1 /* 2 * Copyright (C) 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 as published by 6 * the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program. If not, see <http://www.gnu.org/licenses/>. 15 */ 16 17 /** 18 * DOC: VC4 DSI0/DSI1 module 19 * 20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 22 * controller. 23 * 24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 25 * while the compute module brings both DSI0 and DSI1 out. 26 * 27 * This driver has been tested for DSI1 video-mode display only 28 * currently, with most of the information necessary for DSI0 29 * hopefully present. 30 */ 31 32 #include <drm/drm_atomic_helper.h> 33 #include <drm/drm_edid.h> 34 #include <drm/drm_mipi_dsi.h> 35 #include <drm/drm_of.h> 36 #include <drm/drm_panel.h> 37 #include <drm/drm_probe_helper.h> 38 #include <linux/clk.h> 39 #include <linux/clk-provider.h> 40 #include <linux/completion.h> 41 #include <linux/component.h> 42 #include <linux/dmaengine.h> 43 #include <linux/i2c.h> 44 #include <linux/io.h> 45 #include <linux/of_address.h> 46 #include <linux/of_platform.h> 47 #include <linux/pm_runtime.h> 48 #include "vc4_drv.h" 49 #include "vc4_regs.h" 50 51 #define DSI_CMD_FIFO_DEPTH 16 52 #define DSI_PIX_FIFO_DEPTH 256 53 #define DSI_PIX_FIFO_WIDTH 4 54 55 #define DSI0_CTRL 0x00 56 57 /* Command packet control. */ 58 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 59 #define DSI1_TXPKT1C 0x04 60 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 61 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 62 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 63 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 64 65 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 66 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 67 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 68 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 69 /* Primary display where cmdfifo provides part of the payload and 70 * pixelvalve the rest. 71 */ 72 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 73 /* Secondary display where cmdfifo provides part of the payload and 74 * pixfifo the rest. 75 */ 76 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 77 78 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 79 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 80 81 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 82 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 83 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 84 # define DSI_TXPKT1C_CMD_CTRL_TX 0 85 /* Command with BTA for either ack or read data. */ 86 # define DSI_TXPKT1C_CMD_CTRL_RX 1 87 /* Trigger according to TRIG_CMD */ 88 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 89 /* BTA alone for getting error status after a command, or a TE trigger 90 * without a previous command. 91 */ 92 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 93 94 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 95 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 96 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 97 # define DSI_TXPKT1C_CMD_EN BIT(0) 98 99 /* Command packet header. */ 100 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 101 #define DSI1_TXPKT1H 0x08 102 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 103 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 104 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 105 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 106 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 107 # define DSI_TXPKT1H_BC_DT_SHIFT 0 108 109 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 110 #define DSI1_RXPKT1H 0x14 111 # define DSI_RXPKT1H_CRC_ERR BIT(31) 112 # define DSI_RXPKT1H_DET_ERR BIT(30) 113 # define DSI_RXPKT1H_ECC_ERR BIT(29) 114 # define DSI_RXPKT1H_COR_ERR BIT(28) 115 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 116 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 117 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 118 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 119 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 120 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 121 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 122 