1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <drm/drm_atomic_helper.h> 22 #include <drm/drm_edid.h> 23 #include <drm/drm_mipi_dsi.h> 24 #include <drm/drm_of.h> 25 #include <drm/drm_panel.h> 26 #include <drm/drm_probe_helper.h> 27 #include <linux/clk.h> 28 #include <linux/clk-provider.h> 29 #include <linux/completion.h> 30 #include <linux/component.h> 31 #include <linux/dmaengine.h> 32 #include <linux/i2c.h> 33 #include <linux/io.h> 34 #include <linux/of_address.h> 35 #include <linux/of_platform.h> 36 #include <linux/pm_runtime.h> 37 #include "vc4_drv.h" 38 #include "vc4_regs.h" 39 40 #define DSI_CMD_FIFO_DEPTH 16 41 #define DSI_PIX_FIFO_DEPTH 256 42 #define DSI_PIX_FIFO_WIDTH 4 43 44 #define DSI0_CTRL 0x00 45 46 /* Command packet control. */ 47 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 48 #define DSI1_TXPKT1C 0x04 49 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 50 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 51 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 52 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 53 54 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 55 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 56 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 57 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 58 /* Primary display where cmdfifo provides part of the payload and 59 * pixelvalve the rest. 60 */ 61 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 62 /* Secondary display where cmdfifo provides part of the payload and 63 * pixfifo the rest. 64 */ 65 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 66 67 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 68 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 69 70 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 71 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 72 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 73 # define DSI_TXPKT1C_CMD_CTRL_TX 0 74 /* Command with BTA for either ack or read data. */ 75 # define DSI_TXPKT1C_CMD_CTRL_RX 1 76 /* Trigger according to TRIG_CMD */ 77 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 78 /* BTA alone for getting error status after a command, or a TE trigger 79 * without a previous command. 80 */ 81 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 82 83 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 84 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 85 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 86 # define DSI_TXPKT1C_CMD_EN BIT(0) 87 88 /* Command packet header. */ 89 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 90 #define DSI1_TXPKT1H 0x08 91 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 92 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 93 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 94 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 95 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 96 # define DSI_TXPKT1H_BC_DT_SHIFT 0 97 98 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 99 #define DSI1_RXPKT1H 0x14 100 # define DSI_RXPKT1H_CRC_ERR BIT(31) 101 # define DSI_RXPKT1H_DET_ERR BIT(30) 102 # define DSI_RXPKT1H_ECC_ERR BIT(29) 103 # define DSI_RXPKT1H_COR_ERR BIT(28) 104 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 105 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 106 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 107 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 108 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 109 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 110 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 111 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 112 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 113 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 114 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 115 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 116 117 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 118 #define DSI1_RXPKT2H 0x18 119 # define DSI_RXPKT1H_DET_ERR BIT(30) 120 # define DSI_RXPKT1H_ECC_ERR BIT(29) 121 # define DSI_RXPKT1H_COR_ERR BIT(28) 122 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 123 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 124 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 125 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 126 # define DSI_RXPKT1H_DT_SHIFT 0 127 128 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 129 #define DSI1_TXPKT_CMD_FIFO 0x1c 130 131 #define DSI0_DISP0_CTRL 0x18 132 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 133 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 134 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 135 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 136 # define DSI_DISP0_LP_STOP_DISABLE 0 137 # define DSI_DISP0_LP_STOP_PERLINE 1 138 # define DSI_DISP0_LP_STOP_PERFRAME 2 139 140 /* Transmit RGB pixels and null packets only during HACTIVE, instead 141 * of going to LP-STOP. 142 */ 143 # define DSI_DISP_HACTIVE_NULL BIT(10) 144 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 145 # define DSI_DISP_VBLP_CTRL BIT(9) 146 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 147 # define DSI_DISP_HFP_CTRL BIT(8) 148 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 149 # define DSI_DISP_HBP_CTRL BIT(7) 150 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 151 # define DSI_DISP0_CHANNEL_SHIFT 5 152 /* Enables end events for HSYNC/VSYNC, not just start events. */ 153 # define DSI_DISP0_ST_END BIT(4) 154 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 155 # define DSI_DISP0_PFORMAT_SHIFT 2 156 # define DSI_PFORMAT_RGB565 0 157 # define DSI_PFORMAT_RGB666_PACKED 1 158 # define DSI_PFORMAT_RGB666 2 159 # define DSI_PFORMAT_RGB888 3 160 /* Default is VIDEO mode. */ 161 # define DSI_DISP0_COMMAND_MODE BIT(1) 162 # define DSI_DISP0_ENABLE BIT(0) 163 164 #define DSI0_DISP1_CTRL 0x1c 165 #define DSI1_DISP1_CTRL 0x2c 166 /* Format of the data written to TXPKT_PIX_FIFO. */ 167 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 168 # define DSI_DISP1_PFORMAT_SHIFT 1 169 # define DSI_DISP1_PFORMAT_16BIT 0 170 # define DSI_DISP1_PFORMAT_24BIT 1 171 # define DSI_DISP1_PFORMAT_32BIT_LE 2 172 # define DSI_DISP1_PFORMAT_32BIT_BE 3 173 174 /* DISP1 is always command mode. */ 175 # define DSI_DISP1_ENABLE BIT(0) 176 177 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 178 179 #define DSI0_INT_STAT 0x24 180 #define DSI0_INT_EN 0x28 181 # define DSI1_INT_PHY_D3_ULPS BIT(30) 182 # define DSI1_INT_PHY_D3_STOP BIT(29) 183 # define DSI1_INT_PHY_D2_ULPS BIT(28) 184 # define DSI1_INT_PHY_D2_STOP BIT(27) 185 # define DSI1_INT_PHY_D1_ULPS BIT(26) 186 # define DSI1_INT_PHY_D1_STOP BIT(25) 187 # define DSI1_INT_PHY_D0_ULPS BIT(24) 188 # define DSI1_INT_PHY_D0_STOP BIT(23) 189 # define DSI1_INT_FIFO_ERR BIT(22) 190 # define DSI1_INT_PHY_DIR_RTF BIT(21) 191 # define DSI1_INT_PHY_RXLPDT BIT(20) 192 # define DSI1_INT_PHY_RXTRIG BIT(19) 193 # define DSI1_INT_PHY_D0_LPDT BIT(18) 194 # define DSI1_INT_PHY_DIR_FTR BIT(17) 195 196 /* Signaled when the