xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision 67bf4745)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 DSI0/DSI1 module
8  *
9  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
10  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11  * controller.
12  *
13  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14  * while the compute module brings both DSI0 and DSI1 out.
15  *
16  * This driver has been tested for DSI1 video-mode display only
17  * currently, with most of the information necessary for DSI0
18  * hopefully present.
19  */
20 
21 #include <drm/drm_atomic_helper.h>
22 #include <drm/drm_edid.h>
23 #include <drm/drm_mipi_dsi.h>
24 #include <drm/drm_of.h>
25 #include <drm/drm_panel.h>
26 #include <drm/drm_probe_helper.h>
27 #include <linux/clk.h>
28 #include <linux/clk-provider.h>
29 #include <linux/completion.h>
30 #include <linux/component.h>
31 #include <linux/dmaengine.h>
32 #include <linux/i2c.h>
33 #include <linux/io.h>
34 #include <linux/of_address.h>
35 #include <linux/of_platform.h>
36 #include <linux/pm_runtime.h>
37 #include "vc4_drv.h"
38 #include "vc4_regs.h"
39 
40 #define DSI_CMD_FIFO_DEPTH  16
41 #define DSI_PIX_FIFO_DEPTH 256
42 #define DSI_PIX_FIFO_WIDTH   4
43 
44 #define DSI0_CTRL		0x00
45 
46 /* Command packet control. */
47 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
48 #define DSI1_TXPKT1C		0x04
49 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
50 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
51 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
52 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
53 
54 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
55 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
56 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
57 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
58 /* Primary display where cmdfifo provides part of the payload and
59  * pixelvalve the rest.
60  */
61 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
62 /* Secondary display where cmdfifo provides part of the payload and
63  * pixfifo the rest.
64  */
65 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
66 
67 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
68 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
69 
70 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
71 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
72 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
73 # define DSI_TXPKT1C_CMD_CTRL_TX	0
74 /* Command with BTA for either ack or read data. */
75 # define DSI_TXPKT1C_CMD_CTRL_RX	1
76 /* Trigger according to TRIG_CMD */
77 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
78 /* BTA alone for getting error status after a command, or a TE trigger
79  * without a previous command.
80  */
81 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
82 
83 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
84 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
85 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
86 # define DSI_TXPKT1C_CMD_EN		BIT(0)
87 
88 /* Command packet header. */
89 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
90 #define DSI1_TXPKT1H		0x08
91 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
92 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
93 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
94 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
95 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
96 # define DSI_TXPKT1H_BC_DT_SHIFT	0
97 
98 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
99 #define DSI1_RXPKT1H		0x14
100 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
101 # define DSI_RXPKT1H_DET_ERR		BIT(30)
102 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
103 # define DSI_RXPKT1H_COR_ERR		BIT(28)
104 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
105 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
106 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
107 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
108 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
109 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
110 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
111 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
112 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
113 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
114 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
115 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
116 
117 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
118 #define DSI1_RXPKT2H		0x18
119 # define DSI_RXPKT1H_DET_ERR		BIT(30)
120 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
121 # define DSI_RXPKT1H_COR_ERR		BIT(28)
122 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
123 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
124 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
125 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
126 # define DSI_RXPKT1H_DT_SHIFT		0
127 
128 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
129 #define DSI1_TXPKT_CMD_FIFO	0x1c
130 
131 #define DSI0_DISP0_CTRL		0x18
132 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
133 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
134 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
135 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
136 # define DSI_DISP0_LP_STOP_DISABLE	0
137 # define DSI_DISP0_LP_STOP_PERLINE	1
138 # define DSI_DISP0_LP_STOP_PERFRAME	2
139 
140 /* Transmit RGB pixels and null packets only during HACTIVE, instead
141  * of going to LP-STOP.
142  */
143 # define DSI_DISP_HACTIVE_NULL		BIT(10)
144 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
145 # define DSI_DISP_VBLP_CTRL		BIT(9)
146 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
147 # define DSI_DISP_HFP_CTRL		BIT(8)
148 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
149 # define DSI_DISP_HBP_CTRL		BIT(7)
150 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
151 # define DSI_DISP0_CHANNEL_SHIFT	5
152 /* Enables end events for HSYNC/VSYNC, not just start events. */
153 # define DSI_DISP0_ST_END		BIT(4)
154 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
155 # define DSI_DISP0_PFORMAT_SHIFT	2
156 # define DSI_PFORMAT_RGB565		0
157 # define DSI_PFORMAT_RGB666_PACKED	1
158 # define DSI_PFORMAT_RGB666		2
159 # define DSI_PFORMAT_RGB888		3
160 /* Default is VIDEO mode. */
161 # define DSI_DISP0_COMMAND_MODE		BIT(1)
162 # define DSI_DISP0_ENABLE		BIT(0)
163 
164 #define DSI0_DISP1_CTRL		0x1c
165 #define DSI1_DISP1_CTRL		0x2c
166 /* Format of the data written to TXPKT_PIX_FIFO. */
167 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
168 # define DSI_DISP1_PFORMAT_SHIFT	1
169 # define DSI_DISP1_PFORMAT_16BIT	0
170 # define DSI_DISP1_PFORMAT_24BIT	1
171 # define DSI_DISP1_PFORMAT_32BIT_LE	2
172 # define DSI_DISP1_PFORMAT_32BIT_BE	3
173 
174 /* DISP1 is always command mode. */
175 # define DSI_DISP1_ENABLE		BIT(0)
176 
177 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
178 
179 #define DSI0_INT_STAT		0x24
180 #define DSI0_INT_EN		0x28
181 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
182 # define DSI1_INT_PHY_D3_STOP		BIT(29)
183 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
184 # define DSI1_INT_PHY_D2_STOP		BIT(27)
185 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
186 # define DSI1_INT_PHY_D1_STOP		BIT(25)
187 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
188 # define DSI1_INT_PHY_D0_STOP		BIT(23)
189 # define DSI1_INT_FIFO_ERR		BIT(22)
190 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
191 # define DSI1_INT_PHY_RXLPDT		BIT(20)
192 # define DSI1_INT_PHY_RXTRIG		BIT(19)
193 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
194 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
195 
196 /* Signaled when the clock lane enters the given state. */
197 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
198 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
199 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
200 
201 /* Signaled on timeouts */
202 # define DSI1_INT_PR_TO			BIT(13)
203 # define DSI1_INT_TA_TO			BIT(12)
204 # define DSI1_INT_LPRX_TO		BIT(11)
205 # define DSI1_INT_HSTX_TO		BIT(10)
206 
207 /* Contention on a line when trying to drive the line low */
208 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
209 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
210 
211 /* Control error: incorrect line state sequence on data lane 0. */
212 # define DSI1_INT_ERR_CONTROL		BIT(7)
213 /* LPDT synchronization error (bits received not a multiple of 8. */
214 
215 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
216 /* Signaled after receiving an error packet from the display in
217  * response to a read.