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 123 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 124 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 125 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 126 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 127 128 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 129 #define DSI1_RXPKT2H 0x18 130 # define DSI_RXPKT1H_DET_ERR BIT(30) 131 # define DSI_RXPKT1H_ECC_ERR BIT(29) 132 # define DSI_RXPKT1H_COR_ERR BIT(28) 133 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 134 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 135 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 136 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 137 # define DSI_RXPKT1H_DT_SHIFT 0 138 139 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 140 #define DSI1_TXPKT_CMD_FIFO 0x1c 141 142 #define DSI0_DISP0_CTRL 0x18 143 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 144 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 145 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 146 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 147 # define DSI_DISP0_LP_STOP_DISABLE 0 148 # define DSI_DISP0_LP_STOP_PERLINE 1 149 # define DSI_DISP0_LP_STOP_PERFRAME 2 150 151 /* Transmit RGB pixels and null packets only during HACTIVE, instead 152 * of going to LP-STOP. 153 */ 154 # define DSI_DISP_HACTIVE_NULL BIT(10) 155 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 156 # define DSI_DISP_VBLP_CTRL BIT(9) 157 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 158 # define DSI_DISP_HFP_CTRL BIT(8) 159 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 160 # define DSI_DISP_HBP_CTRL BIT(7) 161 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 162 # define DSI_DISP0_CHANNEL_SHIFT 5 163 /* Enables end events for HSYNC/VSYNC, not just start events. */ 164 # define DSI_DISP0_ST_END BIT(4) 165 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 166 # define DSI_DISP0_PFORMAT_SHIFT 2 167 # define DSI_PFORMAT_RGB565 0 168 # define DSI_PFORMAT_RGB666_PACKED 1 169 # define DSI_PFORMAT_RGB666 2 170 # define DSI_PFORMAT_RGB888 3 171 /* Default is VIDEO mode. */ 172 # define DSI_DISP0_COMMAND_MODE BIT(1) 173 # define DSI_DISP0_ENABLE BIT(0) 174 175 #define DSI0_DISP1_CTRL 0x1c 176 #define DSI1_DISP1_CTRL 0x2c 177 /* Format of the data written to TXPKT_PIX_FIFO. */ 178 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 179 # define DSI_DISP1_PFORMAT_SHIFT 1 180 # define DSI_DISP1_PFORMAT_16BIT 0 181 # define DSI_DISP1_PFORMAT_24BIT 1 182 # define DSI_DISP1_PFORMAT_32BIT_LE 2 183 # define DSI_DISP1_PFORMAT_32BIT_BE 3 184 185 /* DISP1 is always command mode. */ 186 # define DSI_DISP1_ENABLE BIT(0) 187 188 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 189 190 #define DSI0_INT_STAT 0x24 191 #define DSI0_INT_EN 0x28 192 # define DSI1_INT_PHY_D3_ULPS BIT(30) 193 # define DSI1_INT_PHY_D3_STOP BIT(29) 194 # define DSI1_INT_PHY_D2_ULPS BIT(28) 195 # define DSI1_INT_PHY_D2_STOP BIT(27) 196 # define DSI1_INT_PHY_D1_ULPS BIT(26) 197 # define DSI1_INT_PHY_D1_STOP BIT(25) 198 # define DSI1_INT_PHY_D0_ULPS BIT(24) 199 # define DSI1_INT_PHY_D0_STOP BIT(23) 200 # define DSI1_INT_FIFO_ERR BIT(22) 201 # define DSI1_INT_PHY_DIR_RTF BIT(21) 202 # define DSI1_INT_PHY_RXLPDT BIT(20) 203 # define DSI1_INT_PHY_RXTRIG BIT(19) 204 # define DSI1_INT_PHY_D0_LPDT BIT(18) 205 # define DSI1_INT_PHY_DIR_FTR BIT(17) 206 207 /* Signaled when the clock lane enters the given state. */ 208 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 209 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 210 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 211 212 /* Signaled on timeouts */ 213 # define DSI1_INT_PR_TO BIT(13) 214 # define DSI1_INT_TA_TO BIT(12) 215 # define DSI1_INT_LPRX_TO BIT(11) 216 # define DSI1_INT_HSTX_TO BIT(10) 217 218 /* Contention on a line when trying to drive the line low */ 219 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 220 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 221 222 /* Control error: incorrect line state sequence on data lane 0. */ 223 # define DSI1_INT_ERR_CONTROL BIT(7) 224 /* LPDT synchronization error (bits received not a multiple of 8. */ 225 226 