clock lane enters the given state. */ 197 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 198 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 199 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 200 201 /* Signaled on timeouts */ 202 # define DSI1_INT_PR_TO BIT(13) 203 # define DSI1_INT_TA_TO BIT(12) 204 # define DSI1_INT_LPRX_TO BIT(11) 205 # define DSI1_INT_HSTX_TO BIT(10) 206 207 /* Contention on a line when trying to drive the line low */ 208 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 209 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 210 211 /* Control error: incorrect line state sequence on data lane 0. */ 212 # define DSI1_INT_ERR_CONTROL BIT(7) 213 /* LPDT synchronization error (bits received not a multiple of 8. */ 214 215 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 216 /* Signaled after receiving an error packet from the display in 217 * response to a read. 218 */ 219 # define DSI1_INT_RXPKT2 BIT(5) 220 /* Signaled after receiving a packet. The header and optional short 221 * response will be in RXPKT1H, and a long response will be in the 222 * RXPKT_FIFO. 223 */ 224 # define DSI1_INT_RXPKT1 BIT(4) 225 # define DSI1_INT_TXPKT2_DONE BIT(3) 226 # define DSI1_INT_TXPKT2_END BIT(2) 227 /* Signaled after all repeats of TXPKT1 are transferred. */ 228 # define DSI1_INT_TXPKT1_DONE BIT(1) 229 /* Signaled after each TXPKT1 repeat is scheduled. */ 230 # define DSI1_INT_TXPKT1_END BIT(0) 231 232 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 233 DSI1_INT_ERR_CONTROL | \ 234 DSI1_INT_ERR_CONT_LP0 | \ 235 DSI1_INT_ERR_CONT_LP1 | \ 236 DSI1_INT_HSTX_TO | \ 237 DSI1_INT_LPRX_TO | \ 238 DSI1_INT_TA_TO | \ 239 DSI1_INT_PR_TO) 240 241 #define DSI0_STAT 0x2c 242 #define DSI0_HSTX_TO_CNT 0x30 243 #define DSI0_LPRX_TO_CNT 0x34 244 #define DSI0_TA_TO_CNT 0x38 245 #define DSI0_PR_TO_CNT 0x3c 246 #define DSI0_PHYC 0x40 247 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 248 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 249 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 250 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 251 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 252 # define DSI1_PHYC_CLANE_ULPS BIT(17) 253 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 254 # define DSI_PHYC_DLANE3_ULPS BIT(13) 255 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 256 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 257 # define DSI0_PHYC_CLANE_ULPS BIT(9) 258 # define DSI_PHYC_DLANE2_ULPS BIT(9) 259 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 260 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 261 # define DSI_PHYC_DLANE1_ULPS BIT(5) 262 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 263 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 264 # define DSI_PHYC_DLANE0_ULPS BIT(1) 265 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 266 267 #define DSI0_HS_CLT0 0x44 268 #define DSI0_HS_CLT1 0x48 269 #define DSI0_HS_CLT2 0x4c 270 #define DSI0_HS_DLT3 0x50 271 #define DSI0_HS_DLT4 0x54 272 #define DSI0_HS_DLT5 0x58 273 #define DSI0_HS_DLT6 0x5c 274 #define DSI0_HS_DLT7 0x60 275 276 #define DSI0_PHY_AFEC0 0x64 277 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 278 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 279 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 280 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 281 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 282 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 283 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 284 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 285 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 286 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 287 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 288 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 289 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 290 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 291 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 292 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 293 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 294 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 295 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 296 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 297 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 298 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 299 # define DSI1_PHY_AFEC0_RESET BIT(13) 300 # define DSI1_PHY_AFEC0_PD BIT(12) 301 # define DSI0_PHY_AFEC0_RESET BIT(11) 302 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 303 # define DSI0_PHY_AFEC0_PD BIT(10) 304 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 305 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 306 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 307 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 308 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 309 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 310 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 311 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 312 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 313 314 #define DSI0_PHY_AFEC1 0x68 315 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 316 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 317 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 318 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 319 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 320 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 321 322 #define DSI0_TST_SEL 0x6c 323 #define DSI0_TST_MON 0x70 324 #define DSI0_ID 0x74 325 # define DSI_ID_VALUE 0x00647369 326 327 #define DSI1_CTRL 0x00 328 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 329 # define DSI_CTRL_HS_CLKC_SHIFT 14 330 # define DSI_CTRL_HS_CLKC_BYTE 0 331 # define DSI_CTRL_HS_CLKC_DDR2 1 332 # define DSI_CTRL_HS_CLKC_DDR 2 333 334 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 335 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 336 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 337 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 338 # define DSI_CTRL_CAL_BYTE BIT(9) 339 # define DSI_CTRL_INV_BYTE BIT(8) 340 # define DSI_CTRL_CLR_LDF BIT(7) 341 # define DSI0_CTRL_CLR_PBCF BIT(6) 342 # define DSI1_CTRL_CLR_RXF BIT(6) 343 # define DSI0_CTRL_CLR_CPBCF BIT(5) 344 # define DSI1_CTRL_CLR_PDF BIT(5) 345 # define DSI0_CTRL_CLR_PDF BIT(4) 346 # define DSI1_CTRL_CLR_CDF BIT(4) 347 # define DSI0_CTRL_CLR_CDF BIT(3) 348 # define DSI0_CTRL_CTRL2 BIT(2) 349 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 350 # define DSI0_CTRL_CTRL1 BIT(1) 351 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 352 # define DSI0_CTRL_CTRL0 BIT(0) 353 # define DSI1_CTRL_EN BIT(0) 354 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 355 DSI0_CTRL_CLR_PBCF | \ 356 DSI0_CTRL_CLR_CPBCF | \ 357 DSI0_CTRL_CLR_PDF | \ 358 DSI0_CTRL_CLR_CDF) 359 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 360 DSI1_CTRL_CLR_RXF | \ 361 DSI1_CTRL_CLR_PDF | \ 362 