_SHIFT 0 427 428 #define DSI1_HS_CLT1 0x54 429 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 430 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 431 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 432 # define DSI_HS_CLT1_CPOST_SHIFT 0 433 434 #define DSI1_HS_CLT2 0x58 435 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 436 # define DSI_HS_CLT2_WUP_SHIFT 0 437 438 #define DSI1_HS_DLT3 0x5c 439 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 440 # define DSI_HS_DLT3_EXIT_SHIFT 18 441 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 442 # define DSI_HS_DLT3_ZERO_SHIFT 9 443 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 444 # define DSI_HS_DLT3_PRE_SHIFT 0 445 446 #define DSI1_HS_DLT4 0x60 447 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 448 # define DSI_HS_DLT4_ANLAT_SHIFT 18 449 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 450 # define DSI_HS_DLT4_TRAIL_SHIFT 9 451 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 452 # define DSI_HS_DLT4_LPX_SHIFT 0 453 454 #define DSI1_HS_DLT5 0x64 455 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 456 # define DSI_HS_DLT5_INIT_SHIFT 0 457 458 #define DSI1_HS_DLT6 0x68 459 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 460 # define DSI_HS_DLT6_TA_GET_SHIFT 24 461 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 462 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 463 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 464 # define DSI_HS_DLT6_TA_GO_SHIFT 8 465 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 466 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 467 468 #define DSI1_HS_DLT7 0x6c 469 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 470 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 471 472 #define DSI1_PHY_AFEC0 0x70 473 474 #define DSI1_PHY_AFEC1 0x74 475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 476 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 478 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 480 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 482 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 484 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 485 486 #define DSI1_TST_SEL 0x78 487 #define DSI1_TST_MON 0x7c 488 #define DSI1_PHY_TST1 0x80 489 #define DSI1_PHY_TST2 0x84 490 #define DSI1_PHY_FIFO_STAT 0x88 491 /* Actually, all registers in the range that aren't otherwise claimed 492 * will return the ID. 493 */ 494 #define DSI1_ID 0x8c 495 496 struct vc4_dsi_variant { 497 /* Whether we're on bcm2835's DSI0 or DSI1. */ 498 unsigned int port; 499 500 bool broken_axi_workaround; 501 502 const char *debugfs_name; 503 const struct debugfs_reg32 *regs; 504 size_t nregs; 505 506 }; 507 508 /* General DSI hardware state. */ 509 struct vc4_dsi { 510 struct platform_device *pdev; 511 512 struct mipi_dsi_host dsi_host; 513 struct drm_encoder *encoder; 514 struct drm_bridge *bridge; 515 struct list_head bridge_chain; 516 517 void __iomem *regs; 518 519 struct dma_chan *reg_dma_chan; 520 dma_addr_t reg_dma_paddr; 521 u32 *reg_dma_mem; 522 dma_addr_t reg_paddr; 523 524 const struct vc4_dsi_variant *variant; 525 526 /* DSI channel for the panel we're connected to. */ 527 u32 channel; 528 u32 lanes; 529 u32 format; 530 u32 divider; 531 u32 mode_flags; 532 533 /* Input clock from CPRMAN to the digital PHY, for the DSI 534 * escape clock. 535 */ 536 struct clk *escape_clock; 537 538 /* Input clock to the analog PHY, used to generate the DSI bit 539 * clock. 540 */ 541 struct clk *pll_phy_clock; 542 543 /* HS Clocks generated within the DSI analog PHY. */ 544 struct clk_fixed_factor phy_clocks[3]; 545 546 struct clk_hw_onecell_data *clk_onecell; 547 548 /* Pixel clock output to the pixelvalve, generated from the HS 549 * clock. 550 */ 551 struct clk *pixel_clock; 552 553 struct completion xfer_completion; 554 int xfer_result; 555 556 struct debugfs_regset32 regset; 557 }; 558 559 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 560 561 static inline void 562 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 563 { 564 struct dma_chan *chan = dsi->reg_dma_chan; 565 struct dma_async_tx_descriptor *tx; 566 dma_cookie_t cookie; 567 int ret; 568 569 /* DSI0 should be able to write normally. */ 570 if (!chan) { 571 writel(val, dsi->regs + offset); 572 return; 573 } 574 575 *dsi->reg_dma_mem = val; 576 577 tx = chan->device->device_prep_dma_memcpy(chan, 578 dsi->reg_paddr + offset, 579 dsi->reg_dma_paddr, 580 4, 0); 581 if (!tx) { 582 DRM_ERROR("Failed to set up DMA register write\n"); 583 return; 584 } 585 586 cookie = tx->tx_submit(tx); 587 ret = dma_submit_error(cookie); 588 if (ret) { 589 DRM_ERROR("Failed to submit DMA: %d\n", ret); 590 return; 591 } 592 ret = dma_sync_wait(chan, cookie); 593 if (ret) 594 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 595 } 596 597 #define DSI_READ(offset) readl(dsi->regs + (offset)) 598 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 599 #define DSI_PORT_READ(offset) \ 600 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) 