1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <linux/clk-provider.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/component.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/i2c.h> 28 #include <linux/io.h> 29 #include <linux/of_address.h> 30 #include <linux/of_platform.h> 31 #include <linux/pm_runtime.h> 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_bridge.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_mipi_dsi.h> 37 #include <drm/drm_of.h> 38 #include <drm/drm_panel.h> 39 #include <drm/drm_probe_helper.h> 40 #include <drm/drm_simple_kms_helper.h> 41 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 #define DSI_CMD_FIFO_DEPTH 16 46 #define DSI_PIX_FIFO_DEPTH 256 47 #define DSI_PIX_FIFO_WIDTH 4 48 49 #define DSI0_CTRL 0x00 50 51 /* Command packet control. */ 52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53 #define DSI1_TXPKT1C 0x04 54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63 /* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67 /* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 78 # define DSI_TXPKT1C_CMD_CTRL_TX 0 79 /* Command with BTA for either ack or read data. */ 80 # define DSI_TXPKT1C_CMD_CTRL_RX 1 81 /* Trigger according to TRIG_CMD */ 82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83 /* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91 # define DSI_TXPKT1C_CMD_EN BIT(0) 92 93 /* Command packet header. */ 94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95 #define DSI1_TXPKT1H 0x08 96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101 # define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104 #define DSI1_RXPKT1H 0x14 105 # define DSI_RXPKT1H_CRC_ERR BIT(31) 106 # define DSI_RXPKT1H_DET_ERR BIT(30) 107 # define DSI_RXPKT1H_ECC_ERR BIT(29) 108 # define DSI_RXPKT1H_COR_ERR BIT(28) 109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123 #define DSI1_RXPKT2H 0x18 124 # define DSI_RXPKT1H_DET_ERR BIT(30) 125 # define DSI_RXPKT1H_ECC_ERR BIT(29) 126 # define DSI_RXPKT1H_COR_ERR BIT(28) 127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131 # define DSI_RXPKT1H_DT_SHIFT 0 132 133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134 #define DSI1_TXPKT_CMD_FIFO 0x1c 135 136 #define DSI0_DISP0_CTRL 0x18 137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141 # define DSI_DISP0_LP_STOP_DISABLE 0 142 # define DSI_DISP0_LP_STOP_PERLINE 1 143 # define DSI_DISP0_LP_STOP_PERFRAME 2 144 145 /* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148 # define DSI_DISP_HACTIVE_NULL BIT(10) 149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150 # define DSI_DISP_VBLP_CTRL BIT(9) 151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152 # define DSI_DISP_HFP_CTRL BIT(8) 153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154 # define DSI_DISP_HBP_CTRL BIT(7) 155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156 # define DSI_DISP0_CHANNEL_SHIFT 5 157 /* Enables end events for HSYNC/VSYNC, not just start events. */ 158 # define DSI_DISP0_ST_END BIT(4) 159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160 # define DSI_DISP0_PFORMAT_SHIFT 2 161 # define DSI_PFORMAT_RGB565 0 162 # define DSI_PFORMAT_RGB666_PACKED 1 163 # define DSI_PFORMAT_RGB666 2 164 # define DSI_PFORMAT_RGB888 3 165 /* Default is VIDEO mode. */ 166 # define DSI_DISP0_COMMAND_MODE BIT(1) 167 # define DSI_DISP0_ENABLE BIT(0) 168 169 #define DSI0_DISP1_CTRL 0x1c 170 #define DSI1_DISP1_CTRL 0x2c 171 /* Format of the data written to TXPKT_PIX_FIFO. */ 172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173 # define DSI_DISP1_PFORMAT_SHIFT 1 174 # define DSI_DISP1_PFORMAT_16BIT 0 175 # define DSI_DISP1_PFORMAT_24BIT 1 176 # define DSI_DISP1_PFORMAT_32BIT_LE 2 177 # define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179 /* DISP1 is always command mode. */ 180 # define DSI_DISP1_ENABLE BIT(0) 181 182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184 #define DSI0_INT_STAT 0x24 185 #define DSI0_INT_EN 0x28 186 # define DSI1_INT_PHY_D3_ULPS BIT(30) 187 # define DSI1_INT_PHY_D3_STOP BIT(29) 188 # define DSI1_INT_PHY_D2_ULPS BIT(28) 189 # define DSI1_INT_PHY_D2_STOP BIT(27) 190 # define DSI1_INT_PHY_D1_ULPS BIT(26) 191 # define DSI1_INT_PHY_D1_STOP BIT(25) 192 # define DSI1_INT_PHY_D0_ULPS BIT(24) 193 # define DSI1_INT_PHY_D0_STOP BIT(23) 194 # define DSI1_INT_FIFO_ERR BIT(22) 195 # define DSI1_INT_PHY_DIR_RTF BIT(21) 196 # define DSI1_INT_PHY_RXLPDT BIT(20) 197 # define DSI1_INT_PHY_RXTRIG BIT(19) 198 # define DSI1_INT_PHY_D0_LPDT BIT(18) 199 # define DSI1_INT_PHY_DIR_FTR BIT(17) 200 201 /* Signaled when the clock lane enters the given state. */ 202 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 203 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 204 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 205 206 /* Signaled on timeouts */ 207 # define DSI1_INT_PR_TO BIT(13) 208 # define DSI1_INT_TA_TO BIT(12) 209 # define DSI1_INT_LPRX_TO BIT(11) 210 # define DSI1_INT_HSTX_TO BIT(10) 211 212 /* Contention on a line when trying to drive the line low */ 213 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 214 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 215 216 /* Control error: incorrect line state sequence on data lane 0. */ 217 # define DSI1_INT_ERR_CONTROL BIT(7) 218 /* LPDT synchronization error (bits received not a multiple of 8. */ 219 220 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 221 /* Signaled after receiving an error packet from the display in 222 * response to a read. 223 */ 224 # define DSI1_INT_RXPKT2 BIT(5) 225 /* Signaled after receiving a packet. The header and optional short 226 * response will be in RXPKT1H, and a long response will be in the 227 * RXPKT_FIFO. 228 */ 229 # define DSI1_INT_RXPKT1 BIT(4) 230 # define DSI1_INT_TXPKT2_DONE BIT(3) 231 # define DSI1_INT_TXPKT2_END BIT(2) 232 /* Signaled after all repeats of TXPKT1 are transferred. */ 233 # define DSI1_INT_TXPKT1_DONE BIT(1) 234 /* Signaled after each TXPKT1 repeat is scheduled. */ 235 # define DSI1_INT_TXPKT1_END BIT(0) 236 237 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 238 DSI1_INT_ERR_CONTROL | \ 239 DSI1_INT_ERR_CONT_LP0 | \ 240 DSI1_INT_ERR_CONT_LP1 | \ 241 DSI1_INT_HSTX_TO | \ 242 DSI1_INT_LPRX_TO | \ 243 DSI1_INT_TA_TO | \ 244 DSI1_INT_PR_TO) 245 246 #define DSI0_STAT 0x2c 247 #define DSI0_HSTX_TO_CNT 0x30 248 #define DSI0_LPRX_TO_CNT 0x34 249 #define DSI0_TA_TO_CNT 0x38 250 #define DSI0_PR_TO_CNT 0x3c 251 #define DSI0_PHYC 0x40 252 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 253 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 254 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 255 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 256 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 257 # define DSI1_PHYC_CLANE_ULPS BIT(17) 258 