DSI1_CTRL_CLR_CDF) 363 364 #define DSI1_TXPKT2C 0x0c 365 #define DSI1_TXPKT2H 0x10 366 #define DSI1_TXPKT_PIX_FIFO 0x20 367 #define DSI1_RXPKT_FIFO 0x24 368 #define DSI1_DISP0_CTRL 0x28 369 #define DSI1_INT_STAT 0x30 370 #define DSI1_INT_EN 0x34 371 /* State reporting bits. These mostly behave like INT_STAT, where 372 * writing a 1 clears the bit. 373 */ 374 #define DSI1_STAT 0x38 375 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 376 # define DSI1_STAT_PHY_D3_STOP BIT(30) 377 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 378 # define DSI1_STAT_PHY_D2_STOP BIT(28) 379 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 380 # define DSI1_STAT_PHY_D1_STOP BIT(26) 381 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 382 # define DSI1_STAT_PHY_D0_STOP BIT(24) 383 # define DSI1_STAT_FIFO_ERR BIT(23) 384 # define DSI1_STAT_PHY_RXLPDT BIT(22) 385 # define DSI1_STAT_PHY_RXTRIG BIT(21) 386 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 387 /* Set when in forward direction */ 388 # define DSI1_STAT_PHY_DIR BIT(19) 389 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 390 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 391 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 392 # define DSI1_STAT_PR_TO BIT(15) 393 # define DSI1_STAT_TA_TO BIT(14) 394 # define DSI1_STAT_LPRX_TO BIT(13) 395 # define DSI1_STAT_HSTX_TO BIT(12) 396 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 397 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 398 # define DSI1_STAT_ERR_CONTROL BIT(9) 399 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 400 # define DSI1_STAT_RXPKT2 BIT(7) 401 # define DSI1_STAT_RXPKT1 BIT(6) 402 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 403 # define DSI1_STAT_TXPKT2_DONE BIT(4) 404 # define DSI1_STAT_TXPKT2_END BIT(3) 405 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 406 # define DSI1_STAT_TXPKT1_DONE BIT(1) 407 # define DSI1_STAT_TXPKT1_END BIT(0) 408 409 #define DSI1_HSTX_TO_CNT 0x3c 410 #define DSI1_LPRX_TO_CNT 0x40 411 #define DSI1_TA_TO_CNT 0x44 412 #define DSI1_PR_TO_CNT 0x48 413 #define DSI1_PHYC 0x4c 414 415 #define DSI1_HS_CLT0 0x50 416 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 417 # define DSI_HS_CLT0_CZERO_SHIFT 18 418 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 419 # define DSI_HS_CLT0_CPRE_SHIFT 9 420 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 421 # define DSI_HS_CLT0_CPREP_SHIFT 0 422 423 #define DSI1_HS_CLT1 0x54 424 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 425 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 426 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 427 # define DSI_HS_CLT1_CPOST_SHIFT 0 428 429 #define DSI1_HS_CLT2 0x58 430 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 431 # define DSI_HS_CLT2_WUP_SHIFT 0 432 433 #define DSI1_HS_DLT3 0x5c 434 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 435 # define DSI_HS_DLT3_EXIT_SHIFT 18 436 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 437 # define DSI_HS_DLT3_ZERO_SHIFT 9 438 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 439 # define DSI_HS_DLT3_PRE_SHIFT 0 440 441 #define DSI1_HS_DLT4 0x60 442 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 443 # define DSI_HS_DLT4_ANLAT_SHIFT 18 444 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 445 # define DSI_HS_DLT4_TRAIL_SHIFT 9 446 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 447 # define DSI_HS_DLT4_LPX_SHIFT 0 448 449 #define DSI1_HS_DLT5 0x64 450 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 451 # define DSI_HS_DLT5_INIT_SHIFT 0 452 453 #define DSI1_HS_DLT6 0x68 454 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 455 # define DSI_HS_DLT6_TA_GET_SHIFT 24 456 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 457 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 458 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 459 # define DSI_HS_DLT6_TA_GO_SHIFT 8 460 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 461 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 462 463 #define DSI1_HS_DLT7 0x6c 464 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 465 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 466 467 #define DSI1_PHY_AFEC0 0x70 468 469 #define DSI1_PHY_AFEC1 0x74 470 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 471 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 472 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 473 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 474 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 475 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 476 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 477 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 478 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 479 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 480 481 #define DSI1_TST_SEL 0x78 482 #define DSI1_TST_MON 0x7c 483 #define DSI1_PHY_TST1 0x80 484 #define DSI1_PHY_TST2 0x84 485 #define DSI1_PHY_FIFO_STAT 0x88 486 /* Actually, all registers in the range that aren't otherwise claimed 487 * will return the ID. 488 */ 489 #define DSI1_ID 0x8c 490 491 /* General DSI hardware state. */ 492 struct vc4_dsi { 493 struct platform_device *pdev; 494 495 struct mipi_dsi_host dsi_host; 496 struct drm_encoder *encoder; 497 struct drm_bridge *bridge; 498 499 void __iomem *regs; 500 501 struct dma_chan *reg_dma_chan; 502 dma_addr_t reg_dma_paddr; 503 u32 *reg_dma_mem; 504 dma_addr_t reg_paddr; 505 506 /* Whether we're on bcm2835's DSI0 or DSI1. */ 507 int port; 508 509 /* DSI channel for the panel we're connected to. */ 510 u32 channel; 511 u32 lanes; 512 u32 format; 513 u32 divider; 514 u32 mode_flags; 515 516 /* Input clock from CPRMAN to the digital PHY, for the DSI 517 * escape clock. 518 */ 519 struct clk *escape_clock; 520 521 /* Input clock to the analog PHY, used to generate the DSI bit 522 * clock. 523 */ 524 struct clk *pll_phy_clock; 525 526 /* HS Clocks generated within the DSI analog PHY. */ 527 struct clk_fixed_factor phy_clocks[3]; 528 529 struct clk_hw_onecell_data *clk_onecell; 530 531 /* Pixel clock output to the pixelvalve, generated from the HS 532 * clock. 