xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision 9ac21f40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 DSI0/DSI1 module
8  *
9  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
10  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11  * controller.
12  *
13  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14  * while the compute module brings both DSI0 and DSI1 out.
15  *
16  * This driver has been tested for DSI1 video-mode display only
17  * currently, with most of the information necessary for DSI0
18  * hopefully present.
19  */
20 
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/io.h>
28 #include <linux/of_address.h>
29 #include <linux/of_platform.h>
30 #include <linux/pm_runtime.h>
31 
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_bridge.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_of.h>
37 #include <drm/drm_panel.h>
38 #include <drm/drm_probe_helper.h>
39 #include <drm/drm_simple_kms_helper.h>
40 
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43 
44 #define DSI_CMD_FIFO_DEPTH  16
45 #define DSI_PIX_FIFO_DEPTH 256
46 #define DSI_PIX_FIFO_WIDTH   4
47 
48 #define DSI0_CTRL		0x00
49 
50 /* Command packet control. */
51 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
52 #define DSI1_TXPKT1C		0x04
53 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
54 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
55 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
56 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
57 
58 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
59 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
60 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
61 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
62 /* Primary display where cmdfifo provides part of the payload and
63  * pixelvalve the rest.
64  */
65 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
66 /* Secondary display where cmdfifo provides part of the payload and
67  * pixfifo the rest.
68  */
69 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
70 
71 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
72 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
73 
74 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
75 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
76 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
77 # define DSI_TXPKT1C_CMD_CTRL_TX	0
78 /* Command with BTA for either ack or read data. */
79 # define DSI_TXPKT1C_CMD_CTRL_RX	1
80 /* Trigger according to TRIG_CMD */
81 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
82 /* BTA alone for getting error status after a command, or a TE trigger
83  * without a previous command.
84  */
85 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
86 
87 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
88 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
89 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
90 # define DSI_TXPKT1C_CMD_EN		BIT(0)
91 
92 /* Command packet header. */
93 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
94 #define DSI1_TXPKT1H		0x08
95 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
96 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
97 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
98 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
99 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
100 # define DSI_TXPKT1H_BC_DT_SHIFT	0
101 
102 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
103 #define DSI1_RXPKT1H		0x14
104 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
105 # define DSI_RXPKT1H_DET_ERR		BIT(30)
106 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
107 # define DSI_RXPKT1H_COR_ERR		BIT(28)
108 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
109 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
110 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
111 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
112 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
113 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
114 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
115 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
116 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
117 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
118 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
119 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
120 
121 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
122 #define DSI1_RXPKT2H		0x18
123 # define DSI_RXPKT1H_DET_ERR		BIT(30)
124 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
125 # define DSI_RXPKT1H_COR_ERR		BIT(28)
126 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
127 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
128 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
129 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
130 # define DSI_RXPKT1H_DT_SHIFT		0
131 
132 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
133 #define DSI1_TXPKT_CMD_FIFO	0x1c
134 
135 #define DSI0_DISP0_CTRL		0x18
136 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
137 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
138 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
139 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
140 # define DSI_DISP0_LP_STOP_DISABLE	0
141 # define DSI_DISP0_LP_STOP_PERLINE	1
142 # define DSI_DISP0_LP_STOP_PERFRAME	2
143 
144 /* Transmit RGB pixels and null packets only during HACTIVE, instead
145  * of going to LP-STOP.
146  */
147 # define DSI_DISP_HACTIVE_NULL		BIT(10)
148 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
149 # define DSI_DISP_VBLP_CTRL		BIT(9)
150 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
151 # define DSI_DISP_HFP_CTRL		BIT(8)
152 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
153 # define DSI_DISP_HBP_CTRL		BIT(7)
154 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
155 # define DSI_DISP0_CHANNEL_SHIFT	5
156 /* Enables end events for HSYNC/VSYNC, not just start events. */
157 # define DSI_DISP0_ST_END		BIT(4)
158 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
159 # define DSI_DISP0_PFORMAT_SHIFT	2
160 # define DSI_PFORMAT_RGB565		0
161 # define DSI_PFORMAT_RGB666_PACKED	1
162 # define DSI_PFORMAT_RGB666		2
163 # define DSI_PFORMAT_RGB888		3
164 /* Default is VIDEO mode. */
165 # define DSI_DISP0_COMMAND_MODE		BIT(1)
166 # define DSI_DISP0_ENABLE		BIT(0)
167 
168 #define DSI0_DISP1_CTRL		0x1c
169 #define DSI1_DISP1_CTRL		0x2c
170 /* Format of the data written to TXPKT_PIX_FIFO. */
171 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
172 # define DSI_DISP1_PFORMAT_SHIFT	1
173 # define DSI_DISP1_PFORMAT_16BIT	0
174 # define DSI_DISP1_PFORMAT_24BIT	1
175 # define DSI_DISP1_PFORMAT_32BIT_LE	2
176 # define DSI_DISP1_PFORMAT_32BIT_BE	3
177 
178 /* DISP1 is always command mode. */
179 # define DSI_DISP1_ENABLE		BIT(0)
180 
181 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
182 
183 #define DSI0_INT_STAT			0x24
184 #define DSI0_INT_EN			0x28
185 # define DSI0_INT_FIFO_ERR		BIT(25)
186 # define DSI0_INT_CMDC_DONE_MASK	VC4_MASK(24, 23)
187 # define DSI0_INT_CMDC_DONE_SHIFT	23
188 #  define DSI0_INT_CMDC_DONE_NO_REPEAT		1
189 #  define DSI0_INT_CMDC_DONE_REPEAT		3
190 # define DSI0_INT_PHY_DIR_RTF		BIT(22)
191 # define DSI0_INT_PHY_D1_ULPS		BIT(21)
192 # define DSI0_INT_PHY_D1_STOP		BIT(20)
193 # define DSI0_INT_PHY_RXLPDT		BIT(19)
194 # define DSI0_INT_PHY_RXTRIG		BIT(18)
195 # define DSI0_INT_PHY_D0_ULPS		BIT(17)
196 # define DSI0_INT_PHY_D0_LPDT		BIT(16)
197 # define DSI0_INT_PHY_D0_FTR		BIT(15)
198 # define DSI0_INT_PHY_D0_STOP		BIT(14)
199 /* Signaled when the clock lane enters the given state. */
200 # define DSI0_INT_PHY_CLK_ULPS		BIT(13)
201 # define DSI0_INT_PHY_CLK_HS		BIT(12)
202 # define DSI0_INT_PHY_CLK_FTR		BIT(11)
203 /* Signaled on timeouts */
204 # define DSI0_INT_PR_TO			BIT(10)
205 # define DSI0_INT_TA_TO			BIT(9)
206 # define DSI0_INT_LPRX_TO		BIT(8)
207 # define DSI0_INT_HSTX_TO		BIT(7)
208 /* Contention on a line when trying to drive the line low */
209 # define DSI0_INT_ERR_CONT_LP1		BIT(6)
210 # define DSI0_INT_ERR_CONT_LP0		BIT(5)
211 /* Control error: incorrect line state sequence on data lane 0. */
212 # define DSI0_INT_ERR_CONTROL		BIT(4)
213 # define DSI0_INT_ERR_SYNC_ESC		BIT(3)
214 # define DSI0_INT_RX2_PKT		BIT(2)
215 # define DSI0_INT_RX1_PKT		BIT(1)
216 # define DSI0_INT_CMD_PKT		BIT(0)
217 
218 #define DSI0_INTERRUPTS_ALWAYS_ENABLED	(DSI0_INT_ERR_SYNC_ESC | \
219 					 DSI0_INT_ERR_CONTROL |	 \
220 					 DSI0_INT_ERR_CONT_LP0 | \
221 					 DSI0_INT_ERR_CONT_LP1 | \
222 					 DSI0_INT_HSTX_TO |	 \
223 					 DSI0_INT_LPRX_TO |	 \
224 					 DSI0_INT_TA_TO |	 \
225 					 DSI0_INT_PR_TO)
226 
227 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
228 # define DSI1_INT_PHY_D3_STOP		BIT(29)
229 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
230 # define DSI1_INT_PHY_D2_STOP		BIT(27)
231 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
232 # define DSI1_INT_PHY_D1_STOP		BIT(25)
233 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
234 # define DSI1_INT_PHY_D0_STOP		BIT(23)
235 # define DSI1_INT_FIFO_ERR		BIT(22)
236 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
237 # define DSI1_INT_PHY_RXLPDT		BIT(20)
238 # define DSI1_INT_PHY_RXTRIG		BIT(19)
239 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
240 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
241 
242 /* Signaled when the clock lane enters the given state. */
243 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
244 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
245 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
246 
247 /* Signaled on timeouts */
248 # define DSI1_INT_PR_TO			BIT(13)
249 # define DSI1_INT_TA_TO			BIT(12)
250 # define DSI1_INT_LPRX_TO		BIT(11)
251 # define DSI1_INT_HSTX_TO		BIT(10)
252 
253 /* Contention on a line when trying to drive the line low */
254 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
255 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
256 
257 /* Control error: incorrect line state sequence on data lane 0. */
258 # define DSI1_INT_ERR_CONTROL		BIT(7)
259 /* LPDT synchronization error (bits received not a multiple of 8. */
260 
261 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
262 /* Signaled after receiving an error packet from the display in
263  * response to a read.