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 227 /* Signaled after receiving an error packet from the display in 228 * response to a read. 229 */ 230 # define DSI1_INT_RXPKT2 BIT(5) 231 /* Signaled after receiving a packet. The header and optional short 232 * response will be in RXPKT1H, and a long response will be in the 233 * RXPKT_FIFO. 234 */ 235 # define DSI1_INT_RXPKT1 BIT(4) 236 # define DSI1_INT_TXPKT2_DONE BIT(3) 237 # define DSI1_INT_TXPKT2_END BIT(2) 238 /* Signaled after all repeats of TXPKT1 are transferred. */ 239 # define DSI1_INT_TXPKT1_DONE BIT(1) 240 /* Signaled after each TXPKT1 repeat is scheduled. */ 241 # define DSI1_INT_TXPKT1_END BIT(0) 242 243 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 244 DSI1_INT_ERR_CONTROL | \ 245 DSI1_INT_ERR_CONT_LP0 | \ 246 DSI1_INT_ERR_CONT_LP1 | \ 247 DSI1_INT_HSTX_TO | \ 248 DSI1_INT_LPRX_TO | \ 249 DSI1_INT_TA_TO | \ 250 DSI1_INT_PR_TO) 251 252 #define DSI0_STAT 0x2c 253 #define DSI0_HSTX_TO_CNT 0x30 254 #define DSI0_LPRX_TO_CNT 0x34 255 #define DSI0_TA_TO_CNT 0x38 256 #define DSI0_PR_TO_CNT 0x3c 257 #define DSI0_PHYC 0x40 258 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 259 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 260 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 261 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 262 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 263 # define DSI1_PHYC_CLANE_ULPS BIT(17) 264 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 265 # define DSI_PHYC_DLANE3_ULPS BIT(13) 266 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 267 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 268 # define DSI0_PHYC_CLANE_ULPS BIT(9) 269 # define DSI_PHYC_DLANE2_ULPS BIT(9) 270 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 271 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 272 # define DSI_PHYC_DLANE1_ULPS BIT(5) 273 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 274 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 275 # define DSI_PHYC_DLANE0_ULPS BIT(1) 276 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 277 278 #define DSI0_HS_CLT0 0x44 279 #define DSI0_HS_CLT1 0x48 280 #define DSI0_HS_CLT2 0x4c 281 #define DSI0_HS_DLT3 0x50 282 #define DSI0_HS_DLT4 0x54 283 #define DSI0_HS_DLT5 0x58 284 #define DSI0_HS_DLT6 0x5c 285 #define DSI0_HS_DLT7 0x60 286 287 #define DSI0_PHY_AFEC0 0x64 288 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 289 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 290 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 291 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 292 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 293 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 294 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 295 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 296 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 297 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 298 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 299 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 300 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 301 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 302 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 303 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 304 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 305 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 306 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 307 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 308 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 309 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 310 # define DSI1_PHY_AFEC0_RESET BIT(13) 311 # define DSI1_PHY_AFEC0_PD BIT(12) 312 # define DSI0_PHY_AFEC0_RESET BIT(11) 313 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 314 # define DSI0_PHY_AFEC0_PD BIT(10) 315 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 316 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 317 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 318 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 319 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 320 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 321 