533 */ 534 struct clk *pixel_clock; 535 536 struct completion xfer_completion; 537 int xfer_result; 538 539 struct debugfs_regset32 regset; 540 }; 541 542 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 543 544 static inline void 545 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 546 { 547 struct dma_chan *chan = dsi->reg_dma_chan; 548 struct dma_async_tx_descriptor *tx; 549 dma_cookie_t cookie; 550 int ret; 551 552 /* DSI0 should be able to write normally. */ 553 if (!chan) { 554 writel(val, dsi->regs + offset); 555 return; 556 } 557 558 *dsi->reg_dma_mem = val; 559 560 tx = chan->device->device_prep_dma_memcpy(chan, 561 dsi->reg_paddr + offset, 562 dsi->reg_dma_paddr, 563 4, 0); 564 if (!tx) { 565 DRM_ERROR("Failed to set up DMA register write\n"); 566 return; 567 } 568 569 cookie = tx->tx_submit(tx); 570 ret = dma_submit_error(cookie); 571 if (ret) { 572 DRM_ERROR("Failed to submit DMA: %d\n", ret); 573 return; 574 } 575 ret = dma_sync_wait(chan, cookie); 576 if (ret) 577 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 578 } 579 580 #define DSI_READ(offset) readl(dsi->regs + (offset)) 581 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 582 #define DSI_PORT_READ(offset) \ 583 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 584 #define DSI_PORT_WRITE(offset, val) \ 585 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 586 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 587 588 /* VC4 DSI encoder KMS struct */ 589 struct vc4_dsi_encoder { 590 struct vc4_encoder base; 591 struct vc4_dsi *dsi; 592 }; 593 594 static inline struct vc4_dsi_encoder * 595 to_vc4_dsi_encoder(struct drm_encoder *encoder) 596 { 597 return container_of(encoder, struct vc4_dsi_encoder, base.base); 598 } 599 600 static const struct debugfs_reg32 dsi0_regs[] = { 601 VC4_REG32(DSI0_CTRL), 602 VC4_REG32(DSI0_STAT), 603 VC4_REG32(DSI0_HSTX_TO_CNT), 604 VC4_REG32(DSI0_LPRX_TO_CNT), 605 VC4_REG32(DSI0_TA_TO_CNT), 606 VC4_REG32(DSI0_PR_TO_CNT), 607 VC4_REG32(DSI0_DISP0_CTRL), 608 VC4_REG32(DSI0_DISP1_CTRL), 609 VC4_REG32(DSI0_INT_STAT), 610 VC4_REG32(DSI0_INT_EN), 611 VC4_REG32(DSI0_PHYC), 612 VC4_REG32(DSI0_HS_CLT0), 613 VC4_REG32(DSI0_HS_CLT1), 614 VC4_REG32(DSI0_HS_CLT2), 615 VC4_REG32(DSI0_HS_DLT3), 616 VC4_REG32(DSI0_HS_DLT4), 617 VC4_REG32(DSI0_HS_DLT5), 618 VC4_REG32(DSI0_HS_DLT6), 619 VC4_REG32(DSI0_HS_DLT7), 620 VC4_REG32(DSI0_PHY_AFEC0), 621 VC4_REG32(DSI0_PHY_AFEC1), 622 VC4_REG32(DSI0_ID), 623 }; 624 625 static const struct debugfs_reg32 dsi1_regs[] = { 626 VC4_REG32(DSI1_CTRL), 627 VC4_REG32(DSI1_STAT), 628 VC4_REG32(DSI1_HSTX_TO_CNT), 629 VC4_REG32(DSI1_LPRX_TO_CNT), 630 VC4_REG32(DSI1_TA_TO_CNT), 631 VC4_REG32(DSI1_PR_TO_CNT), 632 VC4_REG32(DSI1_DISP0_CTRL), 633 VC4_REG32(DSI1_DISP1_CTRL), 634 VC4_REG32(DSI1_INT_STAT), 635 VC4_REG32(DSI1_INT_EN), 636 VC4_REG32(DSI1_PHYC), 637 VC4_REG32(DSI1_HS_CLT0), 638 VC4_REG32(DSI1_HS_CLT1), 639 VC4_REG32(DSI1_HS_CLT2), 640 VC4_REG32(DSI1_HS_DLT3), 641 VC4_REG32(DSI1_HS_DLT4), 642 VC4_REG32(DSI1_HS_DLT5), 643 VC4_REG32(DSI1_HS_DLT6), 644 VC4_REG32(DSI1_HS_DLT7), 645 VC4_REG32(DSI1_PHY_AFEC0), 646 VC4_REG32(DSI1_PHY_AFEC1), 647 VC4_REG32(DSI1_ID), 648 }; 649 650 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) 651 { 652 drm_encoder_cleanup(encoder); 653 } 654 655 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 656 .destroy = vc4_dsi_encoder_destroy, 657 }; 658 659 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 660 { 661 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 662 663 if (latch) 664 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 665 else 666 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 667 668 DSI_PORT_WRITE(PHY_AFEC0, afec0); 669 } 670 671 /* Enters or exits Ultra Low Power State. */ 672 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 673 { 674 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 675 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 676 DSI_PHYC_DLANE0_ULPS | 677 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 678 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 679 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 680 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 681 DSI1_STAT_PHY_D0_ULPS | 682 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 683 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 684 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 685 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 686 DSI1_STAT_PHY_D0_STOP | 687 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 688 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 689 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 690 int ret; 691 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 692 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 693 694 if (ulps == ulps_currently_enabled) 695 return; 696 697 DSI_PORT_WRITE(STAT, stat_ulps); 698 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 699 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 700 if (ret) { 701 dev_warn(&dsi->pdev->dev, 702 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 703 DSI_PORT_READ(STAT)); 704 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 705 vc4_dsi_latch_ulps(dsi, false); 706 return; 707 } 708 709 /* The DSI module can't be disabled while the module is 710 * generating ULPS state. So, to be able to disable the 711 * module, we have the AFE latch the ULPS state and continue 712 * on to having the module enter STOP. 713 */ 714 vc4_dsi_latch_ulps(dsi, ulps); 715 716 DSI_PORT_WRITE(STAT, stat_stop); 717 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 718 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 719 if (ret) { 720 dev_warn(&dsi->pdev->dev, 721 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 722 DSI_PORT_READ(STAT)); 723 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 724 return; 725 } 726 } 727 728 static u32 729 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 730 { 731 /* The HS timings have to be rounded up to a multiple of 8 732 * because we're using the byte clock. 733 */ 734 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 735 } 736 737 /* ESC always runs at 100Mhz. */ 738 #define ESC_TIME_NS 10 739 740 static u32 741 dsi_esc_timing(u32 ns) 742 { 743 return DIV_ROUND_UP(ns, ESC_TIME_NS); 744 } 745 746 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 747 { 748 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 749 struct vc4_dsi *dsi = vc4_encoder->dsi; 750 struct device *dev = &dsi->pdev->dev; 751 752 drm_bridge_disable(dsi->bridge); 753 vc4_dsi_ulps(dsi, true); 754 drm_bridge_post_disable(dsi->bridge); 755 756 clk_disable_unprepare(dsi->pll_phy_clock); 757 clk_disable_unprepare(dsi->escape_clock); 758 clk_disable_unprepare(dsi->pixel_clock); 759 760 pm_runtime_put(dev); 761 } 762 763 /* Extends the mode's blank intervals to handle BCM2835's integer-only 764 * DSI PLL divider. 765 * 766 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 767 * driver since most peripherals are hanging off of the PLLD_PER 768 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 769 * the pixel clock), only has an integer divider off of DSI. 770 * 771 * To get our panel mode to refresh at the expected 60Hz, we need to 772 * extend the horizontal blank time. This means we drive a 773 * higher-than-expected clock rate to the panel, but that's what the 774 * firmware does too. 775 */ 776 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 777 const struct drm_display_mode *mode, 778 struct drm_display_mode *adjusted_mode) 779 { 780 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 781 struct vc4_dsi *dsi = vc4_encoder->dsi; 782 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 783 unsigned long parent_rate = clk_get_rate(phy_parent); 784 unsigned long pixel_clock_hz = mode->clock * 1000; 785 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 786 int divider; 787 788 /* Find what divider gets us a faster clock than the requested 789 * pixel clock. 