218  */
219 # define DSI1_INT_RXPKT2		BIT(5)
220 /* Signaled after receiving a packet.  The header and optional short
221  * response will be in RXPKT1H, and a long response will be in the
222  * RXPKT_FIFO.
223  */
224 # define DSI1_INT_RXPKT1		BIT(4)
225 # define DSI1_INT_TXPKT2_DONE		BIT(3)
226 # define DSI1_INT_TXPKT2_END		BIT(2)
227 /* Signaled after all repeats of TXPKT1 are transferred. */
228 # define DSI1_INT_TXPKT1_DONE		BIT(1)
229 /* Signaled after each TXPKT1 repeat is scheduled. */
230 # define DSI1_INT_TXPKT1_END		BIT(0)
231 
232 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
233 					 DSI1_INT_ERR_CONTROL |	 \
234 					 DSI1_INT_ERR_CONT_LP0 | \
235 					 DSI1_INT_ERR_CONT_LP1 | \
236 					 DSI1_INT_HSTX_TO |	 \
237 					 DSI1_INT_LPRX_TO |	 \
238 					 DSI1_INT_TA_TO |	 \
239 					 DSI1_INT_PR_TO)
240 
241 #define DSI0_STAT		0x2c
242 #define DSI0_HSTX_TO_CNT	0x30
243 #define DSI0_LPRX_TO_CNT	0x34
244 #define DSI0_TA_TO_CNT		0x38
245 #define DSI0_PR_TO_CNT		0x3c
246 #define DSI0_PHYC		0x40
247 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
248 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
249 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
250 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
251 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
252 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
253 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
254 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
255 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
256 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
257 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
258 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
259 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
260 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
261 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
262 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
263 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
264 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
265 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
266 
267 #define DSI0_HS_CLT0		0x44
268 #define DSI0_HS_CLT1		0x48
269 #define DSI0_HS_CLT2		0x4c
270 #define DSI0_HS_DLT3		0x50
271 #define DSI0_HS_DLT4		0x54
272 #define DSI0_HS_DLT5		0x58
273 #define DSI0_HS_DLT6		0x5c
274 #define DSI0_HS_DLT7		0x60
275 
276 #define DSI0_PHY_AFEC0		0x64
277 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
278 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
279 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
280 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
281 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
282 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
283 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
284 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
285 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
286 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
287 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
288 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
289 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
290 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
291 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
292 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
293 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
294 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
295 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
296 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
297 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
298 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
299 # define DSI1_PHY_AFEC0_RESET			BIT(13)
300 # define DSI1_PHY_AFEC0_PD			BIT(12)
301 # define DSI0_PHY_AFEC0_RESET			BIT(11)
302 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
303 # define DSI0_PHY_AFEC0_PD			BIT(10)
304 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
305 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
306 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
307 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
308 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
309 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
310 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
311 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
312 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
313 
314 #define DSI0_PHY_AFEC1		0x68
315 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
316 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
317 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
318 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
319 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
320 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
321 
322 #define DSI0_TST_SEL		0x6c
323 #define DSI0_TST_MON		0x70
324 #define DSI0_ID			0x74
325 # define DSI_ID_VALUE		0x00647369
326 
327 #define DSI1_CTRL		0x00
328 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
329 # define DSI_CTRL_HS_CLKC_SHIFT		14
330 # define DSI_CTRL_HS_CLKC_BYTE		0
331 # define DSI_CTRL_HS_CLKC_DDR2		1
332 # define DSI_CTRL_HS_CLKC_DDR		2
333 
334 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
335 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
336 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
337 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
338 # define DSI_CTRL_CAL_BYTE		BIT(9)
339 # define DSI_CTRL_INV_BYTE		BIT(8)
340 # define DSI_CTRL_CLR_LDF		BIT(7)
341 # define DSI0_CTRL_CLR_PBCF		BIT(6)
342 # define DSI1_CTRL_CLR_RXF		BIT(6)
343 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
344 # define DSI1_CTRL_CLR_PDF		BIT(5)
345 # define DSI0_CTRL_CLR_PDF		BIT(4)
346 # define DSI1_CTRL_CLR_CDF		BIT(4)
347 # define DSI0_CTRL_CLR_CDF		BIT(3)
348 # define DSI0_CTRL_CTRL2		BIT(2)
349 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
350 # define DSI0_CTRL_CTRL1		BIT(1)
351 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
352 # define DSI0_CTRL_CTRL0		BIT(0)
353 # define DSI1_CTRL_EN			BIT(0)
354 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
355 					 DSI0_CTRL_CLR_PBCF | \
356 					 DSI0_CTRL_CLR_CPBCF |	\
357 					 DSI0_CTRL_CLR_PDF | \
358 					 DSI0_CTRL_CLR_CDF)
359 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
360 					 DSI1_CTRL_CLR_RXF | \
361 					 DSI1_CTRL_CLR_PDF | \
362 					 DSI1_CTRL_CLR_CDF)
363 
364 #define DSI1_TXPKT2C		0x0c
365 #define DSI1_TXPKT2H		0x10
366 #define DSI1_TXPKT_PIX_FIFO	0x20
367 #define DSI1_RXPKT_FIFO		0x24
368 #define DSI1_DISP0_CTRL		0x28
369 #define DSI1_INT_STAT		0x30
370 #define DSI1_INT_EN		0x34
371 /* State reporting bits.  These mostly behave like INT_STAT, where
372  * writing a 1 clears the bit.