264  */
265 # define DSI1_INT_RXPKT2		BIT(5)
266 /* Signaled after receiving a packet.  The header and optional short
267  * response will be in RXPKT1H, and a long response will be in the
268  * RXPKT_FIFO.
269  */
270 # define DSI1_INT_RXPKT1		BIT(4)
271 # define DSI1_INT_TXPKT2_DONE		BIT(3)
272 # define DSI1_INT_TXPKT2_END		BIT(2)
273 /* Signaled after all repeats of TXPKT1 are transferred. */
274 # define DSI1_INT_TXPKT1_DONE		BIT(1)
275 /* Signaled after each TXPKT1 repeat is scheduled. */
276 # define DSI1_INT_TXPKT1_END		BIT(0)
277 
278 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
279 					 DSI1_INT_ERR_CONTROL |	 \
280 					 DSI1_INT_ERR_CONT_LP0 | \
281 					 DSI1_INT_ERR_CONT_LP1 | \
282 					 DSI1_INT_HSTX_TO |	 \
283 					 DSI1_INT_LPRX_TO |	 \
284 					 DSI1_INT_TA_TO |	 \
285 					 DSI1_INT_PR_TO)
286 
287 #define DSI0_STAT		0x2c
288 #define DSI0_HSTX_TO_CNT	0x30
289 #define DSI0_LPRX_TO_CNT	0x34
290 #define DSI0_TA_TO_CNT		0x38
291 #define DSI0_PR_TO_CNT		0x3c
292 #define DSI0_PHYC		0x40
293 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
294 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
295 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
296 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
297 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
298 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
299 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
300 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
301 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
302 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
303 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
304 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
305 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
306 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
307 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
308 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
309 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
310 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
311 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
312 
313 #define DSI0_HS_CLT0		0x44
314 #define DSI0_HS_CLT1		0x48
315 #define DSI0_HS_CLT2		0x4c
316 #define DSI0_HS_DLT3		0x50
317 #define DSI0_HS_DLT4		0x54
318 #define DSI0_HS_DLT5		0x58
319 #define DSI0_HS_DLT6		0x5c
320 #define DSI0_HS_DLT7		0x60
321 
322 #define DSI0_PHY_AFEC0		0x64
323 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
324 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
325 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
326 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
327 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
328 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
329 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
330 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
331 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
332 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
333 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
334 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
335 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
336 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
338 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
340 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
342 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
343 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
344 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
345 # define DSI1_PHY_AFEC0_RESET			BIT(13)
346 # define DSI1_PHY_AFEC0_PD			BIT(12)
347 # define DSI0_PHY_AFEC0_RESET			BIT(11)
348 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
349 # define DSI0_PHY_AFEC0_PD			BIT(10)
350 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(10)
351 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
352 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
353 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
354 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(8)
355 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
356 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
357 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
358 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
359 
360 #define DSI0_PHY_AFEC1		0x68
361 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
362 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
363 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
364 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
365 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
366 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
367 
368 #define DSI0_TST_SEL		0x6c
369 #define DSI0_TST_MON		0x70
370 #define DSI0_ID			0x74
371 # define DSI_ID_VALUE		0x00647369
372 
373 #define DSI1_CTRL		0x00
374 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
375 # define DSI_CTRL_HS_CLKC_SHIFT		14
376 # define DSI_CTRL_HS_CLKC_BYTE		0
377 # define DSI_CTRL_HS_CLKC_DDR2		1
378 # define DSI_CTRL_HS_CLKC_DDR		2
379 
380 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
381 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
382 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
383 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
384 # define DSI_CTRL_CAL_BYTE		BIT(9)
385 # define DSI_CTRL_INV_BYTE		BIT(8)
386 # define DSI_CTRL_CLR_LDF		BIT(7)
387 # define DSI0_CTRL_CLR_PBCF		BIT(6)
388 # define DSI1_CTRL_CLR_RXF		BIT(6)
389 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
390 # define DSI1_CTRL_CLR_PDF		BIT(5)
391 # define DSI0_CTRL_CLR_PDF		BIT(4)
392 # define DSI1_CTRL_CLR_CDF		BIT(4)
393 # define DSI0_CTRL_CLR_CDF		BIT(3)
394 # define DSI0_CTRL_CTRL2		BIT(2)
395 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
396 # define DSI0_CTRL_CTRL1		BIT(1)
397 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
398 # define DSI0_CTRL_CTRL0		BIT(0)
399 # define DSI1_CTRL_EN			BIT(0)
400 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
401 					 DSI0_CTRL_CLR_PBCF | \
402 					 DSI0_CTRL_CLR_CPBCF |	\
403 					 DSI0_CTRL_CLR_PDF | \
404 					 DSI0_CTRL_CLR_CDF)
405 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
406 					 DSI1_CTRL_CLR_RXF | \
407 					 DSI1_CTRL_CLR_PDF | \
408 					 DSI1_CTRL_CLR_CDF)
409 
410 #define DSI1_TXPKT2C		0x0c
411 #define DSI1_TXPKT2H		0x10
412 #define DSI1_TXPKT_PIX_FIFO	0x20
413 #define DSI1_RXPKT_FIFO		0x24
414 #define DSI1_DISP0_CTRL		0x28
415 #define DSI1_INT_STAT		0x30
416 #define DSI1_INT_EN		0x34
417 /* State reporting bits.  These mostly behave like INT_STAT, where
418  * writing a 1 clears the bit.