601 #define DSI_PORT_WRITE(offset, val) \ 602 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) 603 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) 604 605 /* VC4 DSI encoder KMS struct */ 606 struct vc4_dsi_encoder { 607 struct vc4_encoder base; 608 struct vc4_dsi *dsi; 609 }; 610 611 static inline struct vc4_dsi_encoder * 612 to_vc4_dsi_encoder(struct drm_encoder *encoder) 613 { 614 return container_of(encoder, struct vc4_dsi_encoder, base.base); 615 } 616 617 static const struct debugfs_reg32 dsi0_regs[] = { 618 VC4_REG32(DSI0_CTRL), 619 VC4_REG32(DSI0_STAT), 620 VC4_REG32(DSI0_HSTX_TO_CNT), 621 VC4_REG32(DSI0_LPRX_TO_CNT), 622 VC4_REG32(DSI0_TA_TO_CNT), 623 VC4_REG32(DSI0_PR_TO_CNT), 624 VC4_REG32(DSI0_DISP0_CTRL), 625 VC4_REG32(DSI0_DISP1_CTRL), 626 VC4_REG32(DSI0_INT_STAT), 627 VC4_REG32(DSI0_INT_EN), 628 VC4_REG32(DSI0_PHYC), 629 VC4_REG32(DSI0_HS_CLT0), 630 VC4_REG32(DSI0_HS_CLT1), 631 VC4_REG32(DSI0_HS_CLT2), 632 VC4_REG32(DSI0_HS_DLT3), 633 VC4_REG32(DSI0_HS_DLT4), 634 VC4_REG32(DSI0_HS_DLT5), 635 VC4_REG32(DSI0_HS_DLT6), 636 VC4_REG32(DSI0_HS_DLT7), 637 VC4_REG32(DSI0_PHY_AFEC0), 638 VC4_REG32(DSI0_PHY_AFEC1), 639 VC4_REG32(DSI0_ID), 640 }; 641 642 static const struct debugfs_reg32 dsi1_regs[] = { 643 VC4_REG32(DSI1_CTRL), 644 VC4_REG32(DSI1_STAT), 645 VC4_REG32(DSI1_HSTX_TO_CNT), 646 VC4_REG32(DSI1_LPRX_TO_CNT), 647 VC4_REG32(DSI1_TA_TO_CNT), 648 VC4_REG32(DSI1_PR_TO_CNT), 649 VC4_REG32(DSI1_DISP0_CTRL), 650 VC4_REG32(DSI1_DISP1_CTRL), 651 VC4_REG32(DSI1_INT_STAT), 652 VC4_REG32(DSI1_INT_EN), 653 VC4_REG32(DSI1_PHYC), 654 VC4_REG32(DSI1_HS_CLT0), 655 VC4_REG32(DSI1_HS_CLT1), 656 VC4_REG32(DSI1_HS_CLT2), 657 VC4_REG32(DSI1_HS_DLT3), 658 VC4_REG32(DSI1_HS_DLT4), 659 VC4_REG32(DSI1_HS_DLT5), 660 VC4_REG32(DSI1_HS_DLT6), 661 VC4_REG32(DSI1_HS_DLT7), 662 VC4_REG32(DSI1_PHY_AFEC0), 663 VC4_REG32(DSI1_PHY_AFEC1), 664 VC4_REG32(DSI1_ID), 665 }; 666 667 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 668 { 669 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 670 671 if (latch) 672 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 673 else 674 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 675 676 DSI_PORT_WRITE(PHY_AFEC0, afec0); 677 } 678 679 /* Enters or exits Ultra Low Power State. */ 680 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 681 { 682 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 683 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 684 DSI_PHYC_DLANE0_ULPS | 685 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 686 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 687 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 688 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 689 DSI1_STAT_PHY_D0_ULPS | 690 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 691 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 692 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 693 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 694 DSI1_STAT_PHY_D0_STOP | 695 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 696 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 697 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 698 int ret; 699 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 700 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 701 702 if (ulps == ulps_currently_enabled) 703 return; 704 705 DSI_PORT_WRITE(STAT, stat_ulps); 706 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 707 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 708 if (ret) { 709 dev_warn(&dsi->pdev->dev, 710 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 711 DSI_PORT_READ(STAT)); 712 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 713 vc4_dsi_latch_ulps(dsi, false); 714 return; 715 } 716 717 /* The DSI module can't be disabled while the module is 718 * generating ULPS state. So, to be able to disable the 719 * module, we have the AFE latch the ULPS state and continue 720 * on to having the module enter STOP. 721 */ 722 vc4_dsi_latch_ulps(dsi, ulps); 723 724 DSI_PORT_WRITE(STAT, stat_stop); 725 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 726 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 727 if (ret) { 728 dev_warn(&dsi->pdev->dev, 729 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 730 DSI_PORT_READ(STAT)); 731 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 732 return; 733 } 734 } 735 736 static u32 737 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 738 { 739 /* The HS timings have to be rounded up to a multiple of 8 740 * because we're using the byte clock. 