373  */
374 #define DSI1_STAT		0x38
375 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
376 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
377 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
378 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
379 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
380 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
381 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
382 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
383 # define DSI1_STAT_FIFO_ERR		BIT(23)
384 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
385 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
386 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
387 /* Set when in forward direction */
388 # define DSI1_STAT_PHY_DIR		BIT(19)
389 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
390 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
391 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
392 # define DSI1_STAT_PR_TO		BIT(15)
393 # define DSI1_STAT_TA_TO		BIT(14)
394 # define DSI1_STAT_LPRX_TO		BIT(13)
395 # define DSI1_STAT_HSTX_TO		BIT(12)
396 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
397 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
398 # define DSI1_STAT_ERR_CONTROL		BIT(9)
399 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
400 # define DSI1_STAT_RXPKT2		BIT(7)
401 # define DSI1_STAT_RXPKT1		BIT(6)
402 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
403 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
404 # define DSI1_STAT_TXPKT2_END		BIT(3)
405 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
406 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
407 # define DSI1_STAT_TXPKT1_END		BIT(0)
408 
409 #define DSI1_HSTX_TO_CNT	0x3c
410 #define DSI1_LPRX_TO_CNT	0x40
411 #define DSI1_TA_TO_CNT		0x44
412 #define DSI1_PR_TO_CNT		0x48
413 #define DSI1_PHYC		0x4c
414 
415 #define DSI1_HS_CLT0		0x50
416 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
417 # define DSI_HS_CLT0_CZERO_SHIFT	18
418 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
419 # define DSI_HS_CLT0_CPRE_SHIFT		9
420 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
421 # define DSI_HS_CLT0_CPREP_SHIFT	0
422 
423 #define DSI1_HS_CLT1		0x54
424 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
425 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
426 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
427 # define DSI_HS_CLT1_CPOST_SHIFT	0
428 
429 #define DSI1_HS_CLT2		0x58
430 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
431 # define DSI_HS_CLT2_WUP_SHIFT		0
432 
433 #define DSI1_HS_DLT3		0x5c
434 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
435 # define DSI_HS_DLT3_EXIT_SHIFT		18
436 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
437 # define DSI_HS_DLT3_ZERO_SHIFT		9
438 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
439 # define DSI_HS_DLT3_PRE_SHIFT		0
440 
441 #define DSI1_HS_DLT4		0x60
442 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
443 # define DSI_HS_DLT4_ANLAT_SHIFT	18
444 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
445 # define DSI_HS_DLT4_TRAIL_SHIFT	9
446 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
447 # define DSI_HS_DLT4_LPX_SHIFT		0
448 
449 #define DSI1_HS_DLT5		0x64
450 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
451 # define DSI_HS_DLT5_INIT_SHIFT		0
452 
453 #define DSI1_HS_DLT6		0x68
454 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
455 # define DSI_HS_DLT6_TA_GET_SHIFT	24
456 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
457 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
458 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
459 # define DSI_HS_DLT6_TA_GO_SHIFT	8
460 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
461 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
462 
463 #define DSI1_HS_DLT7		0x6c
464 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
465 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
466 
467 #define DSI1_PHY_AFEC0		0x70
468 
469 #define DSI1_PHY_AFEC1		0x74
470 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
471 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
472 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
473 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
474 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
478 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
479 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
480 
481 #define DSI1_TST_SEL		0x78
482 #define DSI1_TST_MON		0x7c
483 #define DSI1_PHY_TST1		0x80
484 #define DSI1_PHY_TST2		0x84
485 #define DSI1_PHY_FIFO_STAT	0x88
486 /* Actually, all registers in the range that aren't otherwise claimed
487  * will return the ID.
488  */
489 #define DSI1_ID			0x8c
490 
491 /* General DSI hardware state. */
492 struct vc4_dsi {
493 	struct platform_device *pdev;
494 
495 	struct mipi_dsi_host dsi_host;
496 	struct drm_encoder *encoder;
497 	struct drm_bridge *bridge;
498 
499 	void __iomem *regs;
500 
501 	struct dma_chan *reg_dma_chan;
502 	dma_addr_t reg_dma_paddr;
503 	u32 *reg_dma_mem;
504 	dma_addr_t reg_paddr;
505 
506 	/* Whether we're on bcm2835's DSI0 or DSI1. */
507 	int port;
508 
509 	/* DSI channel for the panel we're connected to. */
510 	u32 channel;
511 	u32 lanes;
512 	u32 format;
513 	u32 divider;
514 	u32 mode_flags;
515 
516 	/* Input clock from CPRMAN to the digital PHY, for the DSI
517 	 * escape clock.
518 	 */
519 	struct clk *escape_clock;
520 
521 	/* Input clock to the analog PHY, used to generate the DSI bit
522 	 * clock.
523 	 */
524 	struct clk *pll_phy_clock;
525 
526 	/* HS Clocks generated within the DSI analog PHY. */
527 	struct clk_fixed_factor phy_clocks[3];
528 
529 	struct clk_hw_onecell_data *clk_onecell;
530 
531 	/* Pixel clock output to the pixelvalve, generated from the HS
532 	 * clock.
533 	 */
534 	struct clk *pixel_clock;
535 
536 	struct completion xfer_completion;
537 	int xfer_result;
538 
539 	struct debugfs_regset32 regset;
540 };
541 
542 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
543 
544 static inline void
545 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
546 {
547 	struct dma_chan *chan = dsi->reg_dma_chan;
548 	struct dma_async_tx_descriptor *tx;
549 	dma_cookie_t cookie;
550 	int ret;
551 
552 	/* DSI0 should be able to write normally. */
553 	if (!chan) {
554 		writel(val, dsi->regs + offset);
555 		return;
556 	}
557 
558 	*dsi->reg_dma_mem = val;
559 
560 	tx = chan->device->device_prep_dma_memcpy(chan,
561 						  dsi->reg_paddr + offset,
562 						  dsi->reg_dma_paddr,
563 						  4, 0);
564 	if (!tx) {
565 		DRM_ERROR("Failed to set up DMA register write\n");
566 		return;
567 	}
568 
569 	cookie = tx->tx_submit(tx);
570 	ret = dma_submit_error(cookie);
571 	if (ret) {
572 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
573 		return;
574 	}
575 	ret = dma_sync_wait(chan, cookie);
576 	if (ret)
577 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
578 }
579 
580 #define DSI_READ(offset) readl(dsi->regs + (offset))
581 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
582 #define DSI_PORT_READ(offset) \
583 	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
584 #define DSI_PORT_WRITE(offset, val) \
585 	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
586 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
587 
588 /* VC4 DSI encoder KMS struct */
589 struct vc4_dsi_encoder {
590 	struct vc4_encoder base;
591 	struct vc4_dsi *dsi;
592 };
593 
594 static inline struct vc4_dsi_encoder *
595 to_vc4_dsi_encoder(struct drm_encoder *encoder)
596 {
597 	return container_of(encoder, struct vc4_dsi_encoder, base.base);
598 }
599 
600 static const struct debugfs_reg32 dsi0_regs[] = {
601 	VC4_REG32(DSI0_CTRL),
602 	VC4_REG32(DSI0_STAT),
603 	VC4_REG32(DSI0_HSTX_TO_CNT),
604 	VC4_REG32(DSI0_LPRX_TO_CNT),
605 	VC4_REG32(DSI0_TA_TO_CNT),
606 	VC4_REG32(DSI0_PR_TO_CNT),