790 */ 791 for (divider = 1; divider < 8; divider++) { 792 if (parent_rate / divider < pll_clock) { 793 divider--; 794 break; 795 } 796 } 797 798 /* Now that we've picked a PLL divider, calculate back to its 799 * pixel clock. 800 */ 801 pll_clock = parent_rate / divider; 802 pixel_clock_hz = pll_clock / dsi->divider; 803 804 adjusted_mode->clock = pixel_clock_hz / 1000; 805 806 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 807 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 808 mode->clock; 809 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 810 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 811 812 return true; 813 } 814 815 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 816 { 817 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 818 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 819 struct vc4_dsi *dsi = vc4_encoder->dsi; 820 struct device *dev = &dsi->pdev->dev; 821 bool debug_dump_regs = false; 822 unsigned long hs_clock; 823 u32 ui_ns; 824 /* Minimum LP state duration in escape clock cycles. */ 825 u32 lpx = dsi_esc_timing(60); 826 unsigned long pixel_clock_hz = mode->clock * 1000; 827 unsigned long dsip_clock; 828 unsigned long phy_clock; 829 int ret; 830 831 ret = pm_runtime_get_sync(dev); 832 if (ret) { 833 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 834 return; 835 } 836 837 if (debug_dump_regs) { 838 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 839 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 840 drm_print_regset32(&p, &dsi->regset); 841 } 842 843 /* Round up the clk_set_rate() request slightly, since 844 * PLLD_DSI1 is an integer divider and its rate selection will 845 * never round up. 846 */ 847 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 848 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 849 if (ret) { 850 dev_err(&dsi->pdev->dev, 851 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 852 } 853 854 /* Reset the DSI and all its fifos. */ 855 DSI_PORT_WRITE(CTRL, 856 DSI_CTRL_SOFT_RESET_CFG | 857 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 858 859 DSI_PORT_WRITE(CTRL, 860 DSI_CTRL_HSDT_EOT_DISABLE | 861 DSI_CTRL_RX_LPDT_EOT_DISABLE); 862 863 /* Clear all stat bits so we see what has happened during enable. */ 864 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 865 866 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 867 if (dsi->port == 0) { 868 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 869 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 870 871 if (dsi->lanes < 2) 872 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 873 874 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 875 afec0 |= DSI0_PHY_AFEC0_RESET; 876 877 DSI_PORT_WRITE(PHY_AFEC0, afec0); 878 879 DSI_PORT_WRITE(PHY_AFEC1, 880 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 881 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 882 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 883 } else { 884 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 885 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 886 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 887 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 888 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 889 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 890 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 891 892 if (dsi->lanes < 4) 893 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 894 if (dsi->lanes < 3) 895 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 896 if (dsi->lanes < 2) 897 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 898 899 afec0 |= DSI1_PHY_AFEC0_RESET; 900 901 DSI_PORT_WRITE(PHY_AFEC0, afec0); 902 903 DSI_PORT_WRITE(PHY_AFEC1, 0); 904 905 /* AFEC reset hold time */ 906 mdelay(1); 907 } 908 909 ret = clk_prepare_enable(dsi->escape_clock); 910 if (ret) { 911 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 912 return; 913 } 914 915 ret = clk_prepare_enable(dsi->pll_phy_clock); 916 if (ret) { 917 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 918 return; 919 } 920 921 hs_clock = clk_get_rate(dsi->pll_phy_clock); 922 923 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 924 * not the pixel clock rate. DSIxP take from the APHY's byte, 925 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 926 * that rate. Separately, a value derived from PIX_CLK_DIV 927 * and HS_CLKC is fed into the PV to divide down to the actual 928 * pixel clock for pushing pixels into DSI. 929 */ 930 dsip_clock = phy_clock / 8; 931 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 932 if (ret) { 933 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 934 dsip_clock, ret); 935 } 936 937 ret = clk_prepare_enable(dsi->pixel_clock); 938 if (ret) { 939 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 940 return; 941 } 942 943 /* How many ns one DSI unit interval is. Note that the clock 944 * is DDR, so there's an extra divide by 2. 945 */ 946 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 947 948 DSI_PORT_WRITE(HS_CLT0, 949 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 950 DSI_HS_CLT0_CZERO) | 951 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 952 DSI_HS_CLT0_CPRE) | 953 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 954 DSI_HS_CLT0_CPREP)); 955 956 DSI_PORT_WRITE(HS_CLT1, 957 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 958 DSI_HS_CLT1_CTRAIL) | 959 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 960 DSI_HS_CLT1_CPOST)); 961 962 DSI_PORT_WRITE(HS_CLT2, 963 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 964 DSI_HS_CLT2_WUP)); 965 966 DSI_PORT_WRITE(HS_DLT3, 967 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 968 DSI_HS_DLT3_EXIT) | 969 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 970 DSI_HS_DLT3_ZERO) | 971 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 972 DSI_HS_DLT3_PRE)); 973 974 DSI_PORT_WRITE(HS_DLT4, 975 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 976 DSI_HS_DLT4_LPX) | 977 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 978 dsi_hs_timing(ui_ns, 60, 4)), 979 DSI_HS_DLT4_TRAIL) | 980 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 981 982 /* T_INIT is how long STOP is driven after power-up to 983 * indicate to the slave (also coming out of power-up) that 984 * master init is complete, and should be greater than the 985 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 986 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 987 * T_INIT,SLAVE, while allowing protocols on top of it to give 988 * greater minimums. The vc4 firmware uses an extremely 989 * conservative 5ms, and we maintain that here. 990 */ 991 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 992 5 * 1000 * 1000, 0), 993 DSI_HS_DLT5_INIT)); 994 995 DSI_PORT_WRITE(HS_DLT6, 996 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 997 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 998 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 999 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1000 1001 DSI_PORT_WRITE(HS_DLT7, 1002 VC4_SET_FIELD(dsi_esc_timing(1000000), 1003 DSI_HS_DLT7_LP_WUP)); 1004 1005 DSI_PORT_WRITE(PHYC, 1006 DSI_PHYC_DLANE0_ENABLE | 1007 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1008 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1009 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1010 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1011 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1012 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1013 (dsi->port == 0 ? 