741 */ 742 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 743 } 744 745 /* ESC always runs at 100Mhz. */ 746 #define ESC_TIME_NS 10 747 748 static u32 749 dsi_esc_timing(u32 ns) 750 { 751 return DIV_ROUND_UP(ns, ESC_TIME_NS); 752 } 753 754 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 755 { 756 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 757 struct vc4_dsi *dsi = vc4_encoder->dsi; 758 struct device *dev = &dsi->pdev->dev; 759 struct drm_bridge *iter; 760 761 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 762 if (iter->funcs->disable) 763 iter->funcs->disable(iter); 764 } 765 766 vc4_dsi_ulps(dsi, true); 767 768 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) { 769 if (iter->funcs->post_disable) 770 iter->funcs->post_disable(iter); 771 } 772 773 clk_disable_unprepare(dsi->pll_phy_clock); 774 clk_disable_unprepare(dsi->escape_clock); 775 clk_disable_unprepare(dsi->pixel_clock); 776 777 pm_runtime_put(dev); 778 } 779 780 /* Extends the mode's blank intervals to handle BCM2835's integer-only 781 * DSI PLL divider. 782 * 783 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 784 * driver since most peripherals are hanging off of the PLLD_PER 785 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 786 * the pixel clock), only has an integer divider off of DSI. 787 * 788 * To get our panel mode to refresh at the expected 60Hz, we need to 789 * extend the horizontal blank time. This means we drive a 790 * higher-than-expected clock rate to the panel, but that's what the 791 * firmware does too. 792 */ 793 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 794 const struct drm_display_mode *mode, 795 struct drm_display_mode *adjusted_mode) 796 { 797 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 798 struct vc4_dsi *dsi = vc4_encoder->dsi; 799 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 800 unsigned long parent_rate = clk_get_rate(phy_parent); 801 unsigned long pixel_clock_hz = mode->clock * 1000; 802 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 803 int divider; 804 805 /* Find what divider gets us a faster clock than the requested 806 * pixel clock. 807 */ 808 for (divider = 1; divider < 8; divider++) { 809 if (parent_rate / divider < pll_clock) { 810 divider--; 811 break; 812 } 813 } 814 815 /* Now that we've picked a PLL divider, calculate back to its 816 * pixel clock. 817 */ 818 pll_clock = parent_rate / divider; 819 pixel_clock_hz = pll_clock / dsi->divider; 820 821 adjusted_mode->clock = pixel_clock_hz / 1000; 822 823 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 824 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 825 mode->clock; 826 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 827 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 828 829 return true; 830 } 831 832 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 833 { 834 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 835 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 836 struct vc4_dsi *dsi = vc4_encoder->dsi; 837 struct device *dev = &dsi->pdev->dev; 838 bool debug_dump_regs = false; 839 struct drm_bridge *iter; 840 unsigned long hs_clock; 841 u32 ui_ns; 842 /* Minimum LP state duration in escape clock cycles. */ 843 u32 lpx = dsi_esc_timing(60); 844 unsigned long pixel_clock_hz = mode->clock * 1000; 845 unsigned long dsip_clock; 846 unsigned long phy_clock; 847 int ret; 848 849 ret = pm_runtime_get_sync(dev); 850 if (ret) { 851 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port); 852 return; 853 } 854 855 if (debug_dump_regs) { 856 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 857 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 858 drm_print_regset32(&p, &dsi->regset); 859 } 860 861 /* Round up the clk_set_rate() request slightly, since 862 * PLLD_DSI1 is an integer divider and its rate selection will 863 * never round up. 864 */ 865 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 866 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 867 if (ret) { 868 dev_err(&dsi->pdev->dev, 869 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 870 } 871 872 /* Reset the DSI and all its fifos. */ 873 DSI_PORT_WRITE(CTRL, 874 DSI_CTRL_SOFT_RESET_CFG | 875 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 876 877 DSI_PORT_WRITE(CTRL, 878 DSI_CTRL_HSDT_EOT_DISABLE | 879 DSI_CTRL_RX_LPDT_EOT_DISABLE); 880 881 /* Clear all stat bits so we see what has happened during enable. */ 882 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 883 884 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 885 if (dsi->variant->port == 0) { 886 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 887 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 888 889 if (dsi->lanes < 2) 890 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 891 892 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 893 afec0 |= DSI0_PHY_AFEC0_RESET; 894 895 DSI_PORT_WRITE(PHY_AFEC0, afec0); 896 897 DSI_PORT_WRITE(PHY_AFEC1, 898 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 899 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 900 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 901 } else { 902 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 903 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 904 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 905 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 906 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 907 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 908 