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 322 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 323 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 324 325 #define DSI0_PHY_AFEC1 0x68 326 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 327 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 328 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 329 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 330 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 331 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 332 333 #define DSI0_TST_SEL 0x6c 334 #define DSI0_TST_MON 0x70 335 #define DSI0_ID 0x74 336 # define DSI_ID_VALUE 0x00647369 337 338 #define DSI1_CTRL 0x00 339 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 340 # define DSI_CTRL_HS_CLKC_SHIFT 14 341 # define DSI_CTRL_HS_CLKC_BYTE 0 342 # define DSI_CTRL_HS_CLKC_DDR2 1 343 # define DSI_CTRL_HS_CLKC_DDR 2 344 345 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 346 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 347 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 348 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 349 # define DSI_CTRL_CAL_BYTE BIT(9) 350 # define DSI_CTRL_INV_BYTE BIT(8) 351 # define DSI_CTRL_CLR_LDF BIT(7) 352 # define DSI0_CTRL_CLR_PBCF BIT(6) 353 # define DSI1_CTRL_CLR_RXF BIT(6) 354 # define DSI0_CTRL_CLR_CPBCF BIT(5) 355 # define DSI1_CTRL_CLR_PDF BIT(5) 356 # define DSI0_CTRL_CLR_PDF BIT(4) 357 # define DSI1_CTRL_CLR_CDF BIT(4) 358 # define DSI0_CTRL_CLR_CDF BIT(3) 359 # define DSI0_CTRL_CTRL2 BIT(2) 360 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 361 # define DSI0_CTRL_CTRL1 BIT(1) 362 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 363 # define DSI0_CTRL_CTRL0 BIT(0) 364 # define DSI1_CTRL_EN BIT(0) 365 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 366 DSI0_CTRL_CLR_PBCF | \ 367 DSI0_CTRL_CLR_CPBCF | \ 368 DSI0_CTRL_CLR_PDF | \ 369 DSI0_CTRL_CLR_CDF) 370 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 371 DSI1_CTRL_CLR_RXF | \ 372 DSI1_CTRL_CLR_PDF | \ 373 DSI1_CTRL_CLR_CDF) 374 375 #define DSI1_TXPKT2C 0x0c 376 #define DSI1_TXPKT2H 0x10 377 #define DSI1_TXPKT_PIX_FIFO 0x20 378 #define DSI1_RXPKT_FIFO 0x24 379 #define DSI1_DISP0_CTRL 0x28 380 #define DSI1_INT_STAT 0x30 381 #define DSI1_INT_EN 0x34 382 /* State reporting bits. These mostly behave like INT_STAT, where 383 * writing a 1 clears the bit. 384 */ 385 #define DSI1_STAT 0x38 386 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 387 # define DSI1_STAT_PHY_D3_STOP BIT(30) 388 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 389 # define DSI1_STAT_PHY_D2_STOP BIT(28) 390 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 391 # define DSI1_STAT_PHY_D1_STOP BIT(26) 392 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 393 # define DSI1_STAT_PHY_D0_STOP BIT(24) 394 # define DSI1_STAT_FIFO_ERR BIT(23) 395 # define DSI1_STAT_PHY_RXLPDT BIT(22) 396 # define DSI1_STAT_PHY_RXTRIG BIT(21) 397 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 398 /* Set when in forward direction */ 399 # define DSI1_STAT_PHY_DIR BIT(19) 400 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 401 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 402 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 403 # define DSI1_STAT_PR_TO BIT(15) 404 # define DSI1_STAT_TA_TO BIT(14) 405 # define DSI1_STAT_LPRX_TO BIT(13) 406 # define DSI1_STAT_HSTX_TO BIT(12) 407 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 408 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 409 # define DSI1_STAT_ERR_CONTROL BIT(9) 410 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 411 # define DSI1_STAT_RXPKT2 BIT(7) 412 # define DSI1_STAT_RXPKT1 BIT(6) 413 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 414 # define DSI1_STAT_TXPKT2_DONE BIT(4) 415 # define DSI1_STAT_TXPKT2_END BIT(3) 416 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 417 # define DSI1_STAT_TXPKT1_DONE BIT(1) 418 # define DSI1_STAT_TXPKT1_END BIT(0) 419 420 #define DSI1_HSTX_TO_CNT 0x3c 421 #define DSI1_LPRX_TO_CNT 0x40 422 #define DSI1_TA_TO_CNT 0x44 423 #define DSI1_PR_TO_CNT 0x48 424 #define DSI1_PHYC 0x4c 425 426 #define DSI1_HS_CLT0 0x50 427 