419  */
420 #define DSI1_STAT		0x38
421 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
422 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
423 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
424 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
425 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
426 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
427 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
428 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
429 # define DSI1_STAT_FIFO_ERR		BIT(23)
430 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
431 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
432 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
433 /* Set when in forward direction */
434 # define DSI1_STAT_PHY_DIR		BIT(19)
435 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
436 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
437 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
438 # define DSI1_STAT_PR_TO		BIT(15)
439 # define DSI1_STAT_TA_TO		BIT(14)
440 # define DSI1_STAT_LPRX_TO		BIT(13)
441 # define DSI1_STAT_HSTX_TO		BIT(12)
442 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
443 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
444 # define DSI1_STAT_ERR_CONTROL		BIT(9)
445 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
446 # define DSI1_STAT_RXPKT2		BIT(7)
447 # define DSI1_STAT_RXPKT1		BIT(6)
448 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
449 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
450 # define DSI1_STAT_TXPKT2_END		BIT(3)
451 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
452 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
453 # define DSI1_STAT_TXPKT1_END		BIT(0)
454 
455 #define DSI1_HSTX_TO_CNT	0x3c
456 #define DSI1_LPRX_TO_CNT	0x40
457 #define DSI1_TA_TO_CNT		0x44
458 #define DSI1_PR_TO_CNT		0x48
459 #define DSI1_PHYC		0x4c
460 
461 #define DSI1_HS_CLT0		0x50
462 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
463 # define DSI_HS_CLT0_CZERO_SHIFT	18
464 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
465 # define DSI_HS_CLT0_CPRE_SHIFT		9
466 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
467 # define DSI_HS_CLT0_CPREP_SHIFT	0
468 
469 #define DSI1_HS_CLT1		0x54
470 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
471 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
472 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
473 # define DSI_HS_CLT1_CPOST_SHIFT	0
474 
475 #define DSI1_HS_CLT2		0x58
476 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
477 # define DSI_HS_CLT2_WUP_SHIFT		0
478 
479 #define DSI1_HS_DLT3		0x5c
480 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
481 # define DSI_HS_DLT3_EXIT_SHIFT		18
482 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
483 # define DSI_HS_DLT3_ZERO_SHIFT		9
484 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
485 # define DSI_HS_DLT3_PRE_SHIFT		0
486 
487 #define DSI1_HS_DLT4		0x60
488 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
489 # define DSI_HS_DLT4_ANLAT_SHIFT	18
490 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
491 # define DSI_HS_DLT4_TRAIL_SHIFT	9
492 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
493 # define DSI_HS_DLT4_LPX_SHIFT		0
494 
495 #define DSI1_HS_DLT5		0x64
496 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
497 # define DSI_HS_DLT5_INIT_SHIFT		0
498 
499 #define DSI1_HS_DLT6		0x68
500 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
501 # define DSI_HS_DLT6_TA_GET_SHIFT	24
502 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
503 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
504 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
505 # define DSI_HS_DLT6_TA_GO_SHIFT	8
506 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
507 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
508 
509 #define DSI1_HS_DLT7		0x6c
510 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
511 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
512 
513 #define DSI1_PHY_AFEC0		0x70
514 
515 #define DSI1_PHY_AFEC1		0x74
516 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
518 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
520 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
522 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
524 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
526 
527 #define DSI1_TST_SEL		0x78
528 #define DSI1_TST_MON		0x7c
529 #define DSI1_PHY_TST1		0x80
530 #define DSI1_PHY_TST2		0x84
531 #define DSI1_PHY_FIFO_STAT	0x88
532 /* Actually, all registers in the range that aren't otherwise claimed
533  * will return the ID.
534  */
535 #define DSI1_ID			0x8c
536 
537 struct vc4_dsi_variant {
538 	/* Whether we're on bcm2835's DSI0 or DSI1. */
539 	unsigned int port;
540 
541 	bool broken_axi_workaround;
542 
543 	const char *debugfs_name;
544 	const struct debugfs_reg32 *regs;
545 	size_t nregs;
546 
547 };
548 
549 /* General DSI hardware state. */
550 struct vc4_dsi {
551 	struct vc4_encoder encoder;
552 	struct mipi_dsi_host dsi_host;
553 
554 	struct kref kref;
555 
556 	struct platform_device *pdev;
557 
558 	struct drm_bridge *out_bridge;
559 	struct drm_bridge bridge;
560 
561 	void __iomem *regs;
562 
563 	struct dma_chan *reg_dma_chan;
564 	dma_addr_t reg_dma_paddr;
565 	u32 *reg_dma_mem;
566 	dma_addr_t reg_paddr;
567 
568 	const struct vc4_dsi_variant *variant;
569 
570 	/* DSI channel for the panel we're connected to. */
571 	u32 channel;
572 	u32 lanes;
573 	u32 format;
574 	u32 divider;
575 	u32 mode_flags;
576 
577 	/* Input clock from CPRMAN to the digital PHY, for the DSI
578 	 * escape clock.
579 	 */
580 	struct clk *escape_clock;
581 
582 	/* Input clock to the analog PHY, used to generate the DSI bit
583 	 * clock.
584 	 */
585 	struct clk *pll_phy_clock;
586 
587 	/* HS Clocks generated within the DSI analog PHY. */
588 	struct clk_fixed_factor phy_clocks[3];
589 
590 	struct clk_hw_onecell_data *clk_onecell;
591 
592 	/* Pixel clock output to the pixelvalve, generated from the HS
593 	 * clock.
594 	 */
595 	struct clk *pixel_clock;
596 
597 	struct completion xfer_completion;
598 	int xfer_result;
599 
600 	struct debugfs_regset32 regset;
601 };
602 
603 #define host_to_dsi(host)					\
604 	container_of_const(host, struct vc4_dsi, dsi_host)
605 
606 #define to_vc4_dsi(_encoder)					\
607 	container_of_const(_encoder, struct vc4_dsi, encoder.base)
608 
609 #define bridge_to_vc4_dsi(_bridge)				\
610 	container_of_const(_bridge, struct vc4_dsi, bridge)
611 
612 static inline void
613 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
614 {
615 	struct dma_chan *chan = dsi->reg_dma_chan;
616 	struct dma_async_tx_descriptor *tx;
617 	dma_cookie_t cookie;
618 	int ret;
619 
620 	kunit_fail_current_test("Accessing a register in a unit test!\n");
621 
622 	/* DSI0 should be able to write normally. */
623 	if (!chan) {
624 		writel(val, dsi->regs + offset);
625 		return;
626 	}
627 
628 	*dsi->reg_dma_mem = val;
629 
630 	tx = chan->device->device_prep_dma_memcpy(chan,
631 						  dsi->reg_paddr + offset,
632 						  dsi->reg_dma_paddr,
633 						  4, 0);
634 	if (!tx) {
635 		DRM_ERROR("Failed to set up DMA register write\n");
636 		return;
637 	}
638 
639 	cookie = tx->tx_submit(tx);
640 	ret = dma_submit_error(cookie);
641 	if (ret) {
642 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
643 		return;
644 	}
645 	ret = dma_sync_wait(chan, cookie);
646 	if (ret)
647 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
648 }
649 
650 #define DSI_READ(offset)								\
651 	({										\
652 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
653 		readl(dsi->regs + (offset));						\
654 	})
655 
656 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
657 #define DSI_PORT_READ(offset) \
658 	DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
659 #define DSI_PORT_WRITE(offset, val) \
660 	DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
661 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
662 
663 static const struct debugfs_reg32 dsi0_regs[] = {
664 	VC4_REG32(DSI0_CTRL),
665 	VC4_REG32(DSI0_STAT),
666 	VC4_REG32(DSI0_HSTX_TO_CNT),
667 	VC4_REG32(DSI0_LPRX_TO_CNT),