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 909 910 if (dsi->lanes < 4) 911 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 912 if (dsi->lanes < 3) 913 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 914 if (dsi->lanes < 2) 915 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 916 917 afec0 |= DSI1_PHY_AFEC0_RESET; 918 919 DSI_PORT_WRITE(PHY_AFEC0, afec0); 920 921 DSI_PORT_WRITE(PHY_AFEC1, 0); 922 923 /* AFEC reset hold time */ 924 mdelay(1); 925 } 926 927 ret = clk_prepare_enable(dsi->escape_clock); 928 if (ret) { 929 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 930 return; 931 } 932 933 ret = clk_prepare_enable(dsi->pll_phy_clock); 934 if (ret) { 935 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 936 return; 937 } 938 939 hs_clock = clk_get_rate(dsi->pll_phy_clock); 940 941 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 942 * not the pixel clock rate. DSIxP take from the APHY's byte, 943 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 944 * that rate. Separately, a value derived from PIX_CLK_DIV 945 * and HS_CLKC is fed into the PV to divide down to the actual 946 * pixel clock for pushing pixels into DSI. 947 */ 948 dsip_clock = phy_clock / 8; 949 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 950 if (ret) { 951 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 952 dsip_clock, ret); 953 } 954 955 ret = clk_prepare_enable(dsi->pixel_clock); 956 if (ret) { 957 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 958 return; 959 } 960 961 /* How many ns one DSI unit interval is. Note that the clock 962 * is DDR, so there's an extra divide by 2. 963 */ 964 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 965 966 DSI_PORT_WRITE(HS_CLT0, 967 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 968 DSI_HS_CLT0_CZERO) | 969 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 970 DSI_HS_CLT0_CPRE) | 971 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 972 DSI_HS_CLT0_CPREP)); 973 974 DSI_PORT_WRITE(HS_CLT1, 975 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 976 DSI_HS_CLT1_CTRAIL) | 977 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 978 DSI_HS_CLT1_CPOST)); 979 980 DSI_PORT_WRITE(HS_CLT2, 981 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 982 DSI_HS_CLT2_WUP)); 983 984 DSI_PORT_WRITE(HS_DLT3, 985 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 986 DSI_HS_DLT3_EXIT) | 987 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 988 DSI_HS_DLT3_ZERO) | 989 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 990 DSI_HS_DLT3_PRE)); 991 992 DSI_PORT_WRITE(HS_DLT4, 993 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 994 DSI_HS_DLT4_LPX) | 995 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 996 dsi_hs_timing(ui_ns, 60, 4)), 997 DSI_HS_DLT4_TRAIL) | 998 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 999 1000 /* T_INIT is how long STOP is driven after power-up to 1001 * indicate to the slave (also coming out of power-up) that 1002 * master init is complete, and should be greater than the 1003 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1004 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1005 * T_INIT,SLAVE, while allowing protocols on top of it to give 1006 * greater minimums. The vc4 firmware uses an extremely 1007 * conservative 5ms, and we maintain that here. 1008 */ 1009 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1010 5 * 1000 * 1000, 0), 1011 DSI_HS_DLT5_INIT)); 1012 1013 DSI_PORT_WRITE(HS_DLT6, 1014 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1015 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1016 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1017 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1018 1019 DSI_PORT_WRITE(HS_DLT7, 1020 VC4_SET_FIELD(dsi_esc_timing(1000000), 1021 DSI_HS_DLT7_LP_WUP)); 1022 1023 DSI_PORT_WRITE(PHYC, 1024 DSI_PHYC_DLANE0_ENABLE | 1025 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1026 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1027 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1028 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1029 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1030 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1031 (dsi->variant->port == 0 ? 1032 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1033 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1034 1035 DSI_PORT_WRITE(CTRL, 1036 DSI_PORT_READ(CTRL) | 1037 DSI_CTRL_CAL_BYTE); 1038 1039 /* HS timeout in HS clock cycles: disabled. */ 1040 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1041 /* LP receive timeout in HS clocks. */ 1042 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1043 /* Bus turnaround timeout */ 1044 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1045 /* Display reset sequence timeout */ 1046 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1047 1048 /* Set up DISP1 for transferring long command payloads through 1049 * the pixfifo. 