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 428 # define DSI_HS_CLT0_CZERO_SHIFT 18 429 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 430 # define DSI_HS_CLT0_CPRE_SHIFT 9 431 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 432 # define DSI_HS_CLT0_CPREP_SHIFT 0 433 434 #define DSI1_HS_CLT1 0x54 435 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 436 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 437 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 438 # define DSI_HS_CLT1_CPOST_SHIFT 0 439 440 #define DSI1_HS_CLT2 0x58 441 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 442 # define DSI_HS_CLT2_WUP_SHIFT 0 443 444 #define DSI1_HS_DLT3 0x5c 445 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 446 # define DSI_HS_DLT3_EXIT_SHIFT 18 447 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 448 # define DSI_HS_DLT3_ZERO_SHIFT 9 449 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 450 # define DSI_HS_DLT3_PRE_SHIFT 0 451 452 #define DSI1_HS_DLT4 0x60 453 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 454 # define DSI_HS_DLT4_ANLAT_SHIFT 18 455 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 456 # define DSI_HS_DLT4_TRAIL_SHIFT 9 457 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 458 # define DSI_HS_DLT4_LPX_SHIFT 0 459 460 #define DSI1_HS_DLT5 0x64 461 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 462 # define DSI_HS_DLT5_INIT_SHIFT 0 463 464 #define DSI1_HS_DLT6 0x68 465 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 466 # define DSI_HS_DLT6_TA_GET_SHIFT 24 467 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 468 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 469 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 470 # define DSI_HS_DLT6_TA_GO_SHIFT 8 471 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 472 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 473 474 #define DSI1_HS_DLT7 0x6c 475 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 476 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 477 478 #define DSI1_PHY_AFEC0 0x70 479 480 #define DSI1_PHY_AFEC1 0x74 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 482 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 483 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 484 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 485 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 486 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 487 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 488 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 489 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 490 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 491 492 #define DSI1_TST_SEL 0x78 493 #define DSI1_TST_MON 0x7c 494 #define DSI1_PHY_TST1 0x80 495 #define DSI1_PHY_TST2 0x84 496 #define DSI1_PHY_FIFO_STAT 0x88 497 /* Actually, all registers in the range that aren't otherwise claimed 498 * will return the ID. 499 */ 500 #define DSI1_ID 0x8c 501 502 /* General DSI hardware state. */ 503 struct vc4_dsi { 504 struct platform_device *pdev; 505 506 struct mipi_dsi_host dsi_host; 507 struct drm_encoder *encoder; 508 struct drm_bridge *bridge; 509 510 void __iomem *regs; 511 512 struct dma_chan *reg_dma_chan; 513 dma_addr_t reg_dma_paddr; 514 u32 *reg_dma_mem; 515 dma_addr_t reg_paddr; 516 517 /* Whether we're on bcm2835's DSI0 or DSI1. */ 518 int port; 519 520 /* DSI channel for the panel we're connected to. */ 521 u32 channel; 522 u32 lanes; 523 u32 format; 524 u32 divider; 525 u32 mode_flags; 526 527 /* Input clock from CPRMAN to the digital PHY, for the DSI 528 * escape clock. 529 */ 530 struct clk *escape_clock; 531 532 /* Input clock to the analog PHY, used to generate the DSI bit 533 * clock. 534 */ 535 struct clk *pll_phy_clock; 536 537 /* HS Clocks generated within the DSI analog PHY. */ 538 struct clk_fixed_factor phy_clocks[3]; 539 540 struct clk_hw_onecell_data *clk_onecell; 541 542 /* Pixel clock output to the pixelvalve, generated from the HS 543 * clock. 