668 	VC4_REG32(DSI0_TA_TO_CNT),
669 	VC4_REG32(DSI0_PR_TO_CNT),
670 	VC4_REG32(DSI0_DISP0_CTRL),
671 	VC4_REG32(DSI0_DISP1_CTRL),
672 	VC4_REG32(DSI0_INT_STAT),
673 	VC4_REG32(DSI0_INT_EN),
674 	VC4_REG32(DSI0_PHYC),
675 	VC4_REG32(DSI0_HS_CLT0),
676 	VC4_REG32(DSI0_HS_CLT1),
677 	VC4_REG32(DSI0_HS_CLT2),
678 	VC4_REG32(DSI0_HS_DLT3),
679 	VC4_REG32(DSI0_HS_DLT4),
680 	VC4_REG32(DSI0_HS_DLT5),
681 	VC4_REG32(DSI0_HS_DLT6),
682 	VC4_REG32(DSI0_HS_DLT7),
683 	VC4_REG32(DSI0_PHY_AFEC0),
684 	VC4_REG32(DSI0_PHY_AFEC1),
685 	VC4_REG32(DSI0_ID),
686 };
687 
688 static const struct debugfs_reg32 dsi1_regs[] = {
689 	VC4_REG32(DSI1_CTRL),
690 	VC4_REG32(DSI1_STAT),
691 	VC4_REG32(DSI1_HSTX_TO_CNT),
692 	VC4_REG32(DSI1_LPRX_TO_CNT),
693 	VC4_REG32(DSI1_TA_TO_CNT),
694 	VC4_REG32(DSI1_PR_TO_CNT),
695 	VC4_REG32(DSI1_DISP0_CTRL),
696 	VC4_REG32(DSI1_DISP1_CTRL),
697 	VC4_REG32(DSI1_INT_STAT),
698 	VC4_REG32(DSI1_INT_EN),
699 	VC4_REG32(DSI1_PHYC),
700 	VC4_REG32(DSI1_HS_CLT0),
701 	VC4_REG32(DSI1_HS_CLT1),
702 	VC4_REG32(DSI1_HS_CLT2),
703 	VC4_REG32(DSI1_HS_DLT3),
704 	VC4_REG32(DSI1_HS_DLT4),
705 	VC4_REG32(DSI1_HS_DLT5),
706 	VC4_REG32(DSI1_HS_DLT6),
707 	VC4_REG32(DSI1_HS_DLT7),
708 	VC4_REG32(DSI1_PHY_AFEC0),
709 	VC4_REG32(DSI1_PHY_AFEC1),
710 	VC4_REG32(DSI1_ID),
711 };
712 
713 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
714 {
715 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
716 
717 	if (latch)
718 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
719 	else
720 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
721 
722 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
723 }
724 
725 /* Enters or exits Ultra Low Power State. */
726 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
727 {
728 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
729 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
730 			 DSI_PHYC_DLANE0_ULPS |
731 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
732 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
733 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
734 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
735 			 DSI1_STAT_PHY_D0_ULPS |
736 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
737 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
738 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
739 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
740 			 DSI1_STAT_PHY_D0_STOP |
741 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
742 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
743 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
744 	int ret;
745 	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
746 				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
747 
748 	if (ulps == ulps_currently_enabled)
749 		return;
750 
751 	DSI_PORT_WRITE(STAT, stat_ulps);
752 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
753 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
754 	if (ret) {
755 		dev_warn(&dsi->pdev->dev,
756 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
757 			 DSI_PORT_READ(STAT));
758 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
759 		vc4_dsi_latch_ulps(dsi, false);
760 		return;
761 	}
762 
763 	/* The DSI module can't be disabled while the module is
764 	 * generating ULPS state.  So, to be able to disable the
765 	 * module, we have the AFE latch the ULPS state and continue
766 	 * on to having the module enter STOP.
767 	 */
768 	vc4_dsi_latch_ulps(dsi, ulps);
769 
770 	DSI_PORT_WRITE(STAT, stat_stop);
771 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
772 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
773 	if (ret) {
774 		dev_warn(&dsi->pdev->dev,
775 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
776 			 DSI_PORT_READ(STAT));
777 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
778 		return;
779 	}
780 }
781 
782 static u32
783 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
784 {
785 	/* The HS timings have to be rounded up to a multiple of 8
786 	 * because we're using the byte clock.
787 	 */
788 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
789 }
790 
791 /* ESC always runs at 100Mhz. */
792 #define ESC_TIME_NS 10
793 
794 static u32
795 dsi_esc_timing(u32 ns)
796 {
797 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
798 }
799 
800 static void vc4_dsi_bridge_disable(struct drm_bridge *bridge,
801 				   struct drm_bridge_state *state)
802 {
803 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
804 	u32 disp0_ctrl;
805 
806 	disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
807 	disp0_ctrl &= ~DSI_DISP0_ENABLE;
808 	DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
809 }
810 
811 static void vc4_dsi_bridge_post_disable(struct drm_bridge *bridge,
812 					struct drm_bridge_state *state)
813 {
814 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
815 	struct device *dev = &dsi->pdev->dev;
816 
817 	clk_disable_unprepare(dsi->pll_phy_clock);
818 	clk_disable_unprepare(dsi->escape_clock);
819 	clk_disable_unprepare(dsi->pixel_clock);
820 
821 	pm_runtime_put(dev);
822 }
823 
824 /* Extends the mode's blank intervals to handle BCM2835's integer-only
825  * DSI PLL divider.
826  *
827  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
828  * driver since most peripherals are hanging off of the PLLD_PER
829  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
830  * the pixel clock), only has an integer divider off of DSI.
831  *
832  * To get our panel mode to refresh at the expected 60Hz, we need to
833  * extend the horizontal blank time.  This means we drive a
834  * higher-than-expected clock rate to the panel, but that's what the
835  * firmware does too.
836  */
837 static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge *bridge,
838 				      const struct drm_display_mode *mode,
839 				      struct drm_display_mode *adjusted_mode)
840 {
841 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
842 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
843 	unsigned long parent_rate = clk_get_rate(phy_parent);
844 	unsigned long pixel_clock_hz = mode->clock * 1000;
845 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
846 	int divider;
847 
848 	/* Find what divider gets us a faster clock than the requested
849 	 * pixel clock.
850 	 */
851 	for (divider = 1; divider < 255; divider++) {
852 		if (parent_rate / (divider + 1) < pll_clock)
853 			break;
854 	}
855 
856 	/* Now that we've picked a PLL divider, calculate back to its
857 	 * pixel clock.
858 	 */
859 	pll_clock = parent_rate / divider;
860 	pixel_clock_hz = pll_clock / dsi->divider;
861 
862 	adjusted_mode->clock = pixel_clock_hz / 1000;
863 
864 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
865 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
866 				mode->clock;
867 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
868 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
869 
870 	return true;
871 }
872 
873 static void vc4_dsi_bridge_pre_enable(struct drm_bridge *bridge,
874 				      struct drm_bridge_state *old_state)
875 {
876 	struct drm_atomic_state *state = old_state->base.state;
877 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
878 	const struct drm_crtc_state *crtc_state;
879 	struct device *dev = &dsi->pdev->dev;
880 	const struct drm_display_mode *mode;
881 	struct drm_connector *connector;
882 	bool debug_dump_regs = false;
883 	unsigned long hs_clock;
884 	struct drm_crtc *crtc;
885 	u32 ui_ns;
886 	/* Minimum LP state duration in escape clock cycles. */
887 	u32 lpx = dsi_esc_timing(60);
888 	unsigned long pixel_clock_hz;
889 	unsigned long dsip_clock;
890 	unsigned long phy_clock;
891 	int ret;
892 
893 	ret = pm_runtime_resume_and_get(dev);
894 	if (ret) {
895 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
896 		return;
897 	}
898 
899 	if (debug_dump_regs) {
900 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
901 		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
902 		drm_print_regset32(&p, &dsi->regset);
903 	}
904 
905 	/*
906 	 * Retrieve the CRTC adjusted mode. This requires a little dance to go
907 	 * from the bridge to the encoder, to the connector and to the CRTC.