607 	VC4_REG32(DSI0_DISP0_CTRL),
608 	VC4_REG32(DSI0_DISP1_CTRL),
609 	VC4_REG32(DSI0_INT_STAT),
610 	VC4_REG32(DSI0_INT_EN),
611 	VC4_REG32(DSI0_PHYC),
612 	VC4_REG32(DSI0_HS_CLT0),
613 	VC4_REG32(DSI0_HS_CLT1),
614 	VC4_REG32(DSI0_HS_CLT2),
615 	VC4_REG32(DSI0_HS_DLT3),
616 	VC4_REG32(DSI0_HS_DLT4),
617 	VC4_REG32(DSI0_HS_DLT5),
618 	VC4_REG32(DSI0_HS_DLT6),
619 	VC4_REG32(DSI0_HS_DLT7),
620 	VC4_REG32(DSI0_PHY_AFEC0),
621 	VC4_REG32(DSI0_PHY_AFEC1),
622 	VC4_REG32(DSI0_ID),
623 };
624 
625 static const struct debugfs_reg32 dsi1_regs[] = {
626 	VC4_REG32(DSI1_CTRL),
627 	VC4_REG32(DSI1_STAT),
628 	VC4_REG32(DSI1_HSTX_TO_CNT),
629 	VC4_REG32(DSI1_LPRX_TO_CNT),
630 	VC4_REG32(DSI1_TA_TO_CNT),
631 	VC4_REG32(DSI1_PR_TO_CNT),
632 	VC4_REG32(DSI1_DISP0_CTRL),
633 	VC4_REG32(DSI1_DISP1_CTRL),
634 	VC4_REG32(DSI1_INT_STAT),
635 	VC4_REG32(DSI1_INT_EN),
636 	VC4_REG32(DSI1_PHYC),
637 	VC4_REG32(DSI1_HS_CLT0),
638 	VC4_REG32(DSI1_HS_CLT1),
639 	VC4_REG32(DSI1_HS_CLT2),
640 	VC4_REG32(DSI1_HS_DLT3),
641 	VC4_REG32(DSI1_HS_DLT4),
642 	VC4_REG32(DSI1_HS_DLT5),
643 	VC4_REG32(DSI1_HS_DLT6),
644 	VC4_REG32(DSI1_HS_DLT7),
645 	VC4_REG32(DSI1_PHY_AFEC0),
646 	VC4_REG32(DSI1_PHY_AFEC1),
647 	VC4_REG32(DSI1_ID),
648 };
649 
650 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
651 {
652 	drm_encoder_cleanup(encoder);
653 }
654 
655 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
656 	.destroy = vc4_dsi_encoder_destroy,
657 };
658 
659 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
660 {
661 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
662 
663 	if (latch)
664 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
665 	else
666 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
667 
668 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
669 }
670 
671 /* Enters or exits Ultra Low Power State. */
672 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
673 {
674 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
675 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
676 			 DSI_PHYC_DLANE0_ULPS |
677 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
678 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
679 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
680 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
681 			 DSI1_STAT_PHY_D0_ULPS |
682 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
683 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
684 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
685 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
686 			 DSI1_STAT_PHY_D0_STOP |
687 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
688 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
689 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
690 	int ret;
691 	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
692 				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
693 
694 	if (ulps == ulps_currently_enabled)
695 		return;
696 
697 	DSI_PORT_WRITE(STAT, stat_ulps);
698 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
699 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
700 	if (ret) {
701 		dev_warn(&dsi->pdev->dev,
702 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
703 			 DSI_PORT_READ(STAT));
704 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
705 		vc4_dsi_latch_ulps(dsi, false);
706 		return;
707 	}
708 
709 	/* The DSI module can't be disabled while the module is
710 	 * generating ULPS state.  So, to be able to disable the
711 	 * module, we have the AFE latch the ULPS state and continue
712 	 * on to having the module enter STOP.
713 	 */
714 	vc4_dsi_latch_ulps(dsi, ulps);
715 
716 	DSI_PORT_WRITE(STAT, stat_stop);
717 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
718 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
719 	if (ret) {
720 		dev_warn(&dsi->pdev->dev,
721 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
722 			 DSI_PORT_READ(STAT));
723 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
724 		return;
725 	}
726 }
727 
728 static u32
729 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
730 {
731 	/* The HS timings have to be rounded up to a multiple of 8
732 	 * because we're using the byte clock.
733 	 */
734 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
735 }
736 
737 /* ESC always runs at 100Mhz. */
738 #define ESC_TIME_NS 10
739 
740 static u32
741 dsi_esc_timing(u32 ns)
742 {
743 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
744 }
745 
746 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
747 {
748 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
749 	struct vc4_dsi *dsi = vc4_encoder->dsi;
750 	struct device *dev = &dsi->pdev->dev;
751 
752 	drm_bridge_disable(dsi->bridge);
753 	vc4_dsi_ulps(dsi, true);
754 	drm_bridge_post_disable(dsi->bridge);
755 
756 	clk_disable_unprepare(dsi->pll_phy_clock);
757 	clk_disable_unprepare(dsi->escape_clock);
758 	clk_disable_unprepare(dsi->pixel_clock);
759 
760 	pm_runtime_put(dev);
761 }
762 
763 /* Extends the mode's blank intervals to handle BCM2835's integer-only
764  * DSI PLL divider.
765  *
766  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
767  * driver since most peripherals are hanging off of the PLLD_PER
768  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
769  * the pixel clock), only has an integer divider off of DSI.
770  *
771  * To get our panel mode to refresh at the expected 60Hz, we need to
772  * extend the horizontal blank time.  This means we drive a
773  * higher-than-expected clock rate to the panel, but that's what the
774  * firmware does too.
775  */
776 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
777 				       const struct drm_display_mode *mode,
778 				       struct drm_display_mode *adjusted_mode)
779 {
780 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
781 	struct vc4_dsi *dsi = vc4_encoder->dsi;
782 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
783 	unsigned long parent_rate = clk_get_rate(phy_parent);
784 	unsigned long pixel_clock_hz = mode->clock * 1000;
785 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
786 	int divider;
787 
788 	/* Find what divider gets us a faster clock than the requested
789 	 * pixel clock.
790 	 */
791 	for (divider = 1; divider < 8; divider++) {
792 		if (parent_rate / divider < pll_clock) {
793 			divider--;
794 			break;
795 		}
796 	}
797 
798 	/* Now that we've picked a PLL divider, calculate back to its
799 	 * pixel clock.
800 	 */
801 	pll_clock = parent_rate / divider;
802 	pixel_clock_hz = pll_clock / dsi->divider;
803 
804 	adjusted_mode->clock = pixel_clock_hz / 1000;
805 
806 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
807 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
808 				mode->clock;
809 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
810 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
811 
812 	return true;
813 }
814 
815 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
816 {
817 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
818 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
819 	struct vc4_dsi *dsi = vc4_encoder->dsi;
820 	struct device *dev = &dsi->pdev->dev;
821 	bool debug_dump_regs = false;
822 	unsigned long hs_clock;
823 	u32 ui_ns;
824 	/* Minimum LP state duration in escape clock cycles. */
825 	u32 lpx = dsi_esc_timing(60);
826 	unsigned long pixel_clock_hz = mode->clock * 1000;
827 	unsigned long dsip_clock;
828 	unsigned long phy_clock;
829 	int ret;
830 
831 	ret = pm_runtime_get_sync(dev);
832 	if (ret) {
833 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
834 		return;
835 	}
836 
837 	if (debug_dump_regs) {
838 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
839 		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
840 		drm_print_regset32(&p, &dsi->regset);
841 	}
842 
843 	/* Round up the clk_set_rate() request slightly, since
844 	 * PLLD_DSI1 is an integer divider and its rate selection will
845 	 * never round up.