544 */ 545 struct clk *pixel_clock; 546 547 struct completion xfer_completion; 548 int xfer_result; 549 }; 550 551 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 552 553 static inline void 554 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 555 { 556 struct dma_chan *chan = dsi->reg_dma_chan; 557 struct dma_async_tx_descriptor *tx; 558 dma_cookie_t cookie; 559 int ret; 560 561 /* DSI0 should be able to write normally. */ 562 if (!chan) { 563 writel(val, dsi->regs + offset); 564 return; 565 } 566 567 *dsi->reg_dma_mem = val; 568 569 tx = chan->device->device_prep_dma_memcpy(chan, 570 dsi->reg_paddr + offset, 571 dsi->reg_dma_paddr, 572 4, 0); 573 if (!tx) { 574 DRM_ERROR("Failed to set up DMA register write\n"); 575 return; 576 } 577 578 cookie = tx->tx_submit(tx); 579 ret = dma_submit_error(cookie); 580 if (ret) { 581 DRM_ERROR("Failed to submit DMA: %d\n", ret); 582 return; 583 } 584 ret = dma_sync_wait(chan, cookie); 585 if (ret) 586 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 587 } 588 589 #define DSI_READ(offset) readl(dsi->regs + (offset)) 590 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 591 #define DSI_PORT_READ(offset) \ 592 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 593 #define DSI_PORT_WRITE(offset, val) \ 594 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 595 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 596 597 /* VC4 DSI encoder KMS struct */ 598 struct vc4_dsi_encoder { 599 struct vc4_encoder base; 600 struct vc4_dsi *dsi; 601 }; 602 603 static inline struct vc4_dsi_encoder * 604 to_vc4_dsi_encoder(struct drm_encoder *encoder) 605 { 606 return container_of(encoder, struct vc4_dsi_encoder, base.base); 607 } 608 609 #define DSI_REG(reg) { reg, #reg } 610 static const struct { 611 u32 reg; 612 const char *name; 613 } dsi0_regs[] = { 614 DSI_REG(DSI0_CTRL), 615 DSI_REG(DSI0_STAT), 616 DSI_REG(DSI0_HSTX_TO_CNT), 617 DSI_REG(DSI0_LPRX_TO_CNT), 618 DSI_REG(DSI0_TA_TO_CNT), 619 DSI_REG(DSI0_PR_TO_CNT), 620 DSI_REG(DSI0_DISP0_CTRL), 621 DSI_REG(DSI0_DISP1_CTRL), 622 DSI_REG(DSI0_INT_STAT), 623 DSI_REG(DSI0_INT_EN), 624 DSI_REG(DSI0_PHYC), 625 DSI_REG(DSI0_HS_CLT0), 626 DSI_REG(DSI0_HS_CLT1), 627 DSI_REG(DSI0_HS_CLT2), 628 DSI_REG(DSI0_HS_DLT3), 629 DSI_REG(DSI0_HS_DLT4), 630 DSI_REG(DSI0_HS_DLT5), 631 DSI_REG(DSI0_HS_DLT6), 632 DSI_REG(DSI0_HS_DLT7), 633 DSI_REG(DSI0_PHY_AFEC0), 634 DSI_REG(DSI0_PHY_AFEC1), 635 DSI_REG(DSI0_ID), 636 }; 637 638 static const struct { 639 u32 reg; 640 const char *name; 641 } dsi1_regs[] = { 642 DSI_REG(DSI1_CTRL), 643 DSI_REG(DSI1_STAT), 644 DSI_REG(DSI1_HSTX_TO_CNT), 645 DSI_REG(DSI1_LPRX_TO_CNT), 646 DSI_REG(DSI1_TA_TO_CNT), 647 DSI_REG(DSI1_PR_TO_CNT), 648 DSI_REG(DSI1_DISP0_CTRL), 649 DSI_REG(DSI1_DISP1_CTRL), 650 DSI_REG(DSI1_INT_STAT), 651 DSI_REG(DSI1_INT_EN), 652 DSI_REG(DSI1_PHYC), 653 DSI_REG(DSI1_HS_CLT0), 654 DSI_REG(DSI1_HS_CLT1), 655 DSI_REG(DSI1_HS_CLT2), 656 DSI_REG(DSI1_HS_DLT3), 657 DSI_REG(DSI1_HS_DLT4), 658 DSI_REG(DSI1_HS_DLT5), 659 DSI_REG(DSI1_HS_DLT6), 660 DSI_REG(DSI1_HS_DLT7), 661 DSI_REG(DSI1_PHY_AFEC0), 662 DSI_REG(DSI1_PHY_AFEC1), 663 DSI_REG(DSI1_ID), 664 }; 665 666 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi) 667 { 668 int i; 669 670 if (dsi->port == 0) { 671 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) { 672 DRM_INFO("0x%04x (%s): 0x%08x\n", 673 dsi0_regs[i].reg, dsi0_regs[i].name, 674 DSI_READ(dsi0_regs[i].reg)); 675 } 676 } else { 677 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) { 678 DRM_INFO("0x%04x (%s): 0x%08x\n", 679 dsi1_regs[i].reg, dsi1_regs[i].name, 680 DSI_READ(dsi1_regs[i].reg)); 681 } 682 } 683 } 684 685 #ifdef CONFIG_DEBUG_FS 686 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused) 687 { 688 struct drm_info_node *node = (struct drm_info_node *)m->private; 689 struct drm_device *drm = node->minor->dev; 690 struct vc4_dev *vc4 = to_vc4_dev(drm); 691 int dsi_index = (uintptr_t)node->info_ent->data; 692 struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL); 693 int i; 694 695 if (!dsi) 696 return 0; 697 698 if (dsi->port == 0) { 699 for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) { 700 seq_printf(m, "0x%04x (%s): 0x%08x\n", 701 dsi0_regs[i].reg, dsi0_regs[i].name, 702 DSI_READ(dsi0_regs[i].reg)); 703 } 704 } else { 705 for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) { 706 seq_printf(m, "0x%04x (%s): 0x%08x\n", 707 dsi1_regs[i].reg, dsi1_regs[i].name, 708 DSI_READ(dsi1_regs[i].reg)); 