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 259 # define DSI_PHYC_DLANE3_ULPS BIT(13) 260 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 261 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 262 # define DSI0_PHYC_CLANE_ULPS BIT(9) 263 # define DSI_PHYC_DLANE2_ULPS BIT(9) 264 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 265 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 266 # define DSI_PHYC_DLANE1_ULPS BIT(5) 267 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 268 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 269 # define DSI_PHYC_DLANE0_ULPS BIT(1) 270 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 271 272 #define DSI0_HS_CLT0 0x44 273 #define DSI0_HS_CLT1 0x48 274 #define DSI0_HS_CLT2 0x4c 275 #define DSI0_HS_DLT3 0x50 276 #define DSI0_HS_DLT4 0x54 277 #define DSI0_HS_DLT5 0x58 278 #define DSI0_HS_DLT6 0x5c 279 #define DSI0_HS_DLT7 0x60 280 281 #define DSI0_PHY_AFEC0 0x64 282 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 283 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 284 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 285 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 286 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 287 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 288 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 289 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 290 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 291 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 292 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 293 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 294 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 295 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 296 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 297 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 298 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 299 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 300 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 301 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 302 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 303 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 304 # define DSI1_PHY_AFEC0_RESET BIT(13) 305 # define DSI1_PHY_AFEC0_PD BIT(12) 306 # define DSI0_PHY_AFEC0_RESET BIT(11) 307 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 308 # define DSI0_PHY_AFEC0_PD BIT(10) 309 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 310 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 311 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 312 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 313 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 314 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 315 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 316 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 317 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 318 319 #define DSI0_PHY_AFEC1 0x68 320 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 321 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 322 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 323 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 324 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 325 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 326 327 #define DSI0_TST_SEL 0x6c 328 #define DSI0_TST_MON 0x70 329 #define DSI0_ID 0x74 330 # define DSI_ID_VALUE 0x00647369 331 332 #define DSI1_CTRL 0x00 333 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 334 # define DSI_CTRL_HS_CLKC_SHIFT 14 335 # define DSI_CTRL_HS_CLKC_BYTE 0 336 # define DSI_CTRL_HS_CLKC_DDR2 1 337 # define DSI_CTRL_HS_CLKC_DDR 2 338 339 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 340 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 341 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 342 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 343 # define DSI_CTRL_CAL_BYTE BIT(9) 344 # define DSI_CTRL_INV_BYTE BIT(8) 345 # define DSI_CTRL_CLR_LDF BIT(7) 346 # define DSI0_CTRL_CLR_PBCF BIT(6) 347 # define DSI1_CTRL_CLR_RXF BIT(6) 348 # define DSI0_CTRL_CLR_CPBCF BIT(5) 349 # define DSI1_CTRL_CLR_PDF BIT(5) 350 # define DSI0_CTRL_CLR_PDF BIT(4) 351 # define DSI1_CTRL_CLR_CDF BIT(4) 352 # define DSI0_CTRL_CLR_CDF BIT(3) 353 # define DSI0_CTRL_CTRL2 BIT(2) 354 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 355 # define DSI0_CTRL_CTRL1 BIT(1) 356 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 357 # define DSI0_CTRL_CTRL0 BIT(0) 358 # define DSI1_CTRL_EN BIT(0) 359 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 360 DSI0_CTRL_CLR_PBCF | \ 361 DSI0_CTRL_CLR_CPBCF | \ 362 DSI0_CTRL_CLR_PDF | \ 363 DSI0_CTRL_CLR_CDF) 364 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 365 DSI1_CTRL_CLR_RXF | \ 366 DSI1_CTRL_CLR_PDF | \ 367 DSI1_CTRL_CLR_CDF) 368 369 #define DSI1_TXPKT2C 0x0c 370 #define DSI1_TXPKT2H 0x10 371 #define DSI1_TXPKT_PIX_FIFO 0x20 372 #define DSI1_RXPKT_FIFO 0x24 373 #define DSI1_DISP0_CTRL 0x28 374 #define DSI1_INT_STAT 0x30 375 #define DSI1_INT_EN 0x34 376 /* State reporting bits. These mostly behave like INT_STAT, where 377 * writing a 1 clears the bit. 378 */ 379 #define DSI1_STAT 0x38 380 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 381 # define DSI1_STAT_PHY_D3_STOP BIT(30) 382 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 383 # define DSI1_STAT_PHY_D2_STOP BIT(28) 384 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 385 # define DSI1_STAT_PHY_D1_STOP BIT(26) 386 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 387 # define DSI1_STAT_PHY_D0_STOP BIT(24) 388 # define DSI1_STAT_FIFO_ERR BIT(23) 389 # define DSI1_STAT_PHY_RXLPDT BIT(22) 390 # define DSI1_STAT_PHY_RXTRIG BIT(21) 391 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 392 /* Set when in forward direction */ 393 # define DSI1_STAT_PHY_DIR BIT(19) 394 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 395 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 396 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 397 # define DSI1_STAT_PR_TO BIT(15) 398 # define DSI1_STAT_TA_TO BIT(14) 399 # define DSI1_STAT_LPRX_TO BIT(13) 400 # define DSI1_STAT_HSTX_TO BIT(12) 401 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 402 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 403 # define DSI1_STAT_ERR_CONTROL BIT(9) 404 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 405 # define DSI1_STAT_RXPKT2 BIT(7) 406 # define DSI1_STAT_RXPKT1 BIT(6) 407 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 408 # define DSI1_STAT_TXPKT2_DONE BIT(4) 409 # define DSI1_STAT_TXPKT2_END BIT(3) 410 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 411 # define DSI1_STAT_TXPKT1_DONE BIT(1) 412 # define DSI1_STAT_TXPKT1_END BIT(0) 413 414 #define DSI1_HSTX_TO_CNT 0x3c 415 #define DSI1_LPRX_TO_CNT 0x40 416 #define DSI1_TA_TO_CNT 0x44 417 #define DSI1_PR_TO_CNT 0x48 418 #define DSI1_PHYC 0x4c 419 420 #define DSI1_HS_CLT0 0x50 421 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 422 # define DSI_HS_CLT0_CZERO_SHIFT 18 423 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 424 # define DSI_HS_CLT0_CPRE_SHIFT 9 425 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 426 # define DSI_HS_CLT0_CPREP_SHIFT 0 427 428 #define DSI1_HS_CLT1 0x54 429 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 430 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 431 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 432 # define DSI_HS_CLT1_CPOST_SHIFT 0 433 434 #define DSI1_HS_CLT2 0x58 435 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 436 # define DSI_HS_CLT2_WUP_SHIFT 0 437 438 #define DSI1_HS_DLT3 0x5c 439 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 440 # define DSI_HS_DLT3_EXIT_SHIFT 18 441 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 442 # define DSI_HS_DLT3_ZERO_SHIFT 9 443 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 444 # define DSI_HS_DLT3_PRE_SHIFT 0 445 446 #define DSI1_HS_DLT4 0x60 447 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 448 # define DSI_HS_DLT4_ANLAT_SHIFT 18 449 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 450 # define DSI_HS_DLT4_TRAIL_SHIFT 9 451 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 452 # define DSI_HS_DLT4_LPX_SHIFT 0 453 454 #define DSI1_HS_DLT5 0x64 455 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 456 # define DSI_HS_DLT5_INIT_SHIFT 0 457 458 #define DSI1_HS_DLT6 0x68 459 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 460 # define DSI_HS_DLT6_TA_GET_SHIFT 24 461 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 462 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 463 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 464 # define DSI_HS_DLT6_TA_GO_SHIFT 8 465 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 466 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 467 468 #define DSI1_HS_DLT7 0x6c 469 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 470 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 471 472 #define DSI1_PHY_AFEC0 0x70 473 474 #define DSI1_PHY_AFEC1 0x74 475 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 476 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 477 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 478 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 479 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 480 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 482 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 483 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 484 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 485 486 #define DSI1_TST_SEL 0x78 487 #define DSI1_TST_MON 0x7c 488 #define DSI1_PHY_TST1 0x80 489 #define DSI1_PHY_TST2 0x84 490 #define DSI1_PHY_FIFO_STAT 0x88 491 /* Actually, all registers in the range that aren't otherwise claimed 492 * will return the ID. 493 */ 494 #define DSI1_ID 0x8c 495 496 /* General DSI hardware state. */ 497 struct vc4_dsi { 498 struct platform_device *pdev; 499 500 struct mipi_dsi_host dsi_host; 501 struct drm_encoder *encoder; 502 struct drm_bridge *bridge; 503 struct list_head bridge_chain; 504 505 void __iomem *regs; 506 507 struct dma_chan *reg_dma_chan; 508 dma_addr_t reg_dma_paddr; 509 u32 *reg_dma_mem; 510 dma_addr_t reg_paddr; 511 512 /* Whether we're on bcm2835's DSI0 or DSI1. */ 513 int port; 514 515 /* DSI channel for the panel we're connected to. */ 516 u32 channel; 517 u32 lanes; 518 u32 format; 519 u32 divider; 520 u32 mode_flags; 521 522 /* Input clock from CPRMAN to the digital PHY, for the DSI 523 * escape clock. 524 */ 525 struct clk *escape_clock; 526 527 /* Input clock to the analog PHY, used to generate the DSI bit 528 * clock. 529 */ 530 struct clk *pll_phy_clock; 531 532 /* HS Clocks generated within the DSI analog PHY. */ 533 struct clk_fixed_factor phy_clocks[3]; 534 535 struct clk_hw_onecell_data *clk_onecell; 536 537 /* Pixel clock output to the pixelvalve, generated from the HS 538 * clock. 539 */ 540 struct clk *pixel_clock; 541 542 struct completion xfer_completion; 543 int xfer_result; 544 545 struct debugfs_regset32 regset; 546 }; 547 548 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 549 550 static inline void 551 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 552 { 553 struct dma_chan *chan = dsi->reg_dma_chan; 554 struct dma_async_tx_descriptor *tx; 555 dma_cookie_t cookie; 556 int ret; 557 558 /* DSI0 should be able to write normally. */ 559 if (!chan) { 560 writel(val, dsi->regs + offset); 561 return; 562 } 563 564 *dsi->reg_dma_mem = val; 565 566 tx = chan->device->device_prep_dma_memcpy(chan, 567 dsi->reg_paddr + offset, 568 dsi->reg_dma_paddr, 569 4, 0); 570 if (!tx) { 571 DRM_ERROR("Failed to set up DMA register write\n"); 572 return; 573 } 574 575 cookie = tx->tx_submit(tx); 576 ret = dma_submit_error(cookie); 577 if (ret) { 578 DRM_ERROR("Failed to submit DMA: %d\n", ret); 579 return; 580 } 581 ret = dma_sync_wait(chan, cookie); 582 if (ret) 583 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 584 } 585 586 #define DSI_READ(offset) readl(dsi->regs + (offset)) 587 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 588 #define DSI_PORT_READ(offset) \ 589 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 590 #define DSI_PORT_WRITE(offset, val) \ 591 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 592 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 593 594 /* VC4 DSI encoder KMS struct */ 595 struct vc4_dsi_encoder { 596 struct vc4_encoder base; 597 struct vc4_dsi *dsi; 598 }; 599 600 static inline struct vc4_dsi_encoder * 601 to_vc4_dsi_encoder(struct drm_encoder *encoder) 602 { 603 return container_of(encoder, struct vc4_dsi_encoder, base.base); 604 } 605 606 static const struct debugfs_reg32 dsi0_regs[] = { 607 VC4_REG32(DSI0_CTRL), 608 VC4_REG32(DSI0_STAT), 609 VC4_REG32(DSI0_HSTX_TO_CNT), 610 VC4_REG32(DSI0_LPRX_TO_CNT), 611 VC4_REG32(DSI0_TA_TO_CNT), 612 VC4_REG32(DSI0_PR_TO_CNT), 613 VC4_REG32(DSI0_DISP0_CTRL), 614 VC4_REG32(DSI0_DISP1_CTRL), 615 VC4_REG32(DSI0_INT_STAT), 616 VC4_REG32(DSI0_INT_EN), 617 VC4_REG32(DSI0_PHYC), 618 VC4_REG32(DSI0_HS_CLT0), 619 VC4_REG32(DSI0_HS_CLT1), 620 VC4_REG32(DSI0_HS_CLT2), 621 VC4_REG32(DSI0_HS_DLT3), 622 VC4_REG32(DSI0_HS_DLT4), 623 VC4_REG32(DSI0_HS_DLT5), 624 VC4_REG32(DSI0_HS_DLT6), 625 VC4_REG32(DSI0_HS_DLT7), 626 VC4_REG32(DSI0_PHY_AFEC0), 627 VC4_REG32(DSI0_PHY_AFEC1), 628 VC4_REG32(DSI0_ID), 629 }; 630 631 static const struct debugfs_reg32 dsi1_regs[] = { 632 VC4_REG32(DSI1_CTRL), 633 VC4_REG32(DSI1_STAT), 634 VC4_REG32(DSI1_HSTX_TO_CNT), 635 VC4_REG32(DSI1_LPRX_TO_CNT), 636 VC4_REG32(DSI1_TA_TO_CNT), 