846 	 */
847 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
848 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
849 	if (ret) {
850 		dev_err(&dsi->pdev->dev,
851 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
852 	}
853 
854 	/* Reset the DSI and all its fifos. */
855 	DSI_PORT_WRITE(CTRL,
856 		       DSI_CTRL_SOFT_RESET_CFG |
857 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
858 
859 	DSI_PORT_WRITE(CTRL,
860 		       DSI_CTRL_HSDT_EOT_DISABLE |
861 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
862 
863 	/* Clear all stat bits so we see what has happened during enable. */
864 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
865 
866 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
867 	if (dsi->port == 0) {
868 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
869 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
870 
871 		if (dsi->lanes < 2)
872 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
873 
874 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
875 			afec0 |= DSI0_PHY_AFEC0_RESET;
876 
877 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
878 
879 		DSI_PORT_WRITE(PHY_AFEC1,
880 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
881 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
882 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
883 	} else {
884 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
885 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
886 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
887 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
888 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
889 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
890 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
891 
892 		if (dsi->lanes < 4)
893 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
894 		if (dsi->lanes < 3)
895 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
896 		if (dsi->lanes < 2)
897 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
898 
899 		afec0 |= DSI1_PHY_AFEC0_RESET;
900 
901 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
902 
903 		DSI_PORT_WRITE(PHY_AFEC1, 0);
904 
905 		/* AFEC reset hold time */
906 		mdelay(1);
907 	}
908 
909 	ret = clk_prepare_enable(dsi->escape_clock);
910 	if (ret) {
911 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
912 		return;
913 	}
914 
915 	ret = clk_prepare_enable(dsi->pll_phy_clock);
916 	if (ret) {
917 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
918 		return;
919 	}
920 
921 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
922 
923 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
924 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
925 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
926 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
927 	 * and HS_CLKC is fed into the PV to divide down to the actual
928 	 * pixel clock for pushing pixels into DSI.
929 	 */
930 	dsip_clock = phy_clock / 8;
931 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
932 	if (ret) {
933 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
934 			dsip_clock, ret);
935 	}
936 
937 	ret = clk_prepare_enable(dsi->pixel_clock);
938 	if (ret) {
939 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
940 		return;
941 	}
942 
943 	/* How many ns one DSI unit interval is.  Note that the clock
944 	 * is DDR, so there's an extra divide by 2.
945 	 */
946 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
947 
948 	DSI_PORT_WRITE(HS_CLT0,
949 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
950 				     DSI_HS_CLT0_CZERO) |
951 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
952 				     DSI_HS_CLT0_CPRE) |
953 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
954 				     DSI_HS_CLT0_CPREP));
955 
956 	DSI_PORT_WRITE(HS_CLT1,
957 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
958 				     DSI_HS_CLT1_CTRAIL) |
959 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
960 				     DSI_HS_CLT1_CPOST));
961 
962 	DSI_PORT_WRITE(HS_CLT2,
963 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
964 				     DSI_HS_CLT2_WUP));
965 
966 	DSI_PORT_WRITE(HS_DLT3,
967 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
968 				     DSI_HS_DLT3_EXIT) |
969 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
970 				     DSI_HS_DLT3_ZERO) |
971 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
972 				     DSI_HS_DLT3_PRE));
973 
974 	DSI_PORT_WRITE(HS_DLT4,
975 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
976 				     DSI_HS_DLT4_LPX) |
977 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
978 					 dsi_hs_timing(ui_ns, 60, 4)),
979 				     DSI_HS_DLT4_TRAIL) |
980 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
981 
982 	/* T_INIT is how long STOP is driven after power-up to
983 	 * indicate to the slave (also coming out of power-up) that
984 	 * master init is complete, and should be greater than the
985 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
986 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
987 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
988 	 * greater minimums.  The vc4 firmware uses an extremely
989 	 * conservative 5ms, and we maintain that here.
990 	 */
991 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
992 							    5 * 1000 * 1000, 0),
993 					      DSI_HS_DLT5_INIT));
994 
995 	DSI_PORT_WRITE(HS_DLT6,
996 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
997 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
998 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
999 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1000 
1001 	DSI_PORT_WRITE(HS_DLT7,
1002 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1003 				     DSI_HS_DLT7_LP_WUP));
1004 
1005 	DSI_PORT_WRITE(PHYC,
1006 		       DSI_PHYC_DLANE0_ENABLE |
1007 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1008 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1009 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1010 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1011 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1012 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1013 		       (dsi->port == 0 ?
1014 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1015 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1016 
1017 	DSI_PORT_WRITE(CTRL,
1018 		       DSI_PORT_READ(CTRL) |
1019 		       DSI_CTRL_CAL_BYTE);
1020 
1021 	/* HS timeout in HS clock cycles: disabled. */
1022 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1023 	/* LP receive timeout in HS clocks. */
1024 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1025 	/* Bus turnaround timeout */
1026 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1027 	/* Display reset sequence timeout */
1028 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1029 
1030 	/* Set up DISP1 for transferring long command payloads through
1031 	 * the pixfifo.
1032 	 */
1033 	DSI_PORT_WRITE(DISP1_CTRL,
1034 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1035 				     DSI_DISP1_PFORMAT) |
1036 		       DSI_DISP1_ENABLE);
1037 
1038 	/* Ungate the block. */
1039 	if (dsi->port == 0)
1040 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1041 	else
1042 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1043 
1044 	/* Bring AFE out of reset. */
1045 	if (dsi->port == 0) {
1046 	} else {
1047 		DSI_PORT_WRITE(PHY_AFEC0,
1048 			       DSI_PORT_READ(PHY_AFEC0) &
1049 			       ~DSI1_PHY_AFEC0_RESET);
1050 	}
1051 
1052 	vc4_dsi_ulps(dsi, false);
1053 
1054 	drm_bridge_pre_enable(dsi->bridge);
1055 
1056 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1057 		DSI_PORT_WRITE(DISP0_CTRL,
1058 			       VC4_SET_FIELD(dsi->divider,
1059 					     DSI_DISP0_PIX_CLK_DIV) |
1060 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1061 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1062 					     DSI_DISP0_LP_STOP_CTRL) |
1063 			       DSI_DISP0_ST_END |
1064 			       DSI_DISP0_ENABLE);
1065 	} else {
1066 		DSI_PORT_WRITE(DISP0_CTRL,
1067 			       DSI_DISP0_COMMAND_MODE |
1068 			       DSI_DISP0_ENABLE);
1069 	}
1070 
1071 	drm_bridge_enable(dsi->bridge);
1072 
1073 	if (debug_dump_regs) {
1074 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1075 		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1076 		drm_print_regset32(&p, &dsi->regset);
1077 	}
1078 }
1079 
1080 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1081 				     const struct mipi_dsi_msg *msg)
1082 {
1083 	struct vc4_dsi *dsi = host_to_dsi(host);
1084 	struct mipi_dsi_packet packet;
1085 	u32 pkth = 0, pktc = 0;
1086 	int i, ret;
1087 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1088 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1089 
1090 	mipi_dsi_create_packet(&packet, msg);
1091 
1092 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1093 	pkth |= VC4_SET_FIELD(packet.header[1] |
1094 			      (packet.header[2] << 8),
1095 			      DSI_TXPKT1H_BC_PARAM);
1096 	if (is_long) {
1097 		/* Divide data across the various FIFOs we have available.