1050 */ 1051 DSI_PORT_WRITE(DISP1_CTRL, 1052 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1053 DSI_DISP1_PFORMAT) | 1054 DSI_DISP1_ENABLE); 1055 1056 /* Ungate the block. */ 1057 if (dsi->variant->port == 0) 1058 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1059 else 1060 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1061 1062 /* Bring AFE out of reset. */ 1063 if (dsi->variant->port == 0) { 1064 } else { 1065 DSI_PORT_WRITE(PHY_AFEC0, 1066 DSI_PORT_READ(PHY_AFEC0) & 1067 ~DSI1_PHY_AFEC0_RESET); 1068 } 1069 1070 vc4_dsi_ulps(dsi, false); 1071 1072 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 1073 if (iter->funcs->pre_enable) 1074 iter->funcs->pre_enable(iter); 1075 } 1076 1077 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1078 DSI_PORT_WRITE(DISP0_CTRL, 1079 VC4_SET_FIELD(dsi->divider, 1080 DSI_DISP0_PIX_CLK_DIV) | 1081 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1082 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1083 DSI_DISP0_LP_STOP_CTRL) | 1084 DSI_DISP0_ST_END | 1085 DSI_DISP0_ENABLE); 1086 } else { 1087 DSI_PORT_WRITE(DISP0_CTRL, 1088 DSI_DISP0_COMMAND_MODE | 1089 DSI_DISP0_ENABLE); 1090 } 1091 1092 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1093 if (iter->funcs->enable) 1094 iter->funcs->enable(iter); 1095 } 1096 1097 if (debug_dump_regs) { 1098 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1099 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1100 drm_print_regset32(&p, &dsi->regset); 1101 } 1102 } 1103 1104 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1105 const struct mipi_dsi_msg *msg) 1106 { 1107 struct vc4_dsi *dsi = host_to_dsi(host); 1108 struct mipi_dsi_packet packet; 1109 u32 pkth = 0, pktc = 0; 1110 int i, ret; 1111 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1112 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1113 1114 mipi_dsi_create_packet(&packet, msg); 1115 1116 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1117 pkth |= VC4_SET_FIELD(packet.header[1] | 1118 (packet.header[2] << 8), 1119 DSI_TXPKT1H_BC_PARAM); 1120 if (is_long) { 1121 /* Divide data across the various FIFOs we have available. 1122 * The command FIFO takes byte-oriented data, but is of 1123 * limited size. The pixel FIFO (never actually used for 1124 * pixel data in reality) is word oriented, and substantially 1125 * larger. So, we use the pixel FIFO for most of the data, 1126 * sending the residual bytes in the command FIFO at the start. 1127 * 1128 * With this arrangement, the command FIFO will never get full. 1129 */ 1130 if (packet.payload_length <= 16) { 1131 cmd_fifo_len = packet.payload_length; 1132 pix_fifo_len = 0; 1133 } else { 1134 cmd_fifo_len = (packet.payload_length % 1135 DSI_PIX_FIFO_WIDTH); 1136 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1137 DSI_PIX_FIFO_WIDTH); 1138 } 1139 1140 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1141 1142 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1143 } 1144 1145 if (msg->rx_len) { 1146 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1147 DSI_TXPKT1C_CMD_CTRL); 1148 } else { 1149 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1150 DSI_TXPKT1C_CMD_CTRL); 1151 } 1152 1153 for (i = 0; i < cmd_fifo_len; i++) 1154 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1155 for (i = 0; i < pix_fifo_len; i++) { 1156 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1157 1158 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1159 pix[0] | 1160 pix[1] << 8 | 1161 pix[2] << 16 | 1162 pix[3] << 24); 1163 } 1164 1165 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1166 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1167 if (is_long) 1168 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1169 1170 /* Send one copy of the packet. Larger repeats are used for pixel 1171 * data in command mode. 1172 */ 1173 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1174 1175 pktc |= DSI_TXPKT1C_CMD_EN; 1176 if (pix_fifo_len) { 1177 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1178 DSI_TXPKT1C_DISPLAY_NO); 1179 } else { 1180 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1181 DSI_TXPKT1C_DISPLAY_NO); 1182 } 1183 1184 /* Enable the appropriate interrupt for the transfer completion. */ 1185 dsi->xfer_result = 0; 1186 reinit_completion(&dsi->xfer_completion); 1187 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1188 if (msg->rx_len) { 1189 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1190 DSI1_INT_PHY_DIR_RTF)); 1191 } else { 1192 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1193 DSI1_INT_TXPKT1_DONE)); 1194 } 1195 1196 /* Send the packet. */ 1197 DSI_PORT_WRITE(TXPKT1H, pkth); 1198 DSI_PORT_WRITE(TXPKT1C, pktc); 1199 1200 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1201 msecs_to_jiffies(1000))) { 1202 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1203 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1204 DSI_PORT_READ(INT_STAT)); 1205 ret = -ETIMEDOUT; 1206 } else { 1207 ret = dsi->xfer_result; 1208 } 1209 1210 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1211 1212 if (ret) 1213 goto reset_fifo_and_return; 1214 1215 if (ret == 0 && msg->rx_len) { 1216 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1217 u8 *msg_rx = msg->rx_buf; 1218 1219 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1220 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1221 DSI_RXPKT1H_BC_PARAM); 1222 1223 if (rxlen != msg->rx_len) { 1224 DRM_ERROR("DSI returned %db, expecting %db\n", 1225 rxlen, (int)msg->rx_len); 1226 ret = -ENXIO; 1227 goto reset_fifo_and_return; 1228 } 1229 1230 for (i = 0; i < msg->rx_len; i++) 1231 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1232 } else { 1233 /* FINISHME: Handle AWER */ 1234 1235 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1236 DSI_RXPKT1H_SHORT_0); 1237 if (msg->rx_len > 1) { 1238 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1239 DSI_RXPKT1H_SHORT_1); 1240 } 1241 } 1242 } 1243 1244 return ret; 1245 1246 reset_fifo_and_return: 1247 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1248 1249 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1250 udelay(1); 1251 DSI_PORT_WRITE(CTRL, 1252 DSI_PORT_READ(CTRL) | 1253 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1254 1255 DSI_PORT_WRITE(TXPKT1C, 0); 1256 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1257 return ret; 1258 } 1259 1260 static const struct component_ops vc4_dsi_ops; 1261 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1262 struct mipi_dsi_device *device) 1263 { 1264 struct vc4_dsi *dsi = host_to_dsi(host); 1265 int ret; 1266 1267 dsi->lanes = device->lanes; 1268 dsi->channel = device->channel; 1269 dsi->mode_flags = device->mode_flags; 1270 1271 switch (device->format) { 1272 case MIPI_DSI_FMT_RGB888: 1273 dsi->format = DSI_PFORMAT_RGB888; 1274 dsi->divider = 24 / dsi->lanes; 1275 break; 1276 case MIPI_DSI_FMT_RGB666: 1277 dsi->format = DSI_PFORMAT_RGB666; 1278 dsi->divider = 24 / dsi->lanes; 1279 break; 1280 case MIPI_DSI_FMT_RGB666_PACKED: 1281 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1282 dsi->divider = 18 / dsi->lanes; 1283 break; 1284 case MIPI_DSI_FMT_RGB565: 1285 dsi->format = DSI_PFORMAT_RGB565; 1286 dsi->divider = 16 / dsi->lanes; 1287 break; 1288 default: 1289 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1290 dsi->format); 1291 return 0; 1292 } 1293 1294 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1295 dev_err(&dsi->pdev->dev, 1296 "Only VIDEO mode panels supported currently.\n"); 1297 return 0; 1298 } 1299 1300 ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops); 1301 if (ret) { 1302 mipi_dsi_host_unregister(&dsi->dsi_host); 1303 return ret; 1304 } 1305 1306 return 0; 1307 } 1308 1309 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1310 struct mipi_dsi_device *device) 1311 { 1312 return 0; 1313 } 1314 1315 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1316 .attach = vc4_dsi_host_attach, 1317 .detach = vc4_dsi_host_detach, 1318 .transfer = vc4_dsi_host_transfer, 1319 }; 1320 1321 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1322 .disable = vc4_dsi_encoder_disable, 1323 .enable = vc4_dsi_encoder_enable, 1324 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1325 }; 1326 1327 static const struct vc4_dsi_variant bcm2711_dsi1_variant = { 1328 .port = 1, 1329 .debugfs_name = "dsi1_regs", 1330 .regs = dsi1_regs, 1331 .nregs = ARRAY_SIZE(dsi1_regs), 1332 }; 1333 1334 static const struct vc4_dsi_variant bcm2835_dsi0_variant = { 1335 .port = 0, 1336 .debugfs_name = "dsi0_regs", 1337 .regs = dsi0_regs, 1338 .nregs = ARRAY_SIZE(dsi0_regs), 1339 }; 1340 1341 static const struct vc4_dsi_variant bcm2835_dsi1_variant = { 1342 .port = 1, 1343 .broken_axi_workaround = true, 1344 .debugfs_name = "dsi1_regs", 1345 .regs = dsi1_regs, 1346 .nregs = ARRAY_SIZE(dsi1_regs), 1347 }; 1348 1349 static const struct of_device_id vc4_dsi_dt_match[] = { 1350 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant }, 1351 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant }, 1352 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, 1353 {} 1354 }; 1355 1356 static void dsi_handle_error(struct vc4_dsi *dsi, 1357 irqreturn_t *ret, u32 stat, u32 bit, 1358 const char *type) 1359 { 1360 if (!(stat & bit)) 1361 return; 1362 1363 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type); 1364 *ret = IRQ_HANDLED; 1365 } 1366 1367 /* 1368 * Initial handler for port 1 where we need the reg_dma workaround. 1369 * The register DMA writes sleep, so we can't do it in the top half. 1370 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1371 * parent interrupt contrller until our interrupt thread is done. 1372 */ 1373 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1374 { 1375 struct vc4_dsi *dsi = data; 1376 u32 stat = DSI_PORT_READ(INT_STAT); 1377 1378 if (!stat) 1379 return IRQ_NONE; 1380 1381 return IRQ_WAKE_THREAD; 1382 } 1383 1384 /* 1385 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1386 * 1 where we need the reg_dma workaround. 