908 	 */
909 	connector = drm_atomic_get_new_connector_for_encoder(state,
910 							     bridge->encoder);
911 	crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
912 	crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
913 	mode = &crtc_state->adjusted_mode;
914 
915 	pixel_clock_hz = mode->clock * 1000;
916 
917 	/* Round up the clk_set_rate() request slightly, since
918 	 * PLLD_DSI1 is an integer divider and its rate selection will
919 	 * never round up.
920 	 */
921 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
922 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
923 	if (ret) {
924 		dev_err(&dsi->pdev->dev,
925 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
926 	}
927 
928 	/* Reset the DSI and all its fifos. */
929 	DSI_PORT_WRITE(CTRL,
930 		       DSI_CTRL_SOFT_RESET_CFG |
931 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
932 
933 	DSI_PORT_WRITE(CTRL,
934 		       DSI_CTRL_HSDT_EOT_DISABLE |
935 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
936 
937 	/* Clear all stat bits so we see what has happened during enable. */
938 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
939 
940 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
941 	if (dsi->variant->port == 0) {
942 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
943 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
944 
945 		if (dsi->lanes < 2)
946 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
947 
948 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
949 			afec0 |= DSI0_PHY_AFEC0_RESET;
950 
951 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
952 
953 		/* AFEC reset hold time */
954 		mdelay(1);
955 
956 		DSI_PORT_WRITE(PHY_AFEC1,
957 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
958 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
959 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
960 	} else {
961 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
962 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
963 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
964 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
965 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
966 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
967 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
968 
969 		if (dsi->lanes < 4)
970 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
971 		if (dsi->lanes < 3)
972 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
973 		if (dsi->lanes < 2)
974 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
975 
976 		afec0 |= DSI1_PHY_AFEC0_RESET;
977 
978 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
979 
980 		DSI_PORT_WRITE(PHY_AFEC1, 0);
981 
982 		/* AFEC reset hold time */
983 		mdelay(1);
984 	}
985 
986 	ret = clk_prepare_enable(dsi->escape_clock);
987 	if (ret) {
988 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
989 		return;
990 	}
991 
992 	ret = clk_prepare_enable(dsi->pll_phy_clock);
993 	if (ret) {
994 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
995 		return;
996 	}
997 
998 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
999 
1000 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1001 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
1002 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1003 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
1004 	 * and HS_CLKC is fed into the PV to divide down to the actual
1005 	 * pixel clock for pushing pixels into DSI.
1006 	 */
1007 	dsip_clock = phy_clock / 8;
1008 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
1009 	if (ret) {
1010 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
1011 			dsip_clock, ret);
1012 	}
1013 
1014 	ret = clk_prepare_enable(dsi->pixel_clock);
1015 	if (ret) {
1016 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
1017 		return;
1018 	}
1019 
1020 	/* How many ns one DSI unit interval is.  Note that the clock
1021 	 * is DDR, so there's an extra divide by 2.
1022 	 */
1023 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1024 
1025 	DSI_PORT_WRITE(HS_CLT0,
1026 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1027 				     DSI_HS_CLT0_CZERO) |
1028 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1029 				     DSI_HS_CLT0_CPRE) |
1030 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1031 				     DSI_HS_CLT0_CPREP));
1032 
1033 	DSI_PORT_WRITE(HS_CLT1,
1034 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1035 				     DSI_HS_CLT1_CTRAIL) |
1036 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1037 				     DSI_HS_CLT1_CPOST));
1038 
1039 	DSI_PORT_WRITE(HS_CLT2,
1040 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1041 				     DSI_HS_CLT2_WUP));
1042 
1043 	DSI_PORT_WRITE(HS_DLT3,
1044 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1045 				     DSI_HS_DLT3_EXIT) |
1046 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1047 				     DSI_HS_DLT3_ZERO) |
1048 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1049 				     DSI_HS_DLT3_PRE));
1050 
1051 	DSI_PORT_WRITE(HS_DLT4,
1052 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1053 				     DSI_HS_DLT4_LPX) |
1054 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1055 					 dsi_hs_timing(ui_ns, 60, 4)),
1056 				     DSI_HS_DLT4_TRAIL) |
1057 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1058 
1059 	/* T_INIT is how long STOP is driven after power-up to
1060 	 * indicate to the slave (also coming out of power-up) that
1061 	 * master init is complete, and should be greater than the
1062 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
1063 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1064 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
1065 	 * greater minimums.  The vc4 firmware uses an extremely
1066 	 * conservative 5ms, and we maintain that here.
1067 	 */
1068 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1069 							    5 * 1000 * 1000, 0),
1070 					      DSI_HS_DLT5_INIT));
1071 
1072 	DSI_PORT_WRITE(HS_DLT6,
1073 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1074 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1075 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1076 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1077 
1078 	DSI_PORT_WRITE(HS_DLT7,
1079 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1080 				     DSI_HS_DLT7_LP_WUP));
1081 
1082 	DSI_PORT_WRITE(PHYC,
1083 		       DSI_PHYC_DLANE0_ENABLE |
1084 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1085 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1086 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1087 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1088 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1089 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1090 		       (dsi->variant->port == 0 ?
1091 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1092 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1093 
1094 	DSI_PORT_WRITE(CTRL,
1095 		       DSI_PORT_READ(CTRL) |
1096 		       DSI_CTRL_CAL_BYTE);
1097 
1098 	/* HS timeout in HS clock cycles: disabled. */
1099 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1100 	/* LP receive timeout in HS clocks. */
1101 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1102 	/* Bus turnaround timeout */
1103 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1104 	/* Display reset sequence timeout */
1105 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1106 
1107 	/* Set up DISP1 for transferring long command payloads through
1108 	 * the pixfifo.
1109 	 */
1110 	DSI_PORT_WRITE(DISP1_CTRL,
1111 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1112 				     DSI_DISP1_PFORMAT) |
1113 		       DSI_DISP1_ENABLE);
1114 
1115 	/* Ungate the block. */
1116 	if (dsi->variant->port == 0)
1117 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1118 	else
1119 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1120 
1121 	/* Bring AFE out of reset. */
1122 	DSI_PORT_WRITE(PHY_AFEC0,
1123 		       DSI_PORT_READ(PHY_AFEC0) &
1124 		       ~DSI_PORT_BIT(PHY_AFEC0_RESET));
1125 
1126 	vc4_dsi_ulps(dsi, false);
1127 
1128 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1129 		DSI_PORT_WRITE(DISP0_CTRL,
1130 			       VC4_SET_FIELD(dsi->divider,
1131 					     DSI_DISP0_PIX_CLK_DIV) |
1132 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1133 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1134 					     DSI_DISP0_LP_STOP_CTRL) |
1135 			       DSI_DISP0_ST_END);
1136 	} else {
1137 		DSI_PORT_WRITE(DISP0_CTRL,
1138 			       DSI_DISP0_COMMAND_MODE);
1139 	}
1140 }
1141 
1142 static void vc4_dsi_bridge_enable(struct drm_bridge *bridge,
1143 				  struct drm_bridge_state *old_state)
1144 {
1145 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1146 	bool debug_dump_regs = false;
1147 	u32 disp0_ctrl;
1148 
1149 	disp0_ctrl = DSI_PORT_READ(DISP0_CTRL);
1150 	disp0_ctrl |= DSI_DISP0_ENABLE;
1151 	DSI_PORT_WRITE(DISP0_CTRL, disp0_ctrl);
1152 
1153 	if (debug_dump_regs) {
1154 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1155 		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1156 		drm_print_regset32(&p, &dsi->regset);
1157 	}
1158 }
1159 
1160 static int vc4_dsi_bridge_attach(struct drm_bridge *bridge,
1161 				 enum drm_bridge_attach_flags flags)
1162 {
1163 	struct vc4_dsi *dsi = bridge_to_vc4_dsi(bridge);
1164 
1165 	/* Attach the panel or bridge to the dsi bridge */
1166 	return drm_bridge_attach(bridge->encoder, dsi->out_bridge,
1167 				 &dsi->bridge, flags);
1168 }
1169 
1170 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1171 				     const struct mipi_dsi_msg *msg)
1172 {
1173 	struct vc4_dsi *dsi = host_to_dsi(host);
1174 	struct mipi_dsi_packet packet;
1175 	u32 pkth = 0, pktc = 0;
1176 	int i, ret;
1177 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1178 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1179 
1180 	mipi_dsi_create_packet(&packet, msg);
1181 
1182 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1183 	pkth |= VC4_SET_FIELD(packet.header[1] |
1184 			      (packet.header[2] << 8),
1185 			      DSI_TXPKT1H_BC_PARAM);
1186 	if (is_long) {
1187 		/* Divide data across the various FIFOs we have available.