1098 		 * The command FIFO takes byte-oriented data, but is of
1099 		 * limited size. The pixel FIFO (never actually used for
1100 		 * pixel data in reality) is word oriented, and substantially
1101 		 * larger. So, we use the pixel FIFO for most of the data,
1102 		 * sending the residual bytes in the command FIFO at the start.
1103 		 *
1104 		 * With this arrangement, the command FIFO will never get full.
1105 		 */
1106 		if (packet.payload_length <= 16) {
1107 			cmd_fifo_len = packet.payload_length;
1108 			pix_fifo_len = 0;
1109 		} else {
1110 			cmd_fifo_len = (packet.payload_length %
1111 					DSI_PIX_FIFO_WIDTH);
1112 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1113 					DSI_PIX_FIFO_WIDTH);
1114 		}
1115 
1116 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1117 
1118 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1119 	}
1120 
1121 	if (msg->rx_len) {
1122 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1123 				      DSI_TXPKT1C_CMD_CTRL);
1124 	} else {
1125 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1126 				      DSI_TXPKT1C_CMD_CTRL);
1127 	}
1128 
1129 	for (i = 0; i < cmd_fifo_len; i++)
1130 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1131 	for (i = 0; i < pix_fifo_len; i++) {
1132 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1133 
1134 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1135 			       pix[0] |
1136 			       pix[1] << 8 |
1137 			       pix[2] << 16 |
1138 			       pix[3] << 24);
1139 	}
1140 
1141 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1142 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1143 	if (is_long)
1144 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1145 
1146 	/* Send one copy of the packet.  Larger repeats are used for pixel
1147 	 * data in command mode.
1148 	 */
1149 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1150 
1151 	pktc |= DSI_TXPKT1C_CMD_EN;
1152 	if (pix_fifo_len) {
1153 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1154 				      DSI_TXPKT1C_DISPLAY_NO);
1155 	} else {
1156 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1157 				      DSI_TXPKT1C_DISPLAY_NO);
1158 	}
1159 
1160 	/* Enable the appropriate interrupt for the transfer completion. */
1161 	dsi->xfer_result = 0;
1162 	reinit_completion(&dsi->xfer_completion);
1163 	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1164 	if (msg->rx_len) {
1165 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1166 					DSI1_INT_PHY_DIR_RTF));
1167 	} else {
1168 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1169 					DSI1_INT_TXPKT1_DONE));
1170 	}
1171 
1172 	/* Send the packet. */
1173 	DSI_PORT_WRITE(TXPKT1H, pkth);
1174 	DSI_PORT_WRITE(TXPKT1C, pktc);
1175 
1176 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1177 					 msecs_to_jiffies(1000))) {
1178 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1179 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1180 			DSI_PORT_READ(INT_STAT));
1181 		ret = -ETIMEDOUT;
1182 	} else {
1183 		ret = dsi->xfer_result;
1184 	}
1185 
1186 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1187 
1188 	if (ret)
1189 		goto reset_fifo_and_return;
1190 
1191 	if (ret == 0 && msg->rx_len) {
1192 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1193 		u8 *msg_rx = msg->rx_buf;
1194 
1195 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1196 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1197 						  DSI_RXPKT1H_BC_PARAM);
1198 
1199 			if (rxlen != msg->rx_len) {
1200 				DRM_ERROR("DSI returned %db, expecting %db\n",
1201 					  rxlen, (int)msg->rx_len);
1202 				ret = -ENXIO;
1203 				goto reset_fifo_and_return;
1204 			}
1205 
1206 			for (i = 0; i < msg->rx_len; i++)
1207 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1208 		} else {
1209 			/* FINISHME: Handle AWER */
1210 
1211 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1212 						  DSI_RXPKT1H_SHORT_0);
1213 			if (msg->rx_len > 1) {
1214 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1215 							  DSI_RXPKT1H_SHORT_1);
1216 			}
1217 		}
1218 	}
1219 
1220 	return ret;
1221 
1222 reset_fifo_and_return:
1223 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1224 
1225 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1226 	udelay(1);
1227 	DSI_PORT_WRITE(CTRL,
1228 		       DSI_PORT_READ(CTRL) |
1229 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1230 
1231 	DSI_PORT_WRITE(TXPKT1C, 0);
1232 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1233 	return ret;
1234 }
1235 
1236 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1237 			       struct mipi_dsi_device *device)
1238 {
1239 	struct vc4_dsi *dsi = host_to_dsi(host);
1240 
1241 	dsi->lanes = device->lanes;
1242 	dsi->channel = device->channel;
1243 	dsi->mode_flags = device->mode_flags;
1244 
1245 	switch (device->format) {
1246 	case MIPI_DSI_FMT_RGB888:
1247 		dsi->format = DSI_PFORMAT_RGB888;
1248 		dsi->divider = 24 / dsi->lanes;
1249 		break;
1250 	case MIPI_DSI_FMT_RGB666:
1251 		dsi->format = DSI_PFORMAT_RGB666;
1252 		dsi->divider = 24 / dsi->lanes;
1253 		break;
1254 	case MIPI_DSI_FMT_RGB666_PACKED:
1255 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1256 		dsi->divider = 18 / dsi->lanes;
1257 		break;
1258 	case MIPI_DSI_FMT_RGB565:
1259 		dsi->format = DSI_PFORMAT_RGB565;
1260 		dsi->divider = 16 / dsi->lanes;
1261 		break;
1262 	default:
1263 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1264 			dsi->format);
1265 		return 0;
1266 	}
1267 
1268 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1269 		dev_err(&dsi->pdev->dev,
1270 			"Only VIDEO mode panels supported currently.\n");
1271 		return 0;
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1278 			       struct mipi_dsi_device *device)
1279 {
1280 	return 0;
1281 }
1282 
1283 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1284 	.attach = vc4_dsi_host_attach,
1285 	.detach = vc4_dsi_host_detach,
1286 	.transfer = vc4_dsi_host_transfer,
1287 };
1288 
1289 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1290 	.disable = vc4_dsi_encoder_disable,
1291 	.enable = vc4_dsi_encoder_enable,
1292 	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1293 };
1294 
1295 static const struct of_device_id vc4_dsi_dt_match[] = {
1296 	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1297 	{}
1298 };
1299 
1300 static void dsi_handle_error(struct vc4_dsi *dsi,
1301 			     irqreturn_t *ret, u32 stat, u32 bit,
1302 			     const char *type)
1303 {
1304 	if (!(stat & bit))
1305 		return;
1306 
1307 	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1308 	*ret = IRQ_HANDLED;
1309 }
1310 
1311 /*
1312  * Initial handler for port 1 where we need the reg_dma workaround.