1014 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1015 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1016 1017 DSI_PORT_WRITE(CTRL, 1018 DSI_PORT_READ(CTRL) | 1019 DSI_CTRL_CAL_BYTE); 1020 1021 /* HS timeout in HS clock cycles: disabled. */ 1022 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1023 /* LP receive timeout in HS clocks. */ 1024 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1025 /* Bus turnaround timeout */ 1026 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1027 /* Display reset sequence timeout */ 1028 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1029 1030 /* Set up DISP1 for transferring long command payloads through 1031 * the pixfifo. 1032 */ 1033 DSI_PORT_WRITE(DISP1_CTRL, 1034 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1035 DSI_DISP1_PFORMAT) | 1036 DSI_DISP1_ENABLE); 1037 1038 /* Ungate the block. */ 1039 if (dsi->port == 0) 1040 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1041 else 1042 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1043 1044 /* Bring AFE out of reset. */ 1045 if (dsi->port == 0) { 1046 } else { 1047 DSI_PORT_WRITE(PHY_AFEC0, 1048 DSI_PORT_READ(PHY_AFEC0) & 1049 ~DSI1_PHY_AFEC0_RESET); 1050 } 1051 1052 vc4_dsi_ulps(dsi, false); 1053 1054 drm_bridge_pre_enable(dsi->bridge); 1055 1056 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1057 DSI_PORT_WRITE(DISP0_CTRL, 1058 VC4_SET_FIELD(dsi->divider, 1059 DSI_DISP0_PIX_CLK_DIV) | 1060 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1061 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1062 DSI_DISP0_LP_STOP_CTRL) | 1063 DSI_DISP0_ST_END | 1064 DSI_DISP0_ENABLE); 1065 } else { 1066 DSI_PORT_WRITE(DISP0_CTRL, 1067 DSI_DISP0_COMMAND_MODE | 1068 DSI_DISP0_ENABLE); 1069 } 1070 1071 drm_bridge_enable(dsi->bridge); 1072 1073 if (debug_dump_regs) { 1074 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1075 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1076 drm_print_regset32(&p, &dsi->regset); 1077 } 1078 } 1079 1080 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1081 const struct mipi_dsi_msg *msg) 1082 { 1083 struct vc4_dsi *dsi = host_to_dsi(host); 1084 struct mipi_dsi_packet packet; 1085 u32 pkth = 0, pktc = 0; 1086 int i, ret; 1087 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1088 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1089 1090 mipi_dsi_create_packet(&packet, msg); 1091 1092 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1093 pkth |= VC4_SET_FIELD(packet.header[1] | 1094 (packet.header[2] << 8), 1095 DSI_TXPKT1H_BC_PARAM); 1096 if (is_long) { 1097 /* Divide data across the various FIFOs we have available. 1098 * The command FIFO takes byte-oriented data, but is of 1099 * limited size. The pixel FIFO (never actually used for 1100 * pixel data in reality) is word oriented, and substantially 1101 * larger. So, we use the pixel FIFO for most of the data, 1102 * sending the residual bytes in the command FIFO at the start. 1103 * 1104 * With this arrangement, the command FIFO will never get full. 1105 */ 1106 if (packet.payload_length <= 16) { 1107 cmd_fifo_len = packet.payload_length; 1108 pix_fifo_len = 0; 1109 } else { 1110 cmd_fifo_len = (packet.payload_length % 1111 DSI_PIX_FIFO_WIDTH); 1112 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1113 DSI_PIX_FIFO_WIDTH); 1114 } 1115 1116 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1117 1118 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1119 } 1120 1121 if (msg->rx_len) { 1122 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1123 DSI_TXPKT1C_CMD_CTRL); 1124 } else { 1125 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1126 DSI_TXPKT1C_CMD_CTRL); 1127 } 1128 1129 for (i = 0; i < cmd_fifo_len; i++) 1130 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1131 for (i = 0; i < pix_fifo_len; i++) { 1132 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1133 1134 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1135 pix[0] | 1136 pix[1] << 8 | 1137 pix[2] << 16 | 1138 pix[3] << 24); 1139 } 1140 1141 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1142 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1143 if (is_long) 1144 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1145 1146 /* Send one copy of the packet. Larger repeats are used for pixel 1147 * data in command mode. 1148 */ 1149 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1150 1151 pktc |= DSI_TXPKT1C_CMD_EN; 1152 if (pix_fifo_len) { 1153 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1154 DSI_TXPKT1C_DISPLAY_NO); 1155 } else { 1156 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1157 DSI_TXPKT1C_DISPLAY_NO); 1158 } 1159 1160 /* Enable the appropriate interrupt for the transfer completion. */ 1161 dsi->xfer_result = 0; 1162 reinit_completion(&dsi->xfer_completion); 1163 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1164 if (msg->rx_len) { 1165 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1166 DSI1_INT_PHY_DIR_RTF)); 1167 } else { 1168 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1169 DSI1_INT_TXPKT1_DONE)); 1170 } 1171 1172 /* Send the packet. */ 1173 DSI_PORT_WRITE(TXPKT1H, pkth); 1174 DSI_PORT_WRITE(TXPKT1C, pktc); 1175 1176 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1177 msecs_to_jiffies(1000))) { 1178 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1179 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1180 DSI_PORT_READ(INT_STAT)); 1181 ret = -ETIMEDOUT; 1182 } else { 1183 ret = dsi->xfer_result; 1184 } 1185 1186 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1187 1188 if (ret) 1189 goto reset_fifo_and_return; 1190 1191 if (ret == 0 && msg->rx_len) { 1192 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1193 u8 *msg_rx = msg->rx_buf; 1194 1195 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1196 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1197 DSI_RXPKT1H_BC_PARAM); 1198 1199 if (rxlen != msg->rx_len) { 1200 DRM_ERROR("DSI returned %db, expecting %db\n", 1201 rxlen, (int)msg->rx_len); 1202 ret = -ENXIO; 1203 goto reset_fifo_and_return; 1204 } 1205 1206 for (i = 0; i < msg->rx_len; i++) 1207 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1208 } else { 1209 /* FINISHME: Handle AWER */ 1210 1211 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1212 DSI_RXPKT1H_SHORT_0); 1213 if (msg->rx_len > 1) { 1214 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1215 DSI_RXPKT1H_SHORT_1); 1216 } 1217 } 1218 } 1219 1220 return ret; 1221 1222 reset_fifo_and_return: 1223 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1224 1225 