1188 		 * The command FIFO takes byte-oriented data, but is of
1189 		 * limited size. The pixel FIFO (never actually used for
1190 		 * pixel data in reality) is word oriented, and substantially
1191 		 * larger. So, we use the pixel FIFO for most of the data,
1192 		 * sending the residual bytes in the command FIFO at the start.
1193 		 *
1194 		 * With this arrangement, the command FIFO will never get full.
1195 		 */
1196 		if (packet.payload_length <= 16) {
1197 			cmd_fifo_len = packet.payload_length;
1198 			pix_fifo_len = 0;
1199 		} else {
1200 			cmd_fifo_len = (packet.payload_length %
1201 					DSI_PIX_FIFO_WIDTH);
1202 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1203 					DSI_PIX_FIFO_WIDTH);
1204 		}
1205 
1206 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1207 
1208 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1209 	}
1210 
1211 	if (msg->rx_len) {
1212 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1213 				      DSI_TXPKT1C_CMD_CTRL);
1214 	} else {
1215 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1216 				      DSI_TXPKT1C_CMD_CTRL);
1217 	}
1218 
1219 	for (i = 0; i < cmd_fifo_len; i++)
1220 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1221 	for (i = 0; i < pix_fifo_len; i++) {
1222 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1223 
1224 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1225 			       pix[0] |
1226 			       pix[1] << 8 |
1227 			       pix[2] << 16 |
1228 			       pix[3] << 24);
1229 	}
1230 
1231 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1232 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1233 	if (is_long)
1234 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1235 
1236 	/* Send one copy of the packet.  Larger repeats are used for pixel
1237 	 * data in command mode.
1238 	 */
1239 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1240 
1241 	pktc |= DSI_TXPKT1C_CMD_EN;
1242 	if (pix_fifo_len) {
1243 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1244 				      DSI_TXPKT1C_DISPLAY_NO);
1245 	} else {
1246 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1247 				      DSI_TXPKT1C_DISPLAY_NO);
1248 	}
1249 
1250 	/* Enable the appropriate interrupt for the transfer completion. */
1251 	dsi->xfer_result = 0;
1252 	reinit_completion(&dsi->xfer_completion);
1253 	if (dsi->variant->port == 0) {
1254 		DSI_PORT_WRITE(INT_STAT,
1255 			       DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
1256 		if (msg->rx_len) {
1257 			DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1258 						DSI0_INT_PHY_DIR_RTF));
1259 		} else {
1260 			DSI_PORT_WRITE(INT_EN,
1261 				       (DSI0_INTERRUPTS_ALWAYS_ENABLED |
1262 					VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
1263 						      DSI0_INT_CMDC_DONE)));
1264 		}
1265 	} else {
1266 		DSI_PORT_WRITE(INT_STAT,
1267 			       DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1268 		if (msg->rx_len) {
1269 			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1270 						DSI1_INT_PHY_DIR_RTF));
1271 		} else {
1272 			DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1273 						DSI1_INT_TXPKT1_DONE));
1274 		}
1275 	}
1276 
1277 	/* Send the packet. */
1278 	DSI_PORT_WRITE(TXPKT1H, pkth);
1279 	DSI_PORT_WRITE(TXPKT1C, pktc);
1280 
1281 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1282 					 msecs_to_jiffies(1000))) {
1283 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1284 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1285 			DSI_PORT_READ(INT_STAT));
1286 		ret = -ETIMEDOUT;
1287 	} else {
1288 		ret = dsi->xfer_result;
1289 	}
1290 
1291 	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1292 
1293 	if (ret)
1294 		goto reset_fifo_and_return;
1295 
1296 	if (ret == 0 && msg->rx_len) {
1297 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1298 		u8 *msg_rx = msg->rx_buf;
1299 
1300 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1301 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1302 						  DSI_RXPKT1H_BC_PARAM);
1303 
1304 			if (rxlen != msg->rx_len) {
1305 				DRM_ERROR("DSI returned %db, expecting %db\n",
1306 					  rxlen, (int)msg->rx_len);
1307 				ret = -ENXIO;
1308 				goto reset_fifo_and_return;
1309 			}
1310 
1311 			for (i = 0; i < msg->rx_len; i++)
1312 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1313 		} else {
1314 			/* FINISHME: Handle AWER */
1315 
1316 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1317 						  DSI_RXPKT1H_SHORT_0);
1318 			if (msg->rx_len > 1) {
1319 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1320 							  DSI_RXPKT1H_SHORT_1);
1321 			}
1322 		}
1323 	}
1324 
1325 	return ret;
1326 
1327 reset_fifo_and_return:
1328 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1329 
1330 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1331 	udelay(1);
1332 	DSI_PORT_WRITE(CTRL,
1333 		       DSI_PORT_READ(CTRL) |
1334 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1335 
1336 	DSI_PORT_WRITE(TXPKT1C, 0);
1337 	DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
1338 	return ret;
1339 }
1340 
1341 static const struct component_ops vc4_dsi_ops;
1342 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1343 			       struct mipi_dsi_device *device)
1344 {
1345 	struct vc4_dsi *dsi = host_to_dsi(host);
1346 	int ret;
1347 
1348 	dsi->lanes = device->lanes;
1349 	dsi->channel = device->channel;
1350 	dsi->mode_flags = device->mode_flags;
1351 
1352 	switch (device->format) {
1353 	case MIPI_DSI_FMT_RGB888:
1354 		dsi->format = DSI_PFORMAT_RGB888;
1355 		dsi->divider = 24 / dsi->lanes;
1356 		break;
1357 	case MIPI_DSI_FMT_RGB666:
1358 		dsi->format = DSI_PFORMAT_RGB666;
1359 		dsi->divider = 24 / dsi->lanes;
1360 		break;
1361 	case MIPI_DSI_FMT_RGB666_PACKED:
1362 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1363 		dsi->divider = 18 / dsi->lanes;
1364 		break;
1365 	case MIPI_DSI_FMT_RGB565:
1366 		dsi->format = DSI_PFORMAT_RGB565;
1367 		dsi->divider = 16 / dsi->lanes;
1368 		break;
1369 	default:
1370 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1371 			dsi->format);
1372 		return 0;
1373 	}
1374 
1375 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1376 		dev_err(&dsi->pdev->dev,
1377 			"Only VIDEO mode panels supported currently.\n");
1378 		return 0;
1379 	}
1380 
1381 	drm_bridge_add(&dsi->bridge);
1382 
1383 	ret = component_add(&dsi->pdev->dev, &vc4_dsi_ops);
1384 	if (ret) {