1313  * The register DMA writes sleep, so we can't do it in the top half.
1314  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1315  * parent interrupt contrller until our interrupt thread is done.
1316  */
1317 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1318 {
1319 	struct vc4_dsi *dsi = data;
1320 	u32 stat = DSI_PORT_READ(INT_STAT);
1321 
1322 	if (!stat)
1323 		return IRQ_NONE;
1324 
1325 	return IRQ_WAKE_THREAD;
1326 }
1327 
1328 /*
1329  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1330  * 1 where we need the reg_dma workaround.
1331  */
1332 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1333 {
1334 	struct vc4_dsi *dsi = data;
1335 	u32 stat = DSI_PORT_READ(INT_STAT);
1336 	irqreturn_t ret = IRQ_NONE;
1337 
1338 	DSI_PORT_WRITE(INT_STAT, stat);
1339 
1340 	dsi_handle_error(dsi, &ret, stat,
1341 			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1342 	dsi_handle_error(dsi, &ret, stat,
1343 			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1344 	dsi_handle_error(dsi, &ret, stat,
1345 			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1346 	dsi_handle_error(dsi, &ret, stat,
1347 			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1348 	dsi_handle_error(dsi, &ret, stat,
1349 			 DSI1_INT_HSTX_TO, "HSTX timeout");
1350 	dsi_handle_error(dsi, &ret, stat,
1351 			 DSI1_INT_LPRX_TO, "LPRX timeout");
1352 	dsi_handle_error(dsi, &ret, stat,
1353 			 DSI1_INT_TA_TO, "turnaround timeout");
1354 	dsi_handle_error(dsi, &ret, stat,
1355 			 DSI1_INT_PR_TO, "peripheral reset timeout");
1356 
1357 	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1358 		complete(&dsi->xfer_completion);
1359 		ret = IRQ_HANDLED;
1360 	} else if (stat & DSI1_INT_HSTX_TO) {
1361 		complete(&dsi->xfer_completion);
1362 		dsi->xfer_result = -ETIMEDOUT;
1363 		ret = IRQ_HANDLED;
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 /**
1370  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1371  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1372  * @dsi: DSI encoder
1373  */
1374 static int
1375 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1376 {
1377 	struct device *dev = &dsi->pdev->dev;
1378 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1379 	static const struct {
1380 		const char *dsi0_name, *dsi1_name;
1381 		int div;
1382 	} phy_clocks[] = {
1383 		{ "dsi0_byte", "dsi1_byte", 8 },
1384 		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1385 		{ "dsi0_ddr", "dsi1_ddr", 2 },
1386 	};
1387 	int i;
1388 
1389 	dsi->clk_onecell = devm_kzalloc(dev,
1390 					sizeof(*dsi->clk_onecell) +
1391 					ARRAY_SIZE(phy_clocks) *
1392 					sizeof(struct clk_hw *),
1393 					GFP_KERNEL);
1394 	if (!dsi->clk_onecell)
1395 		return -ENOMEM;
1396 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1397 
1398 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1399 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1400 		struct clk_init_data init;
1401 		int ret;
1402 
1403 		/* We just use core fixed factor clock ops for the PHY
1404 		 * clocks.  The clocks are actually gated by the
1405 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1406 		 * setting if we use the DDR/DDR2 clocks.  However,
1407 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1408 		 * setting both our parent DSI PLL's rate and this
1409 		 * clock's rate, so it knows if DDR/DDR2 are going to
1410 		 * be used and could enable the gates itself.
1411 		 */
1412 		fix->mult = 1;
1413 		fix->div = phy_clocks[i].div;
1414 		fix->hw.init = &init;
1415 
1416 		memset(&init, 0, sizeof(init));
1417 		init.parent_names = &parent_name;
1418 		init.num_parents = 1;
1419 		if (dsi->port == 1)
1420 			init.name = phy_clocks[i].dsi1_name;
1421 		else
1422 			init.name = phy_clocks[i].dsi0_name;
1423 		init.ops = &clk_fixed_factor_ops;
1424 
1425 		ret = devm_clk_hw_register(dev, &fix->hw);
1426 		if (ret)
1427 			return ret;
1428 
1429 		dsi->clk_onecell->hws[i] = &fix->hw;
1430 	}
1431 
1432 	return of_clk_add_hw_provider(dev->of_node,
1433 				      of_clk_hw_onecell_get,
1434 				      dsi->clk_onecell);
1435 }
1436 
1437 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1438 {
1439 	struct platform_device *pdev = to_platform_device(dev);
1440 	struct drm_device *drm = dev_get_drvdata(master);
1441 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1442 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1443 	struct vc4_dsi_encoder *vc4_dsi_encoder;
1444 	struct drm_panel *panel;
1445 	const struct of_device_id *match;
1446 	dma_cap_mask_t dma_mask;
1447 	int ret;
1448 
1449 	match = of_match_device(vc4_dsi_dt_match, dev);
1450 	if (!match)
1451 		return -ENODEV;
1452 
1453 	dsi->port = (uintptr_t)match->data;
1454 
1455 	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1456 				       GFP_KERNEL);
1457 	if (!vc4_dsi_encoder)
1458 		return -ENOMEM;
1459 	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1460 	vc4_dsi_encoder->dsi = dsi;
1461 	dsi->encoder = &vc4_dsi_encoder->base.base;
1462 
1463 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1464 	if (IS_ERR(dsi->regs))
1465 		return PTR_ERR(dsi->regs);
1466 
1467 	dsi->regset.base = dsi->regs;
1468 	if (dsi->port == 0) {
1469 		dsi->regset.regs = dsi0_regs;
1470 		dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1471 	} else {
1472 		dsi->regset.regs = dsi1_regs;
1473 		dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1474 	}
1475 
1476 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1477 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1478 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1479 		return -ENODEV;
1480 	}
1481 
1482 	/* DSI1 has a broken AXI slave that doesn't respond to writes
1483 	 * from the ARM.  It does handle writes from the DMA engine,
1484 	 * so set up a channel for talking to it.