637 VC4_REG32(DSI1_PR_TO_CNT), 638 VC4_REG32(DSI1_DISP0_CTRL), 639 VC4_REG32(DSI1_DISP1_CTRL), 640 VC4_REG32(DSI1_INT_STAT), 641 VC4_REG32(DSI1_INT_EN), 642 VC4_REG32(DSI1_PHYC), 643 VC4_REG32(DSI1_HS_CLT0), 644 VC4_REG32(DSI1_HS_CLT1), 645 VC4_REG32(DSI1_HS_CLT2), 646 VC4_REG32(DSI1_HS_DLT3), 647 VC4_REG32(DSI1_HS_DLT4), 648 VC4_REG32(DSI1_HS_DLT5), 649 VC4_REG32(DSI1_HS_DLT6), 650 VC4_REG32(DSI1_HS_DLT7), 651 VC4_REG32(DSI1_PHY_AFEC0), 652 VC4_REG32(DSI1_PHY_AFEC1), 653 VC4_REG32(DSI1_ID), 654 }; 655 656 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 657 { 658 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 659 660 if (latch) 661 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 662 else 663 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 664 665 DSI_PORT_WRITE(PHY_AFEC0, afec0); 666 } 667 668 /* Enters or exits Ultra Low Power State. */ 669 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 670 { 671 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 672 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 673 DSI_PHYC_DLANE0_ULPS | 674 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 675 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 676 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 677 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 678 DSI1_STAT_PHY_D0_ULPS | 679 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 680 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 681 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 682 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 683 DSI1_STAT_PHY_D0_STOP | 684 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 685 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 686 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 687 int ret; 688 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 689 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 690 691 if (ulps == ulps_currently_enabled) 692 return; 693 694 DSI_PORT_WRITE(STAT, stat_ulps); 695 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 696 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 697 if (ret) { 698 dev_warn(&dsi->pdev->dev, 699 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 700 DSI_PORT_READ(STAT)); 701 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 702 vc4_dsi_latch_ulps(dsi, false); 703 return; 704 } 705 706 /* The DSI module can't be disabled while the module is 707 * generating ULPS state. So, to be able to disable the 708 * module, we have the AFE latch the ULPS state and continue 709 * on to having the module enter STOP. 710 */ 711 vc4_dsi_latch_ulps(dsi, ulps); 712 713 DSI_PORT_WRITE(STAT, stat_stop); 714 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 715 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 716 if (ret) { 717 dev_warn(&dsi->pdev->dev, 718 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 719 DSI_PORT_READ(STAT)); 720 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 721 return; 722 } 723 } 724 725 static u32 726 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 727 { 728 /* The HS timings have to be rounded up to a multiple of 8 729 * because we're using the byte clock. 730 */ 731 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 732 } 733 734 /* ESC always runs at 100Mhz. */ 735 #define ESC_TIME_NS 10 736 737 static u32 738 dsi_esc_timing(u32 ns) 739 { 740 return DIV_ROUND_UP(ns, ESC_TIME_NS); 741 } 742 743 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 744 { 745 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 746 struct vc4_dsi *dsi = vc4_encoder->dsi; 747 struct device *dev = &dsi->pdev->dev; 748 struct drm_bridge *iter; 749 750 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 751 if (iter->funcs->disable) 752 iter->funcs->disable(iter); 753 } 754 755 vc4_dsi_ulps(dsi, true); 756 757 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) { 758 if (iter->funcs->post_disable) 759 iter->funcs->post_disable(iter); 760 } 761 762 clk_disable_unprepare(dsi->pll_phy_clock); 763 clk_disable_unprepare(dsi->escape_clock); 764 clk_disable_unprepare(dsi->pixel_clock); 765 766 pm_runtime_put(dev); 767 } 768 769 /* Extends the mode's blank intervals to handle BCM2835's integer-only 770 * DSI PLL divider. 771 * 772 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 773 * driver since most peripherals are hanging off of the PLLD_PER 774 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 775 * the pixel clock), only has an integer divider off of DSI. 776 * 777 * To get our panel mode to refresh at the expected 60Hz, we need to 778 * extend the horizontal blank time. This means we drive a 779 * higher-than-expected clock rate to the panel, but that's what the 780 * firmware does too. 781 */ 782 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 783 const struct drm_display_mode *mode, 784 struct drm_display_mode *adjusted_mode) 785 { 786 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 787 struct vc4_dsi *dsi = vc4_encoder->dsi; 788 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 789 unsigned long parent_rate = clk_get_rate(phy_parent); 790 unsigned long pixel_clock_hz = mode->clock * 1000; 791 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 792 int divider; 793 794 /* Find what divider gets us a faster clock than the requested 795 * pixel clock. 796 */ 797 for (divider = 1; divider < 8; divider++) { 798 if (parent_rate / divider < pll_clock) { 799 divider--; 800 break; 801 } 802 } 803 804 /* Now that we've picked a PLL divider, calculate back to its 805 * pixel clock. 806 */ 807 pll_clock = parent_rate / divider; 808 pixel_clock_hz = pll_clock / dsi->divider; 809 810 adjusted_mode->clock = pixel_clock_hz / 1000; 811 812 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 813 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 814 mode->clock; 815 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 816 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 817 818 return true; 819 } 820 821 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 822 { 823 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 824 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 825 struct vc4_dsi *dsi = vc4_encoder->dsi; 826 struct device *dev = &dsi->pdev->dev; 827 bool debug_dump_regs = false; 828 struct drm_bridge *iter; 829 unsigned long hs_clock; 830 u32 ui_ns; 831 /* Minimum LP state duration in escape clock cycles. */ 832 u32 lpx = dsi_esc_timing(60); 833 unsigned long pixel_clock_hz = mode->clock * 1000; 834 unsigned long dsip_clock; 835 unsigned long phy_clock; 836 int ret; 837 838 ret = pm_runtime_get_sync(dev); 839 if (ret) { 840 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 841 return; 842 } 843 844 if (debug_dump_regs) { 845 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 846 