1385 		drm_bridge_remove(&dsi->bridge);
1386 		return ret;
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1393 			       struct mipi_dsi_device *device)
1394 {
1395 	struct vc4_dsi *dsi = host_to_dsi(host);
1396 
1397 	component_del(&dsi->pdev->dev, &vc4_dsi_ops);
1398 	drm_bridge_remove(&dsi->bridge);
1399 	return 0;
1400 }
1401 
1402 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1403 	.attach = vc4_dsi_host_attach,
1404 	.detach = vc4_dsi_host_detach,
1405 	.transfer = vc4_dsi_host_transfer,
1406 };
1407 
1408 static const struct drm_bridge_funcs vc4_dsi_bridge_funcs = {
1409 	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1410 	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1411 	.atomic_reset = drm_atomic_helper_bridge_reset,
1412 	.atomic_pre_enable = vc4_dsi_bridge_pre_enable,
1413 	.atomic_enable = vc4_dsi_bridge_enable,
1414 	.atomic_disable = vc4_dsi_bridge_disable,
1415 	.atomic_post_disable = vc4_dsi_bridge_post_disable,
1416 	.attach = vc4_dsi_bridge_attach,
1417 	.mode_fixup = vc4_dsi_bridge_mode_fixup,
1418 };
1419 
1420 static int vc4_dsi_late_register(struct drm_encoder *encoder)
1421 {
1422 	struct drm_device *drm = encoder->dev;
1423 	struct vc4_dsi *dsi = to_vc4_dsi(encoder);
1424 
1425 	vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset);
1426 
1427 	return 0;
1428 }
1429 
1430 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
1431 	.late_register = vc4_dsi_late_register,
1432 };
1433 
1434 static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
1435 	.port			= 1,
1436 	.debugfs_name		= "dsi1_regs",
1437 	.regs			= dsi1_regs,
1438 	.nregs			= ARRAY_SIZE(dsi1_regs),
1439 };
1440 
1441 static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
1442 	.port			= 0,
1443 	.debugfs_name		= "dsi0_regs",
1444 	.regs			= dsi0_regs,
1445 	.nregs			= ARRAY_SIZE(dsi0_regs),
1446 };
1447 
1448 static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
1449 	.port			= 1,
1450 	.broken_axi_workaround	= true,
1451 	.debugfs_name		= "dsi1_regs",
1452 	.regs			= dsi1_regs,
1453 	.nregs			= ARRAY_SIZE(dsi1_regs),
1454 };
1455 
1456 static const struct of_device_id vc4_dsi_dt_match[] = {
1457 	{ .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
1458 	{ .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
1459 	{ .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
1460 	{}
1461 };
1462 
1463 static void dsi_handle_error(struct vc4_dsi *dsi,
1464 			     irqreturn_t *ret, u32 stat, u32 bit,
1465 			     const char *type)
1466 {
1467 	if (!(stat & bit))
1468 		return;
1469 
1470 	DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
1471 	*ret = IRQ_HANDLED;
1472 }
1473 
1474 /*
1475  * Initial handler for port 1 where we need the reg_dma workaround.
1476  * The register DMA writes sleep, so we can't do it in the top half.
1477  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1478  * parent interrupt contrller until our interrupt thread is done.
1479  */
1480 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1481 {
1482 	struct vc4_dsi *dsi = data;
1483 	u32 stat = DSI_PORT_READ(INT_STAT);
1484 
1485 	if (!stat)
1486 		return IRQ_NONE;
1487 
1488 	return IRQ_WAKE_THREAD;
1489 }
1490 
1491 /*
1492  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1493  * 1 where we need the reg_dma workaround.
1494  */
1495 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1496 {
1497 	struct vc4_dsi *dsi = data;
1498 	u32 stat = DSI_PORT_READ(INT_STAT);
1499 	irqreturn_t ret = IRQ_NONE;
1500 
1501 	DSI_PORT_WRITE(INT_STAT, stat);
1502 
1503 	dsi_handle_error(dsi, &ret, stat,
1504 			 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
1505 	dsi_handle_error(dsi, &ret, stat,
1506 			 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
1507 	dsi_handle_error(dsi, &ret, stat,
1508 			 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
1509 	dsi_handle_error(dsi, &ret, stat,
1510 			 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
1511 	dsi_handle_error(dsi, &ret, stat,
1512 			 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
1513 	dsi_handle_error(dsi, &ret, stat,
1514 			 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
1515 	dsi_handle_error(dsi, &ret, stat,
1516 			 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
1517 	dsi_handle_error(dsi, &ret, stat,
1518 			 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
1519 
1520 	if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
1521 					  DSI0_INT_CMDC_DONE_MASK) |
1522 		    DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
1523 		complete(&dsi->xfer_completion);
1524 		ret = IRQ_HANDLED;
1525 	} else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
1526 		complete(&dsi->xfer_completion);
1527 		dsi->xfer_result = -ETIMEDOUT;
1528 		ret = IRQ_HANDLED;
1529 	}
1530 
1531 	return ret;
1532 }
1533 
1534 /**
1535  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1536  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1537  * @dsi: DSI encoder
1538  */
1539 static int
1540 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1541 {
1542 	struct device *dev = &dsi->pdev->dev;
1543 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1544 	static const struct {
1545 		const char *name;
1546 		int div;
1547 	} phy_clocks[] = {
1548 		{ "byte", 8 },
1549 		{ "ddr2", 4 },
1550 		{ "ddr", 2 },
1551 	};
1552 	int i;
1553 
1554 	dsi->clk_onecell = devm_kzalloc(dev,
1555 					sizeof(*dsi->clk_onecell) +
1556 					ARRAY_SIZE(phy_clocks) *
1557 					sizeof(struct clk_hw *),
1558 					GFP_KERNEL);
1559 	if (!dsi->clk_onecell)
1560 		return -ENOMEM;
1561 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1562 
1563 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1564 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1565 		struct clk_init_data init;
1566 		char clk_name[16];
1567 		int ret;
1568 
1569 		snprintf(clk_name, sizeof(clk_name),
1570 			 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
1571 
1572 		/* We just use core fixed factor clock ops for the PHY
1573 		 * clocks.  The clocks are actually gated by the
1574 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1575 		 * setting if we use the DDR/DDR2 clocks.  However,
1576 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1577 		 * setting both our parent DSI PLL's rate and this
1578 		 * clock's rate, so it knows if DDR/DDR2 are going to
1579 		 * be used and could enable the gates itself.