709 } 710 } 711 712 return 0; 713 } 714 #endif 715 716 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) 717 { 718 drm_encoder_cleanup(encoder); 719 } 720 721 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 722 .destroy = vc4_dsi_encoder_destroy, 723 }; 724 725 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 726 { 727 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 728 729 if (latch) 730 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 731 else 732 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 733 734 DSI_PORT_WRITE(PHY_AFEC0, afec0); 735 } 736 737 /* Enters or exits Ultra Low Power State. */ 738 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 739 { 740 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 741 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 742 DSI_PHYC_DLANE0_ULPS | 743 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 744 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 745 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 746 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 747 DSI1_STAT_PHY_D0_ULPS | 748 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 749 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 750 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 751 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 752 DSI1_STAT_PHY_D0_STOP | 753 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 754 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 755 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 756 int ret; 757 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 758 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 759 760 if (ulps == ulps_currently_enabled) 761 return; 762 763 DSI_PORT_WRITE(STAT, stat_ulps); 764 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 765 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 766 if (ret) { 767 dev_warn(&dsi->pdev->dev, 768 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 769 DSI_PORT_READ(STAT)); 770 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 771 vc4_dsi_latch_ulps(dsi, false); 772 return; 773 } 774 775 /* The DSI module can't be disabled while the module is 776 * generating ULPS state. So, to be able to disable the 777 * module, we have the AFE latch the ULPS state and continue 778 * on to having the module enter STOP. 779 */ 780 vc4_dsi_latch_ulps(dsi, ulps); 781 782 DSI_PORT_WRITE(STAT, stat_stop); 783 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 784 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 785 if (ret) { 786 dev_warn(&dsi->pdev->dev, 787 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 788 DSI_PORT_READ(STAT)); 789 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 790 return; 791 } 792 } 793 794 static u32 795 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 796 { 797 /* The HS timings have to be rounded up to a multiple of 8 798 * because we're using the byte clock. 799 */ 800 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 801 } 802 803 /* ESC always runs at 100Mhz. */ 804 #define ESC_TIME_NS 10 805 806 static u32 807 dsi_esc_timing(u32 ns) 808 { 809 return DIV_ROUND_UP(ns, ESC_TIME_NS); 810 } 811 812 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 813 { 814 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 815 struct vc4_dsi *dsi = vc4_encoder->dsi; 816 struct device *dev = &dsi->pdev->dev; 817 818 drm_bridge_disable(dsi->bridge); 819 vc4_dsi_ulps(dsi, true); 820 drm_bridge_post_disable(dsi->bridge); 821 822 clk_disable_unprepare(dsi->pll_phy_clock); 823 clk_disable_unprepare(dsi->escape_clock); 824 clk_disable_unprepare(dsi->pixel_clock); 825 826 pm_runtime_put(dev); 827 } 828 829 /* Extends the mode's blank intervals to handle BCM2835's integer-only 830 * DSI PLL divider. 