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1226 udelay(1); 1227 DSI_PORT_WRITE(CTRL, 1228 DSI_PORT_READ(CTRL) | 1229 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1230 1231 DSI_PORT_WRITE(TXPKT1C, 0); 1232 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1233 return ret; 1234 } 1235 1236 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1237 struct mipi_dsi_device *device) 1238 { 1239 struct vc4_dsi *dsi = host_to_dsi(host); 1240 1241 dsi->lanes = device->lanes; 1242 dsi->channel = device->channel; 1243 dsi->mode_flags = device->mode_flags; 1244 1245 switch (device->format) { 1246 case MIPI_DSI_FMT_RGB888: 1247 dsi->format = DSI_PFORMAT_RGB888; 1248 dsi->divider = 24 / dsi->lanes; 1249 break; 1250 case MIPI_DSI_FMT_RGB666: 1251 dsi->format = DSI_PFORMAT_RGB666; 1252 dsi->divider = 24 / dsi->lanes; 1253 break; 1254 case MIPI_DSI_FMT_RGB666_PACKED: 1255 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1256 dsi->divider = 18 / dsi->lanes; 1257 break; 1258 case MIPI_DSI_FMT_RGB565: 1259 dsi->format = DSI_PFORMAT_RGB565; 1260 dsi->divider = 16 / dsi->lanes; 1261 break; 1262 default: 1263 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1264 dsi->format); 1265 return 0; 1266 } 1267 1268 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1269 dev_err(&dsi->pdev->dev, 1270 "Only VIDEO mode panels supported currently.\n"); 1271 return 0; 1272 } 1273 1274 return 0; 1275 } 1276 1277 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1278 struct mipi_dsi_device *device) 1279 { 1280 return 0; 1281 } 1282 1283 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1284 .attach = vc4_dsi_host_attach, 1285 .detach = vc4_dsi_host_detach, 1286 .transfer = vc4_dsi_host_transfer, 1287 }; 1288 1289 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1290 .disable = vc4_dsi_encoder_disable, 1291 .enable = vc4_dsi_encoder_enable, 1292 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1293 }; 1294 1295 static const struct of_device_id vc4_dsi_dt_match[] = { 1296 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1297 {} 1298 }; 1299 1300 static void dsi_handle_error(struct vc4_dsi *dsi, 1301 irqreturn_t *ret, u32 stat, u32 bit, 1302 const char *type) 1303 { 1304 if (!(stat & bit)) 1305 return; 1306 1307 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1308 *ret = IRQ_HANDLED; 1309 } 1310 1311 /* 1312 * Initial handler for port 1 where we need the reg_dma workaround. 1313 * The register DMA writes sleep, so we can't do it in the top half. 1314 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1315 * parent interrupt contrller until our interrupt thread is done. 1316 */ 1317 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1318 { 1319 struct vc4_dsi *dsi = data; 1320 u32 stat = DSI_PORT_READ(INT_STAT); 1321 1322 if (!stat) 1323 return IRQ_NONE; 1324 1325 return IRQ_WAKE_THREAD; 1326 } 1327 1328 /* 1329 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1330 * 1 where we need the reg_dma workaround. 1331 */ 1332 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1333 { 1334 struct vc4_dsi *dsi = data; 1335 u32 stat = DSI_PORT_READ(INT_STAT); 1336 irqreturn_t ret = IRQ_NONE; 1337 1338 DSI_PORT_WRITE(INT_STAT, stat); 1339 1340 dsi_handle_error(dsi, &ret, stat, 1341 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1342 dsi_handle_error(dsi, &ret, stat, 1343 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1344 dsi_handle_error(dsi, &ret, stat, 1345 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1346 dsi_handle_error(dsi, &ret, stat, 1347 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1348 dsi_handle_error(dsi, &ret, stat, 1349 DSI1_INT_HSTX_TO, "HSTX timeout"); 1350 dsi_handle_error(dsi, &ret, stat, 1351 DSI1_INT_LPRX_TO, "LPRX timeout"); 1352 dsi_handle_error(dsi, &ret, stat, 1353 DSI1_INT_TA_TO, "turnaround timeout"); 1354 dsi_handle_error(dsi, &ret, stat, 1355 DSI1_INT_PR_TO, "peripheral reset timeout"); 1356 1357 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1358 complete(&dsi->xfer_completion); 1359 ret = IRQ_HANDLED; 1360 } else if (stat & DSI1_INT_HSTX_TO) { 1361 complete(&dsi->xfer_completion); 1362 dsi->xfer_result = -ETIMEDOUT; 1363 ret = IRQ_HANDLED; 1364 } 1365 1366 return ret; 1367 } 1368 1369 /** 1370 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1371 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1372 * @dsi: DSI encoder 1373 */ 1374 static int 1375 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1376 { 1377 struct device *dev = &dsi->pdev->dev; 1378 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1379 static const struct { 1380 const char *dsi0_name, *dsi1_name; 1381 int div; 1382 } phy_clocks[] = { 1383 { "dsi0_byte", "dsi1_byte", 8 }, 1384 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1385 { "dsi0_ddr", "dsi1_ddr", 2 }, 1386 }; 1387 int i; 1388 1389 dsi->clk_onecell = devm_kzalloc(dev, 1390 sizeof(*dsi->clk_onecell) + 1391 ARRAY_SIZE(phy_clocks) * 1392 sizeof(struct clk_hw *), 1393 GFP_KERNEL); 1394 if (!dsi->clk_onecell) 1395 return -ENOMEM; 1396 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1397 1398 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1399 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1400 struct clk_init_data init; 1401 int ret; 1402 1403 /* We just use core fixed factor clock ops for the PHY 1404 * clocks. The clocks are actually gated by the 1405 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1406 * setting if we use the DDR/DDR2 clocks. However, 1407 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1408 * setting both our parent DSI PLL's rate and this 1409 * clock's rate, so it knows if DDR/DDR2 are going to 1410 * be used and could enable the gates itself. 1411 */ 1412 fix->mult = 1; 1413 fix->div = phy_clocks[i].div; 1414 fix->hw.init = &init; 1415 1416 memset(&init, 0, sizeof(init)); 1417 init.parent_names = &parent_name; 1418 init.num_parents = 1; 1419 if (dsi->port == 1) 1420 init.name = phy_clocks[i].dsi1_name; 1421 else 1422 init.name = phy_clocks[i].dsi0_name; 1423 init.ops = &clk_fixed_factor_ops; 1424 1425 ret = devm_clk_hw_register(dev, &fix->hw); 1426 if (ret) 1427 return ret; 1428 1429 dsi->clk_onecell->hws[i] = &fix->hw; 1430 } 1431 1432 return of_clk_add_hw_provider(dev->of_node, 1433 of_clk_hw_onecell_get, 1434 dsi->clk_onecell); 1435 } 1436 1437 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1438 { 1439 struct platform_device *pdev = to_platform_device(dev); 1440 struct drm_device *drm = dev_get_drvdata(master); 1441 struct vc4_dev *vc4 = to_vc4_dev(drm); 1442 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1443 struct vc4_dsi_encoder *vc4_dsi_encoder; 1444 struct drm_panel *panel; 1445 const struct of_device_id *match; 1446 dma_cap_mask_t dma_mask; 1447 int ret; 1448 1449 match = of_match_device(vc4_dsi_dt_match, dev); 1450 if (!match) 1451 return -ENODEV; 1452 1453 dsi->port = (uintptr_t)match->data; 1454 1455 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1456 GFP_KERNEL); 1457 if (!vc4_dsi_encoder) 1458 return -ENOMEM; 1459 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1460 vc4_dsi_encoder->dsi = dsi; 1461 dsi->encoder = &vc4_dsi_encoder->base.base; 1462 1463 dsi->regs = vc4_ioremap_regs(pdev, 0); 1464 if (IS_ERR(dsi->regs)) 1465 return PTR_ERR(dsi->regs); 1466 1467 dsi->regset.base = dsi->regs; 1468 if (dsi->port == 0) { 1469 dsi->regset.regs = dsi0_regs; 1470 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs); 1471 } else { 1472 dsi->regset.regs = dsi1_regs; 1473 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs); 1474 } 1475 1476 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1477 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1478 DSI_PORT_READ(ID), DSI_ID_VALUE); 1479 return -ENODEV; 1480 } 1481 1482 /* DSI1 has a broken AXI slave that doesn't respond to writes 1483 * from the ARM. It does handle writes from the DMA engine, 1484 * so set up a channel for talking to it. 1485 */ 1486 if (dsi->port == 1) { 1487 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1488 &dsi->reg_dma_paddr, 1489 GFP_KERNEL); 1490 if (!dsi->reg_dma_mem) { 1491 DRM_ERROR("Failed to get DMA memory\n"); 1492 return -ENOMEM; 1493 } 1494 1495 dma_cap_zero(dma_mask); 1496 dma_cap_set(DMA_MEMCPY, dma_mask); 1497 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1498 if (IS_ERR(dsi->reg_dma_chan)) { 1499 ret = PTR_ERR(dsi->reg_dma_chan); 1500 if (ret != -EPROBE_DEFER) 1501 DRM_ERROR("Failed to get DMA channel: %d\n", 1502 ret); 1503 return ret; 1504 } 1505 1506 /* Get the physical address of the device's registers. The 1507 * struct resource for the regs gives us the bus address 1508 * instead. 1509 */ 1510 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1511 0, NULL, NULL)); 1512 } 1513 1514 init_completion(&dsi->xfer_completion); 1515 /* At startup enable error-reporting interrupts and nothing else. */ 1516 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1517 /* Clear any existing interrupt state. */ 1518 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1519 1520 if (dsi->reg_dma_mem) 1521 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1522 vc4_dsi_irq_defer_to_thread_handler, 1523 vc4_dsi_irq_handler, 1524 IRQF_ONESHOT, 1525 "vc4 dsi", dsi); 1526 else 1527 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1528 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1529 if (ret) { 1530 if (ret != -EPROBE_DEFER) 1531 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1532 return ret; 1533 } 1534 1535 dsi->escape_clock = devm_clk_get(dev, "escape"); 1536 if (IS_ERR(dsi->escape_clock)) { 1537 ret = PTR_ERR(dsi->escape_clock); 1538 if (ret != -EPROBE_DEFER) 1539 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1540 return ret; 1541 } 1542 1543 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1544 if (IS_ERR(dsi->pll_phy_clock)) { 1545 ret = PTR_ERR(dsi->pll_phy_clock); 1546 if (ret != -EPROBE_DEFER) 1547 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1548 return ret; 1549 } 1550 1551 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1552 if (IS_ERR(dsi->pixel_clock)) { 1553 ret = PTR_ERR(dsi->pixel_clock); 1554 if (ret != -EPROBE_DEFER) 1555 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1556 return ret; 1557 } 1558 1559 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1560 &panel, &dsi->bridge); 1561 if (ret) { 1562 /* If the bridge or panel pointed by dev->of_node is not 1563 * enabled, just return 0 here so that we don't prevent the DRM 1564 * dev from being registered. Of course that means the DSI 1565 * encoder won't be exposed, but that's not a problem since 1566 * nothing is connected to it. 1567 */ 1568 if (ret == -ENODEV) 1569 return 0; 1570 1571 return ret; 1572 } 1573 1574 if (panel) { 1575 dsi->bridge = devm_drm_panel_bridge_add(dev, panel, 1576 DRM_MODE_CONNECTOR_DSI); 1577 if (IS_ERR(dsi->bridge)) 1578 return PTR_ERR(dsi->bridge); 1579 } 1580 1581 /* The esc clock rate is supposed to always be 100Mhz. */ 1582 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1583 if (ret) { 1584 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1585 return ret; 1586 } 1587 1588 ret = vc4_dsi_init_phy_clocks(dsi); 1589 if (ret) 1590 return ret; 1591 1592 if (dsi->port == 1) 1593 vc4->dsi1 = dsi; 1594 1595 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, 1596 DRM_MODE_ENCODER_DSI, NULL); 1597 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1598 1599 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL); 1600 if (ret) { 1601 dev_err(dev, "bridge attach failed: %d\n", ret); 1602 return ret; 1603 } 1604 /* Disable the atomic helper calls into the bridge. We 1605 * manually call the bridge pre_enable / enable / etc. calls 1606 * from our driver, since we need to sequence them within the 1607 * encoder's enable/disable paths. 1608 */ 1609 dsi->encoder->bridge = NULL; 1610 1611 if (dsi->port == 0) 1612 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset); 1613 else 1614 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset); 1615 1616 pm_runtime_enable(dev); 1617 1618 return 0; 1619 } 1620 1621 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1622 void *data) 1623 { 1624 struct drm_device *drm = dev_get_drvdata(master); 1625 struct vc4_dev *vc4 = to_vc4_dev(drm); 1626 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1627 1628 if (dsi->bridge) 1629 pm_runtime_disable(dev); 1630 1631 vc4_dsi_encoder_destroy(dsi->encoder); 1632 1633 if (dsi->port == 1) 1634 vc4->dsi1 = NULL; 1635 } 1636 1637 static const struct component_ops vc4_dsi_ops = { 1638 .bind = vc4_dsi_bind, 1639 .unbind = vc4_dsi_unbind, 1640 }; 1641 1642 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1643 { 1644 struct device *dev = &pdev->dev; 1645 struct vc4_dsi *dsi; 1646 int ret; 1647 1648 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1649 if (!dsi) 1650 return -ENOMEM; 1651 dev_set_drvdata(dev, dsi); 1652 1653 dsi->pdev = pdev; 1654 1655 /* Note, the initialization sequence for DSI and panels is 1656 * tricky. The component bind above won't get past its 1657 * -EPROBE_DEFER until the panel/bridge probes. The 1658 * panel/bridge will return -EPROBE_DEFER until it has a 1659 * mipi_dsi_host to register its device to. So, we register 1660 * the host during pdev probe time, so vc4 as a whole can then 1661 * -EPROBE_DEFER its component bind process until the panel 1662 * successfully attaches. 1663 */ 1664 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1665 dsi->dsi_host.dev = dev; 1666 mipi_dsi_host_register(&dsi->dsi_host); 1667 1668 ret = component_add(&pdev->dev, &vc4_dsi_ops); 1669 if (ret) { 1670 mipi_dsi_host_unregister(&dsi->dsi_host); 1671 return ret; 1672 } 1673 1674 return 0; 1675 } 1676 1677 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1678 { 1679 struct device *dev = &pdev->dev; 1680 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1681 1682 component_del(&pdev->dev, &vc4_dsi_ops); 1683 mipi_dsi_host_unregister(&dsi->dsi_host); 1684 1685 return 0; 1686 } 1687 1688 struct platform_driver vc4_dsi_driver = { 1689 .probe = vc4_dsi_dev_probe, 1690 .remove = vc4_dsi_dev_remove, 1691 .driver = { 1692 .name = "vc4_dsi", 1693 .of_match_table = vc4_dsi_dt_match, 1694 }, 1695 }; 1696