1387 */ 1388 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1389 { 1390 struct vc4_dsi *dsi = data; 1391 u32 stat = DSI_PORT_READ(INT_STAT); 1392 irqreturn_t ret = IRQ_NONE; 1393 1394 DSI_PORT_WRITE(INT_STAT, stat); 1395 1396 dsi_handle_error(dsi, &ret, stat, 1397 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1398 dsi_handle_error(dsi, &ret, stat, 1399 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1400 dsi_handle_error(dsi, &ret, stat, 1401 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1402 dsi_handle_error(dsi, &ret, stat, 1403 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1404 dsi_handle_error(dsi, &ret, stat, 1405 DSI1_INT_HSTX_TO, "HSTX timeout"); 1406 dsi_handle_error(dsi, &ret, stat, 1407 DSI1_INT_LPRX_TO, "LPRX timeout"); 1408 dsi_handle_error(dsi, &ret, stat, 1409 DSI1_INT_TA_TO, "turnaround timeout"); 1410 dsi_handle_error(dsi, &ret, stat, 1411 DSI1_INT_PR_TO, "peripheral reset timeout"); 1412 1413 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1414 complete(&dsi->xfer_completion); 1415 ret = IRQ_HANDLED; 1416 } else if (stat & DSI1_INT_HSTX_TO) { 1417 complete(&dsi->xfer_completion); 1418 dsi->xfer_result = -ETIMEDOUT; 1419 ret = IRQ_HANDLED; 1420 } 1421 1422 return ret; 1423 } 1424 1425 /** 1426 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1427 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1428 * @dsi: DSI encoder 1429 */ 1430 static int 1431 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1432 { 1433 struct device *dev = &dsi->pdev->dev; 1434 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1435 static const struct { 1436 const char *name; 1437 int div; 1438 } phy_clocks[] = { 1439 { "byte", 8 }, 1440 { "ddr2", 4 }, 1441 { "ddr", 2 }, 1442 }; 1443 int i; 1444 1445 dsi->clk_onecell = devm_kzalloc(dev, 1446 sizeof(*dsi->clk_onecell) + 1447 ARRAY_SIZE(phy_clocks) * 1448 sizeof(struct clk_hw *), 1449 GFP_KERNEL); 1450 if (!dsi->clk_onecell) 1451 return -ENOMEM; 1452 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1453 1454 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1455 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1456 struct clk_init_data init; 1457 char clk_name[16]; 1458 int ret; 1459 1460 snprintf(clk_name, sizeof(clk_name), 1461 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); 1462 1463 /* We just use core fixed factor clock ops for the PHY 1464 * clocks. The clocks are actually gated by the 1465 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1466 * setting if we use the DDR/DDR2 clocks. However, 1467 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1468 * setting both our parent DSI PLL's rate and this 1469 * clock's rate, so it knows if DDR/DDR2 are going to 1470 * be used and could enable the gates itself. 1471 */ 1472 fix->mult = 1; 1473 fix->div = phy_clocks[i].div; 1474 fix->hw.init = &init; 1475 1476 memset(&init, 0, sizeof(init)); 1477 init.parent_names = &parent_name; 1478 init.num_parents = 1; 1479 init.name = clk_name; 1480 init.ops = &clk_fixed_factor_ops; 1481 1482 ret = devm_clk_hw_register(dev, &fix->hw); 1483 if (ret) 1484 return ret; 1485 1486 dsi->clk_onecell->hws[i] = &fix->hw; 1487 } 1488 1489 return of_clk_add_hw_provider(dev->of_node, 1490 of_clk_hw_onecell_get, 1491 dsi->clk_onecell); 1492 } 1493 1494 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1495 { 1496 struct platform_device *pdev = to_platform_device(dev); 1497 struct drm_device *drm = dev_get_drvdata(master); 1498 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1499 struct vc4_dsi_encoder *vc4_dsi_encoder; 1500 struct drm_panel *panel; 1501 const struct of_device_id *match; 1502 dma_cap_mask_t dma_mask; 1503 int ret; 1504 1505 match = of_match_device(vc4_dsi_dt_match, dev); 1506 if (!match) 1507 return -ENODEV; 1508 1509 dsi->variant = match->data; 1510 1511 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1512 GFP_KERNEL); 1513 if (!vc4_dsi_encoder) 1514 return -ENOMEM; 1515 1516 INIT_LIST_HEAD(&dsi->bridge_chain); 1517 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1518 vc4_dsi_encoder->dsi = dsi; 1519 dsi->encoder = &vc4_dsi_encoder->base.base; 1520 1521 dsi->regs = vc4_ioremap_regs(pdev, 0); 1522 if (IS_ERR(dsi->regs)) 1523 return PTR_ERR(dsi->regs); 1524 1525 dsi->regset.base = dsi->regs; 1526 dsi->regset.regs = dsi->variant->regs; 1527 dsi->regset.nregs = dsi->variant->nregs; 1528 1529 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1530 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1531 DSI_PORT_READ(ID), DSI_ID_VALUE); 1532 return -ENODEV; 1533 } 1534 1535 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to 1536 * writes from the ARM. It does handle writes from the DMA engine, 1537 * so set up a channel for talking to it. 1538 */ 1539 if (dsi->variant->broken_axi_workaround) { 1540 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1541 &dsi->reg_dma_paddr, 1542 GFP_KERNEL); 1543 if (!dsi->reg_dma_mem) { 1544 DRM_ERROR("Failed to get DMA memory\n"); 1545 return -ENOMEM; 1546 } 1547 1548 dma_cap_zero(dma_mask); 1549 dma_cap_set(DMA_MEMCPY, dma_mask); 1550 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1551 if (IS_ERR(dsi->reg_dma_chan)) { 1552 ret = PTR_ERR(dsi->reg_dma_chan); 1553 if (ret != -EPROBE_DEFER) 1554 DRM_ERROR("Failed to get DMA channel: %d\n", 1555 ret); 1556 return ret; 1557 } 1558 1559 /* Get the physical address of the device's registers. The 1560 * struct resource for the regs gives us the bus address 1561 * instead. 