1485 	 */
1486 	if (dsi->port == 1) {
1487 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1488 						      &dsi->reg_dma_paddr,
1489 						      GFP_KERNEL);
1490 		if (!dsi->reg_dma_mem) {
1491 			DRM_ERROR("Failed to get DMA memory\n");
1492 			return -ENOMEM;
1493 		}
1494 
1495 		dma_cap_zero(dma_mask);
1496 		dma_cap_set(DMA_MEMCPY, dma_mask);
1497 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1498 		if (IS_ERR(dsi->reg_dma_chan)) {
1499 			ret = PTR_ERR(dsi->reg_dma_chan);
1500 			if (ret != -EPROBE_DEFER)
1501 				DRM_ERROR("Failed to get DMA channel: %d\n",
1502 					  ret);
1503 			return ret;
1504 		}
1505 
1506 		/* Get the physical address of the device's registers.  The
1507 		 * struct resource for the regs gives us the bus address
1508 		 * instead.
1509 		 */
1510 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1511 							     0, NULL, NULL));
1512 	}
1513 
1514 	init_completion(&dsi->xfer_completion);
1515 	/* At startup enable error-reporting interrupts and nothing else. */
1516 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1517 	/* Clear any existing interrupt state. */
1518 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1519 
1520 	if (dsi->reg_dma_mem)
1521 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1522 						vc4_dsi_irq_defer_to_thread_handler,
1523 						vc4_dsi_irq_handler,
1524 						IRQF_ONESHOT,
1525 						"vc4 dsi", dsi);
1526 	else
1527 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1528 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1529 	if (ret) {
1530 		if (ret != -EPROBE_DEFER)
1531 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1532 		return ret;
1533 	}
1534 
1535 	dsi->escape_clock = devm_clk_get(dev, "escape");
1536 	if (IS_ERR(dsi->escape_clock)) {
1537 		ret = PTR_ERR(dsi->escape_clock);
1538 		if (ret != -EPROBE_DEFER)
1539 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1540 		return ret;
1541 	}
1542 
1543 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1544 	if (IS_ERR(dsi->pll_phy_clock)) {
1545 		ret = PTR_ERR(dsi->pll_phy_clock);
1546 		if (ret != -EPROBE_DEFER)
1547 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1548 		return ret;
1549 	}
1550 
1551 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1552 	if (IS_ERR(dsi->pixel_clock)) {
1553 		ret = PTR_ERR(dsi->pixel_clock);
1554 		if (ret != -EPROBE_DEFER)
1555 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1556 		return ret;
1557 	}
1558 
1559 	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1560 					  &panel, &dsi->bridge);
1561 	if (ret) {
1562 		/* If the bridge or panel pointed by dev->of_node is not
1563 		 * enabled, just return 0 here so that we don't prevent the DRM
1564 		 * dev from being registered. Of course that means the DSI
1565 		 * encoder won't be exposed, but that's not a problem since
1566 		 * nothing is connected to it.
1567 		 */
1568 		if (ret == -ENODEV)
1569 			return 0;
1570 
1571 		return ret;
1572 	}
1573 
1574 	if (panel) {
1575 		dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1576 							DRM_MODE_CONNECTOR_DSI);
1577 		if (IS_ERR(dsi->bridge))
1578 			return PTR_ERR(dsi->bridge);
1579 	}
1580 
1581 	/* The esc clock rate is supposed to always be 100Mhz. */
1582 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1583 	if (ret) {
1584 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1585 		return ret;
1586 	}
1587 
1588 	ret = vc4_dsi_init_phy_clocks(dsi);
1589 	if (ret)
1590 		return ret;
1591 
1592 	if (dsi->port == 1)
1593 		vc4->dsi1 = dsi;
1594 
1595 	drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1596 			 DRM_MODE_ENCODER_DSI, NULL);
1597 	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1598 
1599 	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1600 	if (ret) {
1601 		dev_err(dev, "bridge attach failed: %d\n", ret);
1602 		return ret;
1603 	}
1604 	/* Disable the atomic helper calls into the bridge.  We
1605 	 * manually call the bridge pre_enable / enable / etc. calls
1606 	 * from our driver, since we need to sequence them within the
1607 	 * encoder's enable/disable paths.
1608 	 */
1609 	dsi->encoder->bridge = NULL;
1610 
1611 	if (dsi->port == 0)
1612 		vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1613 	else
1614 		vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1615 
1616 	pm_runtime_enable(dev);
1617 
1618 	return 0;
1619 }
1620 
1621 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1622 			   void *data)
1623 {
1624 	struct drm_device *drm = dev_get_drvdata(master);
1625 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1626 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1627 
1628 	if (dsi->bridge)
1629 		pm_runtime_disable(dev);
1630 
1631 	vc4_dsi_encoder_destroy(dsi->encoder);
1632 
1633 	if (dsi->port == 1)
1634 		vc4->dsi1 = NULL;
1635 }
1636 
1637 static const struct component_ops vc4_dsi_ops = {
1638 	.bind   = vc4_dsi_bind,
1639 	.unbind = vc4_dsi_unbind,
1640 };
1641 
1642 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1643 {
1644 	struct device *dev = &pdev->dev;
1645 	struct vc4_dsi *dsi;
1646 	int ret;
1647 
1648 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1649 	if (!dsi)
1650 		return -ENOMEM;
1651 	dev_set_drvdata(dev, dsi);
1652 
1653 	dsi->pdev = pdev;
1654 
1655 	/* Note, the initialization sequence for DSI and panels is
1656 	 * tricky.  The component bind above won't get past its
1657 	 * -EPROBE_DEFER until the panel/bridge probes.  The
1658 	 * panel/bridge will return -EPROBE_DEFER until it has a
1659 	 * mipi_dsi_host to register its device to.  So, we register
1660 	 * the host during pdev probe time, so vc4 as a whole can then
1661 	 * -EPROBE_DEFER its component bind process until the panel
1662 	 * successfully attaches.
1663 	 */
1664 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1665 	dsi->dsi_host.dev = dev;
1666 	mipi_dsi_host_register(&dsi->dsi_host);
1667 
1668 	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1669 	if (ret) {
1670 		mipi_dsi_host_unregister(&dsi->dsi_host);
1671 		return ret;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1678 {
1679 	struct device *dev = &pdev->dev;
1680 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1681 
1682 	component_del(&pdev->dev, &vc4_dsi_ops);
1683 	mipi_dsi_host_unregister(&dsi->dsi_host);
1684 
1685 	return 0;
1686 }
1687 
1688 struct platform_driver vc4_dsi_driver = {
1689 	.probe = vc4_dsi_dev_probe,
1690 	.remove = vc4_dsi_dev_remove,
1691 	.driver = {
1692 		.name = "vc4_dsi",
1693 		.of_match_table = vc4_dsi_dt_match,
1694 	},
1695 };
1696