1580 		 */
1581 		fix->mult = 1;
1582 		fix->div = phy_clocks[i].div;
1583 		fix->hw.init = &init;
1584 
1585 		memset(&init, 0, sizeof(init));
1586 		init.parent_names = &parent_name;
1587 		init.num_parents = 1;
1588 		init.name = clk_name;
1589 		init.ops = &clk_fixed_factor_ops;
1590 
1591 		ret = devm_clk_hw_register(dev, &fix->hw);
1592 		if (ret)
1593 			return ret;
1594 
1595 		dsi->clk_onecell->hws[i] = &fix->hw;
1596 	}
1597 
1598 	return of_clk_add_hw_provider(dev->of_node,
1599 				      of_clk_hw_onecell_get,
1600 				      dsi->clk_onecell);
1601 }
1602 
1603 static void vc4_dsi_dma_mem_release(void *ptr)
1604 {
1605 	struct vc4_dsi *dsi = ptr;
1606 	struct device *dev = &dsi->pdev->dev;
1607 
1608 	dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
1609 	dsi->reg_dma_mem = NULL;
1610 }
1611 
1612 static void vc4_dsi_dma_chan_release(void *ptr)
1613 {
1614 	struct vc4_dsi *dsi = ptr;
1615 
1616 	dma_release_channel(dsi->reg_dma_chan);
1617 	dsi->reg_dma_chan = NULL;
1618 }
1619 
1620 static void vc4_dsi_release(struct kref *kref)
1621 {
1622 	struct vc4_dsi *dsi =
1623 		container_of(kref, struct vc4_dsi, kref);
1624 
1625 	kfree(dsi);
1626 }
1627 
1628 static void vc4_dsi_get(struct vc4_dsi *dsi)
1629 {
1630 	kref_get(&dsi->kref);
1631 }
1632 
1633 static void vc4_dsi_put(struct vc4_dsi *dsi)
1634 {
1635 	kref_put(&dsi->kref, &vc4_dsi_release);
1636 }
1637 
1638 static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
1639 {
1640 	struct vc4_dsi *dsi = ptr;
1641 
1642 	vc4_dsi_put(dsi);
1643 }
1644 
1645 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1646 {
1647 	struct platform_device *pdev = to_platform_device(dev);
1648 	struct drm_device *drm = dev_get_drvdata(master);
1649 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1650 	struct drm_encoder *encoder = &dsi->encoder.base;
1651 	int ret;
1652 
1653 	vc4_dsi_get(dsi);
1654 
1655 	ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
1656 	if (ret)
1657 		return ret;
1658 
1659 	dsi->variant = of_device_get_match_data(dev);
1660 
1661 	dsi->encoder.type = dsi->variant->port ?
1662 		VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
1663 
1664 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1665 	if (IS_ERR(dsi->regs))
1666 		return PTR_ERR(dsi->regs);
1667 
1668 	dsi->regset.base = dsi->regs;
1669 	dsi->regset.regs = dsi->variant->regs;
1670 	dsi->regset.nregs = dsi->variant->nregs;
1671 
1672 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1673 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1674 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1675 		return -ENODEV;
1676 	}
1677 
1678 	/* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1679 	 * writes from the ARM.  It does handle writes from the DMA engine,
1680 	 * so set up a channel for talking to it.
1681 	 */
1682 	if (dsi->variant->broken_axi_workaround) {
1683 		dma_cap_mask_t dma_mask;
1684 
1685 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1686 						      &dsi->reg_dma_paddr,
1687 						      GFP_KERNEL);
1688 		if (!dsi->reg_dma_mem) {
1689 			DRM_ERROR("Failed to get DMA memory\n");
1690 			return -ENOMEM;
1691 		}
1692 
1693 		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
1694 		if (ret)
1695 			return ret;
1696 
1697 		dma_cap_zero(dma_mask);
1698 		dma_cap_set(DMA_MEMCPY, dma_mask);
1699 
1700 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1701 		if (IS_ERR(dsi->reg_dma_chan)) {
1702 			ret = PTR_ERR(dsi->reg_dma_chan);
1703 			if (ret != -EPROBE_DEFER)
1704 				DRM_ERROR("Failed to get DMA channel: %d\n",
1705 					  ret);
1706 			return ret;
1707 		}
1708 
1709 		ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
1710 		if (ret)
1711 			return ret;
1712 
1713 		/* Get the physical address of the device's registers.  The
1714 		 * struct resource for the regs gives us the bus address
1715 		 * instead.
1716 		 */
1717 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1718 							     0, NULL, NULL));
1719 	}
1720 
1721 	init_completion(&dsi->xfer_completion);
1722 	/* At startup enable error-reporting interrupts and nothing else. */
1723 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1724 	/* Clear any existing interrupt state. */
1725 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1726 
1727 	if (dsi->reg_dma_mem)
1728 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1729 						vc4_dsi_irq_defer_to_thread_handler,
1730 						vc4_dsi_irq_handler,
1731 						IRQF_ONESHOT,
1732 						"vc4 dsi", dsi);
1733 	else
1734 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1735 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1736 	if (ret) {
1737 		if (ret != -EPROBE_DEFER)
1738 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1739 		return ret;
1740 	}
1741 
1742 	dsi->escape_clock = devm_clk_get(dev, "escape");
1743 	if (IS_ERR(dsi->escape_clock)) {
1744 		ret = PTR_ERR(dsi->escape_clock);
1745 		if (ret != -EPROBE_DEFER)
1746 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1747 		return ret;
1748 	}
1749 
1750 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1751 	if (IS_ERR(dsi->pll_phy_clock)) {
1752 		ret = PTR_ERR(dsi->pll_phy_clock);
1753 		if (ret != -EPROBE_DEFER)
1754 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1755 		return ret;
1756 	}
1757 
1758 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1759 	if (IS_ERR(dsi->pixel_clock)) {
1760 		ret = PTR_ERR(dsi->pixel_clock);
1761 		if (ret != -EPROBE_DEFER)
1762 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1763 		return ret;
1764 	}
1765 
1766 	dsi->out_bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
1767 	if (IS_ERR(dsi->out_bridge))
1768 		return PTR_ERR(dsi->out_bridge);
1769 
1770 	/* The esc clock rate is supposed to always be 100Mhz. */
1771 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1772 	if (ret) {
1773 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1774 		return ret;
1775 	}
1776 
1777 	ret = vc4_dsi_init_phy_clocks(dsi);
1778 	if (ret)
1779 		return ret;
1780 
1781 	ret = drmm_encoder_init(drm, encoder,
1782 				&vc4_dsi_encoder_funcs,
1783 				DRM_MODE_ENCODER_DSI,
1784 				NULL);
1785 	if (ret)
1786 		return ret;
1787 
1788 	ret = devm_pm_runtime_enable(dev);
1789 	if (ret)
1790 		return ret;
1791 
1792 	ret = drm_bridge_attach(encoder, &dsi->bridge, NULL, 0);
1793 	if (ret)
1794 		return ret;
1795 
1796 	return 0;
1797 }
1798 
1799 static const struct component_ops vc4_dsi_ops = {
1800 	.bind   = vc4_dsi_bind,
1801 };
1802 
1803 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1804 {
1805 	struct device *dev = &pdev->dev;
1806 	struct vc4_dsi *dsi;
1807 
1808 	dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
1809 	if (!dsi)
1810 		return -ENOMEM;
1811 	dev_set_drvdata(dev, dsi);
1812 
1813 	kref_init(&dsi->kref);
1814 
1815 	dsi->pdev = pdev;
1816 	dsi->bridge.funcs = &vc4_dsi_bridge_funcs;
1817 #ifdef CONFIG_OF
1818 	dsi->bridge.of_node = dev->of_node;
1819 #endif
1820 	dsi->bridge.type = DRM_MODE_CONNECTOR_DSI;
1821 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1822 	dsi->dsi_host.dev = dev;
1823 	mipi_dsi_host_register(&dsi->dsi_host);
1824 
1825 	return 0;
1826 }
1827 
1828 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1829 {
1830 	struct device *dev = &pdev->dev;
1831 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1832 
1833 	mipi_dsi_host_unregister(&dsi->dsi_host);
1834 	vc4_dsi_put(dsi);
1835 
1836 	return 0;
1837 }
1838 
1839 struct platform_driver vc4_dsi_driver = {
1840 	.probe = vc4_dsi_dev_probe,
1841 	.remove = vc4_dsi_dev_remove,
1842 	.driver = {
1843 		.name = "vc4_dsi",
1844 		.of_match_table = vc4_dsi_dt_match,
1845 	},
1846 };
1847