1562 */ 1563 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1564 0, NULL, NULL)); 1565 } 1566 1567 init_completion(&dsi->xfer_completion); 1568 /* At startup enable error-reporting interrupts and nothing else. */ 1569 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1570 /* Clear any existing interrupt state. */ 1571 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1572 1573 if (dsi->reg_dma_mem) 1574 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1575 vc4_dsi_irq_defer_to_thread_handler, 1576 vc4_dsi_irq_handler, 1577 IRQF_ONESHOT, 1578 "vc4 dsi", dsi); 1579 else 1580 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1581 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1582 if (ret) { 1583 if (ret != -EPROBE_DEFER) 1584 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1585 return ret; 1586 } 1587 1588 dsi->escape_clock = devm_clk_get(dev, "escape"); 1589 if (IS_ERR(dsi->escape_clock)) { 1590 ret = PTR_ERR(dsi->escape_clock); 1591 if (ret != -EPROBE_DEFER) 1592 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1593 return ret; 1594 } 1595 1596 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1597 if (IS_ERR(dsi->pll_phy_clock)) { 1598 ret = PTR_ERR(dsi->pll_phy_clock); 1599 if (ret != -EPROBE_DEFER) 1600 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1601 return ret; 1602 } 1603 1604 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1605 if (IS_ERR(dsi->pixel_clock)) { 1606 ret = PTR_ERR(dsi->pixel_clock); 1607 if (ret != -EPROBE_DEFER) 1608 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1609 return ret; 1610 } 1611 1612 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1613 &panel, &dsi->bridge); 1614 if (ret) { 1615 /* If the bridge or panel pointed by dev->of_node is not 1616 * enabled, just return 0 here so that we don't prevent the DRM 1617 * dev from being registered. Of course that means the DSI 1618 * encoder won't be exposed, but that's not a problem since 1619 * nothing is connected to it. 1620 */ 1621 if (ret == -ENODEV) 1622 return 0; 1623 1624 return ret; 1625 } 1626 1627 if (panel) { 1628 dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel, 1629 DRM_MODE_CONNECTOR_DSI); 1630 if (IS_ERR(dsi->bridge)) 1631 return PTR_ERR(dsi->bridge); 1632 } 1633 1634 /* The esc clock rate is supposed to always be 100Mhz. */ 1635 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1636 if (ret) { 1637 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1638 return ret; 1639 } 1640 1641 ret = vc4_dsi_init_phy_clocks(dsi); 1642 if (ret) 1643 return ret; 1644 1645 drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI); 1646 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1647 1648 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0); 1649 if (ret) { 1650 dev_err(dev, "bridge attach failed: %d\n", ret); 1651 return ret; 1652 } 1653 /* Disable the atomic helper calls into the bridge. We 1654 * manually call the bridge pre_enable / enable / etc. calls 1655 * from our driver, since we need to sequence them within the 1656 * encoder's enable/disable paths. 1657 */ 1658 list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain); 1659 1660 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset); 1661 1662 pm_runtime_enable(dev); 1663 1664 return 0; 1665 } 1666 1667 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1668 void *data) 1669 { 1670 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1671 1672 if (dsi->bridge) 1673 pm_runtime_disable(dev); 1674 1675 /* 1676 * Restore the bridge_chain so the bridge detach procedure can happen 1677 * normally. 1678 */ 1679 list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain); 1680 drm_encoder_cleanup(dsi->encoder); 1681 } 1682 1683 static const struct component_ops vc4_dsi_ops = { 1684 .bind = vc4_dsi_bind, 1685 .unbind = vc4_dsi_unbind, 1686 }; 1687 1688 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1689 { 1690 struct device *dev = &pdev->dev; 1691 struct vc4_dsi *dsi; 1692 1693 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1694 if (!dsi) 1695 return -ENOMEM; 1696 dev_set_drvdata(dev, dsi); 1697 1698 dsi->pdev = pdev; 1699 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1700 dsi->dsi_host.dev = dev; 1701 mipi_dsi_host_register(&dsi->dsi_host); 1702 1703 return 0; 1704 } 1705 1706 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1707 { 1708 struct device *dev = &pdev->dev; 1709 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1710 1711 component_del(&pdev->dev, &vc4_dsi_ops); 1712 mipi_dsi_host_unregister(&dsi->dsi_host); 1713 1714 return 0; 1715 } 1716 1717 struct platform_driver vc4_dsi_driver = { 1718 .probe = vc4_dsi_dev_probe, 1719 .remove = vc4_dsi_dev_remove, 1720 .driver = { 1721 .name = "vc4_dsi", 1722 .of_match_table = vc4_dsi_dt_match, 1723 }, 1724 }; 1725