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 847 drm_print_regset32(&p, &dsi->regset); 848 } 849 850 /* Round up the clk_set_rate() request slightly, since 851 * PLLD_DSI1 is an integer divider and its rate selection will 852 * never round up. 853 */ 854 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 855 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 856 if (ret) { 857 dev_err(&dsi->pdev->dev, 858 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 859 } 860 861 /* Reset the DSI and all its fifos. */ 862 DSI_PORT_WRITE(CTRL, 863 DSI_CTRL_SOFT_RESET_CFG | 864 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 865 866 DSI_PORT_WRITE(CTRL, 867 DSI_CTRL_HSDT_EOT_DISABLE | 868 DSI_CTRL_RX_LPDT_EOT_DISABLE); 869 870 /* Clear all stat bits so we see what has happened during enable. */ 871 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 872 873 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 874 if (dsi->port == 0) { 875 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 876 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 877 878 if (dsi->lanes < 2) 879 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 880 881 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 882 afec0 |= DSI0_PHY_AFEC0_RESET; 883 884 DSI_PORT_WRITE(PHY_AFEC0, afec0); 885 886 DSI_PORT_WRITE(PHY_AFEC1, 887 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 888 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 889 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 890 } else { 891 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 892 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 893 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 894 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 895 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 896 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 897 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 898 899 if (dsi->lanes < 4) 900 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 901 if (dsi->lanes < 3) 902 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 903 if (dsi->lanes < 2) 904 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 905 906 afec0 |= DSI1_PHY_AFEC0_RESET; 907 908 DSI_PORT_WRITE(PHY_AFEC0, afec0); 909 910 DSI_PORT_WRITE(PHY_AFEC1, 0); 911 912 /* AFEC reset hold time */ 913 mdelay(1); 914 } 915 916 ret = clk_prepare_enable(dsi->escape_clock); 917 if (ret) { 918 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 919 return; 920 } 921 922 ret = clk_prepare_enable(dsi->pll_phy_clock); 923 if (ret) { 924 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 925 return; 926 } 927 928 hs_clock = clk_get_rate(dsi->pll_phy_clock); 929 930 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 931 * not the pixel clock rate. DSIxP take from the APHY's byte, 932 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 933 * that rate. Separately, a value derived from PIX_CLK_DIV 934 * and HS_CLKC is fed into the PV to divide down to the actual 935 * pixel clock for pushing pixels into DSI. 936 */ 937 dsip_clock = phy_clock / 8; 938 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 939 if (ret) { 940 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 941 dsip_clock, ret); 942 } 943 944 ret = clk_prepare_enable(dsi->pixel_clock); 945 if (ret) { 946 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 947 return; 948 } 949 950 /* How many ns one DSI unit interval is. Note that the clock 951 * is DDR, so there's an extra divide by 2. 952 */ 953 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 954 955 DSI_PORT_WRITE(HS_CLT0, 956 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 957 DSI_HS_CLT0_CZERO) | 958 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 959 DSI_HS_CLT0_CPRE) | 960 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 961 DSI_HS_CLT0_CPREP)); 962 963 DSI_PORT_WRITE(HS_CLT1, 964 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 965 DSI_HS_CLT1_CTRAIL) | 966 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 967 DSI_HS_CLT1_CPOST)); 968 969 DSI_PORT_WRITE(HS_CLT2, 970 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 971 DSI_HS_CLT2_WUP)); 972 973 DSI_PORT_WRITE(HS_DLT3, 974 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 975 DSI_HS_DLT3_EXIT) | 976 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 977 DSI_HS_DLT3_ZERO) | 978 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 979 DSI_HS_DLT3_PRE)); 980 981 DSI_PORT_WRITE(HS_DLT4, 982 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 983 DSI_HS_DLT4_LPX) | 984 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 985 dsi_hs_timing(ui_ns, 60, 4)), 986 DSI_HS_DLT4_TRAIL) | 987 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 988 989 /* T_INIT is how long STOP is driven after power-up to 990 * indicate to the slave (also coming out of power-up) that 991 * master init is complete, and should be greater than the 992 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 993 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 994 * T_INIT,SLAVE, while allowing protocols on top of it to give 995 * greater minimums. The vc4 firmware uses an extremely 996 * conservative 5ms, and we maintain that here. 997 */ 998 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 999 5 * 1000 * 1000, 0), 1000 DSI_HS_DLT5_INIT)); 1001 1002 DSI_PORT_WRITE(HS_DLT6, 1003 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1004 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1005 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1006 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1007 1008 DSI_PORT_WRITE(HS_DLT7, 1009 VC4_SET_FIELD(dsi_esc_timing(1000000), 1010 DSI_HS_DLT7_LP_WUP)); 1011 1012 DSI_PORT_WRITE(PHYC, 1013 DSI_PHYC_DLANE0_ENABLE | 1014 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1015 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1016 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1017 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1018 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1019 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1020 (dsi->port == 0 ? 1021 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1022 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1023 1024 DSI_PORT_WRITE(CTRL, 1025 DSI_PORT_READ(CTRL) | 1026 DSI_CTRL_CAL_BYTE); 1027 1028 /* HS timeout in HS clock cycles: disabled. */ 1029 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1030 /* LP receive timeout in HS clocks. */ 1031 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1032 /* Bus turnaround timeout */ 1033 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1034 /* Display reset sequence timeout */ 1035 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1036 1037 /* Set up DISP1 for transferring long command payloads through 1038 * the pixfifo. 1039 */ 1040 DSI_PORT_WRITE(DISP1_CTRL, 1041 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1042 DSI_DISP1_PFORMAT) | 1043 DSI_DISP1_ENABLE); 1044 1045 /* Ungate the block. */ 1046 if (dsi->port == 0) 1047 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1048 else 1049 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1050 1051 /* Bring AFE out of reset. */ 1052 if (dsi->port == 0) { 1053 } else { 1054 DSI_PORT_WRITE(PHY_AFEC0, 1055 DSI_PORT_READ(PHY_AFEC0) & 1056 ~DSI1_PHY_AFEC0_RESET); 1057 } 1058 1059 vc4_dsi_ulps(dsi, false); 1060 1061 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 1062 if (iter->funcs->pre_enable) 1063 iter->funcs->pre_enable(iter); 1064 } 1065 1066 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1067 DSI_PORT_WRITE(DISP0_CTRL, 1068 VC4_SET_FIELD(dsi->divider, 1069 DSI_DISP0_PIX_CLK_DIV) | 1070 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1071 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1072 DSI_DISP0_LP_STOP_CTRL) | 1073 DSI_DISP0_ST_END | 1074 DSI_DISP0_ENABLE); 1075 } else { 1076 DSI_PORT_WRITE(DISP0_CTRL, 1077 DSI_DISP0_COMMAND_MODE | 1078 DSI_DISP0_ENABLE); 1079 } 1080 1081 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1082 if (iter->funcs->enable) 1083 iter->funcs->enable(iter); 1084 } 1085 1086 if (debug_dump_regs) { 1087 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1088 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1089 drm_print_regset32(&p, &dsi->regset); 1090 } 1091 } 1092 1093 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1094 const struct mipi_dsi_msg *msg) 1095 { 1096 struct vc4_dsi *dsi = host_to_dsi(host); 1097 struct mipi_dsi_packet packet; 1098 u32 pkth = 0, pktc = 0; 1099 int i, ret; 1100 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1101 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1102 1103 mipi_dsi_create_packet(&packet, msg); 1104 1105 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1106 pkth |= VC4_SET_FIELD(packet.header[1] | 1107 (packet.header[2] << 8), 1108 DSI_TXPKT1H_BC_PARAM); 1109 if (is_long) { 1110 /* Divide data across the various FIFOs we have available. 1111 * The command FIFO takes byte-oriented data, but is of 1112 * limited size. The pixel FIFO (never actually used for 1113 * pixel data in reality) is word oriented, and substantially 1114 * larger. So, we use the pixel FIFO for most of the data, 1115 * sending the residual bytes in the command FIFO at the start. 1116 * 1117 * With this arrangement, the command FIFO will never get full. 1118 */ 1119 if (packet.payload_length <= 16) { 1120 cmd_fifo_len = packet.payload_length; 1121 pix_fifo_len = 0; 1122 } else { 1123 cmd_fifo_len = (packet.payload_length % 1124 DSI_PIX_FIFO_WIDTH); 1125 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1126 DSI_PIX_FIFO_WIDTH); 1127 } 1128 1129 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1130 1131 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1132 } 1133 1134 if (msg->rx_len) { 1135 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1136 DSI_TXPKT1C_CMD_CTRL); 1137 } else { 1138 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1139 DSI_TXPKT1C_CMD_CTRL); 1140 } 1141 1142 for (i = 0; i < cmd_fifo_len; i++) 1143 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1144 for (i = 0; i < pix_fifo_len; i++) { 1145 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1146 1147 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1148 pix[0] | 1149 pix[1] << 8 | 1150 pix[2] << 16 | 1151 pix[3] << 24); 1152 } 1153 1154 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1155 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1156 if (is_long) 1157 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1158 1159 /* Send one copy of the packet. Larger repeats are used for pixel 1160 * data in command mode. 1161 */ 1162 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1163 1164 pktc |= DSI_TXPKT1C_CMD_EN; 1165 if (pix_fifo_len) { 1166 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1167 DSI_TXPKT1C_DISPLAY_NO); 1168 } else { 1169 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1170 DSI_TXPKT1C_DISPLAY_NO); 1171 } 1172 1173 /* Enable the appropriate interrupt for the transfer completion. */ 1174 dsi->xfer_result = 0; 1175 reinit_completion(&dsi->xfer_completion); 1176 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1177 if (msg->rx_len) { 1178 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1179 DSI1_INT_PHY_DIR_RTF)); 1180 } else { 1181 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1182 DSI1_INT_TXPKT1_DONE)); 1183 } 1184 1185 /* Send the packet. */ 1186 DSI_PORT_WRITE(TXPKT1H, pkth); 1187 DSI_PORT_WRITE(TXPKT1C, pktc); 1188 1189 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1190 msecs_to_jiffies(1000))) { 1191 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1192 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1193 DSI_PORT_READ(INT_STAT)); 1194 ret = -ETIMEDOUT; 1195 } else { 1196 ret = dsi->xfer_result; 1197 } 1198 1199 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1200 1201 if (ret) 1202 goto reset_fifo_and_return; 1203 1204 if (ret == 0 && msg->rx_len) { 1205 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1206 u8 *msg_rx = msg->rx_buf; 1207 1208 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1209 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1210 DSI_RXPKT1H_BC_PARAM); 1211 1212 if (rxlen != msg->rx_len) { 1213 DRM_ERROR("DSI returned %db, expecting %db\n", 1214 rxlen, (int)msg->rx_len); 1215 ret = -ENXIO; 1216 goto reset_fifo_and_return; 1217 } 1218 1219 for (i = 0; i < msg->rx_len; i++) 1220 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1221 } else { 1222 /* FINISHME: Handle AWER */ 1223 1224 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1225 DSI_RXPKT1H_SHORT_0); 1226 if (msg->rx_len > 1) { 1227 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1228 DSI_RXPKT1H_SHORT_1); 1229 } 1230 } 1231 } 1232 1233 return ret; 1234 1235 reset_fifo_and_return: 1236 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1237 1238 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1239 udelay(1); 1240 DSI_PORT_WRITE(CTRL, 1241 DSI_PORT_READ(CTRL) | 1242 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1243 1244 DSI_PORT_WRITE(TXPKT1C, 0); 1245 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1246 return ret; 1247 } 1248 1249 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1250 struct mipi_dsi_device *device) 1251 { 1252 struct vc4_dsi *dsi = host_to_dsi(host); 1253 1254 dsi->lanes = device->lanes; 1255 dsi->channel = device->channel; 1256 dsi->mode_flags = device->mode_flags; 1257 1258 switch (device->format) { 1259 case MIPI_DSI_FMT_RGB888: 1260 dsi->format = DSI_PFORMAT_RGB888; 1261 dsi->divider = 24 / dsi->lanes; 1262 break; 1263 case MIPI_DSI_FMT_RGB666: 1264 dsi->format = DSI_PFORMAT_RGB666; 1265 dsi->divider = 24 / dsi->lanes; 1266 break; 1267 case MIPI_DSI_FMT_RGB666_PACKED: 1268 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1269 dsi->divider = 18 / dsi->lanes; 1270 break; 1271 case MIPI_DSI_FMT_RGB565: 1272 dsi->format = DSI_PFORMAT_RGB565; 1273 dsi->divider = 16 / dsi->lanes; 1274 break; 1275 default: 1276 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1277 dsi->format); 1278 return 0; 1279 } 1280 1281 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1282 dev_err(&dsi->pdev->dev, 1283 "Only VIDEO mode panels supported currently.\n"); 1284 return 0; 1285 } 1286 1287 return 0; 1288 } 1289 1290 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1291 struct mipi_dsi_device *device) 1292 { 1293 return 0; 1294 } 1295 1296 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1297 .attach = vc4_dsi_host_attach, 1298 .detach = vc4_dsi_host_detach, 1299 .transfer = vc4_dsi_host_transfer, 1300 }; 1301 1302 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1303 .disable = vc4_dsi_encoder_disable, 1304 .enable = vc4_dsi_encoder_enable, 1305 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1306 }; 1307 1308 static const struct of_device_id vc4_dsi_dt_match[] = { 1309 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1310 {} 1311 }; 1312 1313 static void dsi_handle_error(struct vc4_dsi *dsi, 1314 irqreturn_t *ret, u32 stat, u32 bit, 1315 const char *type) 1316 { 1317 if (!(stat & bit)) 1318 return; 1319 1320 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1321 *ret = IRQ_HANDLED; 1322 } 1323 1324 /* 1325 * Initial handler for port 1 where we need the reg_dma workaround. 1326 * The register DMA writes sleep, so we can't do it in the top half. 1327 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1328 * parent interrupt contrller until our interrupt thread is done. 1329 */ 1330 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1331 { 1332 struct vc4_dsi *dsi = data; 1333 u32 stat = DSI_PORT_READ(INT_STAT); 1334 1335 if (!stat) 1336 return IRQ_NONE; 1337 1338 return IRQ_WAKE_THREAD; 1339 } 1340 1341 /* 1342 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1343 * 1 where we need the reg_dma workaround. 1344 */ 1345 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1346 { 1347 struct vc4_dsi *dsi = data; 1348 u32 stat = DSI_PORT_READ(INT_STAT); 1349 irqreturn_t ret = IRQ_NONE; 1350 1351 DSI_PORT_WRITE(INT_STAT, stat); 1352 1353 dsi_handle_error(dsi, &ret, stat, 1354 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1355 dsi_handle_error(dsi, &ret, stat, 1356 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1357 dsi_handle_error(dsi, &ret, stat, 1358 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1359 dsi_handle_error(dsi, &ret, stat, 1360 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1361 dsi_handle_error(dsi, &ret, stat, 1362 DSI1_INT_HSTX_TO, "HSTX timeout"); 1363 dsi_handle_error(dsi, &ret, stat, 1364 DSI1_INT_LPRX_TO, "LPRX timeout"); 1365 dsi_handle_error(dsi, &ret, stat, 1366 DSI1_INT_TA_TO, "turnaround timeout"); 1367 dsi_handle_error(dsi, &ret, stat, 1368 DSI1_INT_PR_TO, "peripheral reset timeout"); 1369 1370 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1371 complete(&dsi->xfer_completion); 1372 ret = IRQ_HANDLED; 1373 } else if (stat & DSI1_INT_HSTX_TO) { 1374 complete(&dsi->xfer_completion); 1375 dsi->xfer_result = -ETIMEDOUT; 1376 ret = IRQ_HANDLED; 1377 } 1378 1379 return ret; 1380 } 1381 1382 /** 1383 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1384 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1385 * @dsi: DSI encoder 1386 */ 1387 static int 1388 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1389 { 1390 struct device *dev = &dsi->pdev->dev; 1391 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1392 static const struct { 1393 const char *dsi0_name, *dsi1_name; 1394 int div; 1395 } phy_clocks[] = { 1396 { "dsi0_byte", "dsi1_byte", 8 }, 1397 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1398 { "dsi0_ddr", "dsi1_ddr", 2 }, 1399 }; 1400 int i; 1401 1402 dsi->clk_onecell = devm_kzalloc(dev, 1403 sizeof(*dsi->clk_onecell) + 1404 ARRAY_SIZE(phy_clocks) * 1405 sizeof(struct clk_hw *), 1406 GFP_KERNEL); 1407 if (!dsi->clk_onecell) 1408 return -ENOMEM; 1409 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1410 1411 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1412 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1413 struct clk_init_data init; 1414 int ret; 1415 1416 /* We just use core fixed factor clock ops for the PHY 1417 * clocks. The clocks are actually gated by the 1418 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1419 * setting if we use the DDR/DDR2 clocks. However, 1420 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1421 * setting both our parent DSI PLL's rate and this 1422 * clock's rate, so it knows if DDR/DDR2 are going to 1423 * be used and could enable the gates itself. 1424 */ 1425 fix->mult = 1; 1426 fix->div = phy_clocks[i].div; 1427 fix->hw.init = &init; 1428 1429 memset(&init, 0, sizeof(init)); 1430 init.parent_names = &parent_name; 1431 init.num_parents = 1; 1432 if (dsi->port == 1) 1433 init.name = phy_clocks[i].dsi1_name; 1434 else 1435 init.name = phy_clocks[i].dsi0_name; 1436 init.ops = &clk_fixed_factor_ops; 1437 1438 ret = devm_clk_hw_register(dev, &fix->hw); 1439 if (ret) 1440 return ret; 1441 1442 dsi->clk_onecell->hws[i] = &fix->hw; 1443 } 1444 1445 return of_clk_add_hw_provider(dev->of_node, 1446 of_clk_hw_onecell_get, 1447 dsi->clk_onecell); 1448 } 1449 1450 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1451 { 1452 struct platform_device *pdev = to_platform_device(dev); 1453 struct drm_device *drm = dev_get_drvdata(master); 1454 struct vc4_dev *vc4 = to_vc4_dev(drm); 1455 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1456 struct vc4_dsi_encoder *vc4_dsi_encoder; 1457 struct drm_panel *panel; 1458 const struct of_device_id *match; 1459 dma_cap_mask_t dma_mask; 1460 int ret; 1461 1462 match = of_match_device(vc4_dsi_dt_match, dev); 1463 if (!match) 1464 return -ENODEV; 1465 1466 dsi->port = (uintptr_t)match->data; 1467 1468 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1469 GFP_KERNEL); 1470 if (!vc4_dsi_encoder) 1471 return -ENOMEM; 1472 1473 INIT_LIST_HEAD(&dsi->bridge_chain); 1474 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1475 vc4_dsi_encoder->dsi = dsi; 1476 dsi->encoder = &vc4_dsi_encoder->base.base; 1477 1478 dsi->regs = vc4_ioremap_regs(pdev, 0); 1479 if (IS_ERR(dsi->regs)) 1480 return PTR_ERR(dsi->regs); 1481 1482 dsi->regset.base = dsi->regs; 1483 if (dsi->port == 0) { 1484 dsi->regset.regs = dsi0_regs; 1485 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs); 1486 } else { 1487 dsi->regset.regs = dsi1_regs; 1488 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs); 1489 } 1490 1491 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1492 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1493 DSI_PORT_READ(ID), DSI_ID_VALUE); 1494 return -ENODEV; 1495 } 1496 1497 /* DSI1 has a broken AXI slave that doesn't respond to writes 1498 * from the ARM. It does handle writes from the DMA engine, 1499 * so set up a channel for talking to it. 1500 */ 1501 if (dsi->port == 1) { 1502 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1503 &dsi->reg_dma_paddr, 1504 GFP_KERNEL); 1505 if (!dsi->reg_dma_mem) { 1506 DRM_ERROR("Failed to get DMA memory\n"); 1507 return -ENOMEM; 1508 } 1509 1510 dma_cap_zero(dma_mask); 1511 dma_cap_set(DMA_MEMCPY, dma_mask); 1512 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1513 if (IS_ERR(dsi->reg_dma_chan)) { 1514 ret = PTR_ERR(dsi->reg_dma_chan); 1515 if (ret != -EPROBE_DEFER) 1516 DRM_ERROR("Failed to get DMA channel: %d\n", 1517 ret); 1518 return ret; 1519 } 1520 1521 /* Get the physical address of the device's registers. The 1522 * struct resource for the regs gives us the bus address 1523 * instead. 1524 */ 1525 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1526 0, NULL, NULL)); 1527 } 1528 1529 init_completion(&dsi->xfer_completion); 1530 /* At startup enable error-reporting interrupts and nothing else. */ 1531 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1532 /* Clear any existing interrupt state. */ 1533 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1534 1535 if (dsi->reg_dma_mem) 1536 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1537 vc4_dsi_irq_defer_to_thread_handler, 1538 vc4_dsi_irq_handler, 1539 IRQF_ONESHOT, 1540 "vc4 dsi", dsi); 1541 else 1542 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1543 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1544 if (ret) { 1545 if (ret != -EPROBE_DEFER) 1546 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1547 return ret; 1548 } 1549 1550 dsi->escape_clock = devm_clk_get(dev, "escape"); 1551 if (IS_ERR(dsi->escape_clock)) { 1552 ret = PTR_ERR(dsi->escape_clock); 1553 if (ret != -EPROBE_DEFER) 1554 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1555 return ret; 1556 } 1557 1558 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1559 if (IS_ERR(dsi->pll_phy_clock)) { 1560 ret = PTR_ERR(dsi->pll_phy_clock); 1561 if (ret != -EPROBE_DEFER) 1562 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1563 return ret; 1564 } 1565 1566 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1567 if (IS_ERR(dsi->pixel_clock)) { 1568 ret = PTR_ERR(dsi->pixel_clock); 1569 if (ret != -EPROBE_DEFER) 1570 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1571 return ret; 1572 } 1573 1574 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1575 &panel, &dsi->bridge); 1576 if (ret) { 1577 /* If the bridge or panel pointed by dev->of_node is not 1578 * enabled, just return 0 here so that we don't prevent the DRM 1579 * dev from being registered. Of course that means the DSI 1580 * encoder won't be exposed, but that's not a problem since 1581 * nothing is connected to it. 1582 */ 1583 if (ret == -ENODEV) 1584 return 0; 1585 1586 return ret; 1587 } 1588 1589 if (panel) { 1590 dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel, 1591 DRM_MODE_CONNECTOR_DSI); 1592 if (IS_ERR(dsi->bridge)) 1593 return PTR_ERR(dsi->bridge); 1594 } 1595 1596 /* The esc clock rate is supposed to always be 100Mhz. */ 1597 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1598 if (ret) { 1599 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1600 return ret; 1601 } 1602 1603 ret = vc4_dsi_init_phy_clocks(dsi); 1604 if (ret) 1605 return ret; 1606 1607 if (dsi->port == 1) 1608 vc4->dsi1 = dsi; 1609 1610 drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI); 1611 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1612 1613 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0); 1614 if (ret) { 1615 dev_err(dev, "bridge attach failed: %d\n", ret); 1616 return ret; 1617 } 1618 /* Disable the atomic helper calls into the bridge. We 1619 * manually call the bridge pre_enable / enable / etc. calls 1620 * from our driver, since we need to sequence them within the 1621 * encoder's enable/disable paths. 1622 */ 1623 list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain); 1624 1625 if (dsi->port == 0) 1626 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset); 1627 else 1628 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset); 1629 1630 pm_runtime_enable(dev); 1631 1632 return 0; 1633 } 1634 1635 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1636 void *data) 1637 { 1638 struct drm_device *drm = dev_get_drvdata(master); 1639 struct vc4_dev *vc4 = to_vc4_dev(drm); 1640 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1641 1642 if (dsi->bridge) 1643 pm_runtime_disable(dev); 1644 1645 /* 1646 * Restore the bridge_chain so the bridge detach procedure can happen 1647 * normally. 1648 */ 1649 list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain); 1650 drm_encoder_cleanup(dsi->encoder); 1651 1652 if (dsi->port == 1) 1653 vc4->dsi1 = NULL; 1654 } 1655 1656 static const struct component_ops vc4_dsi_ops = { 1657 .bind = vc4_dsi_bind, 1658 .unbind = vc4_dsi_unbind, 1659 }; 1660 1661 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1662 { 1663 struct device *dev = &pdev->dev; 1664 struct vc4_dsi *dsi; 1665 int ret; 1666 1667 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1668 if (!dsi) 1669 return -ENOMEM; 1670 dev_set_drvdata(dev, dsi); 1671 1672 dsi->pdev = pdev; 1673 1674 /* Note, the initialization sequence for DSI and panels is 1675 * tricky. The component bind above won't get past its 1676 * -EPROBE_DEFER until the panel/bridge probes. The 1677 * panel/bridge will return -EPROBE_DEFER until it has a 1678 * mipi_dsi_host to register its device to. So, we register 1679 * the host during pdev probe time, so vc4 as a whole can then 1680 * -EPROBE_DEFER its component bind process until the panel 1681 * successfully attaches. 1682 */ 1683 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1684 dsi->dsi_host.dev = dev; 1685 mipi_dsi_host_register(&dsi->dsi_host); 1686 1687 ret = component_add(&pdev->dev, &vc4_dsi_ops); 1688 if (ret) { 1689 mipi_dsi_host_unregister(&dsi->dsi_host); 1690 return ret; 1691 } 1692 1693 return 0; 1694 } 1695 1696 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1697 { 1698 struct device *dev = &pdev->dev; 1699 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1700 1701 component_del(&pdev->dev, &vc4_dsi_ops); 1702 mipi_dsi_host_unregister(&dsi->dsi_host); 1703 1704 return 0; 1705 } 1706 1707 struct platform_driver vc4_dsi_driver = { 1708 .probe = vc4_dsi_dev_probe, 1709 .remove = vc4_dsi_dev_remove, 1710 .driver = { 1711 .name = "vc4_dsi", 1712 .of_match_table = vc4_dsi_dt_match, 1713 }, 1714 }; 1715