831 * 832 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 833 * driver since most peripherals are hanging off of the PLLD_PER 834 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 835 * the pixel clock), only has an integer divider off of DSI. 836 * 837 * To get our panel mode to refresh at the expected 60Hz, we need to 838 * extend the horizontal blank time. This means we drive a 839 * higher-than-expected clock rate to the panel, but that's what the 840 * firmware does too. 841 */ 842 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 843 const struct drm_display_mode *mode, 844 struct drm_display_mode *adjusted_mode) 845 { 846 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 847 struct vc4_dsi *dsi = vc4_encoder->dsi; 848 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 849 unsigned long parent_rate = clk_get_rate(phy_parent); 850 unsigned long pixel_clock_hz = mode->clock * 1000; 851 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 852 int divider; 853 854 /* Find what divider gets us a faster clock than the requested 855 * pixel clock. 856 */ 857 for (divider = 1; divider < 8; divider++) { 858 if (parent_rate / divider < pll_clock) { 859 divider--; 860 break; 861 } 862 } 863 864 /* Now that we've picked a PLL divider, calculate back to its 865 * pixel clock. 866 */ 867 pll_clock = parent_rate / divider; 868 pixel_clock_hz = pll_clock / dsi->divider; 869 870 adjusted_mode->clock = pixel_clock_hz / 1000; 871 872 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 873 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 874 mode->clock; 875 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 876 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 877 878 return true; 879 } 880 881 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 882 { 883 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 884 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 885 struct vc4_dsi *dsi = vc4_encoder->dsi; 886 struct device *dev = &dsi->pdev->dev; 887 bool debug_dump_regs = false; 888 unsigned long hs_clock; 889 u32 ui_ns; 890 /* Minimum LP state duration in escape clock cycles. */ 891 u32 lpx = dsi_esc_timing(60); 892 unsigned long pixel_clock_hz = mode->clock * 1000; 893 unsigned long dsip_clock; 894 unsigned long phy_clock; 895 int ret; 896 897 ret = pm_runtime_get_sync(dev); 898 if (ret) { 899 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 900 return; 901 } 902 903 if (debug_dump_regs) { 904 DRM_INFO("DSI regs before:\n"); 905 vc4_dsi_dump_regs(dsi); 906 } 907 908 /* Round up the clk_set_rate() request slightly, since 909 * PLLD_DSI1 is an integer divider and its rate selection will 910 * never round up. 911 */ 912 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 913 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 914 if (ret) { 915 dev_err(&dsi->pdev->dev, 916 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 917 } 918 919 /* Reset the DSI and all its fifos. */ 920 DSI_PORT_WRITE(CTRL, 921 DSI_CTRL_SOFT_RESET_CFG | 922 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 923 924 DSI_PORT_WRITE(CTRL, 925 DSI_CTRL_HSDT_EOT_DISABLE | 926 DSI_CTRL_RX_LPDT_EOT_DISABLE); 927 928 /* Clear all stat bits so we see what has happened during enable. */ 929 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 930 931 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 932 if (dsi->port == 0) { 933 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 934 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 935 936 if (dsi->lanes < 2) 937 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 938 939 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 940 afec0 |= DSI0_PHY_AFEC0_RESET; 941 942 DSI_PORT_WRITE(PHY_AFEC0, afec0); 943 944 DSI_PORT_WRITE(PHY_AFEC1, 945 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 946 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 947 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 948 } else { 949 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 950 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 951 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 952 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 953 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 954 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 955 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 956 957 if (dsi->lanes < 4) 958 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 959 if (dsi->lanes < 3) 960 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 961 if (dsi->lanes < 2) 962 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 963 964 afec0 |= DSI1_PHY_AFEC0_RESET; 965 966 DSI_PORT_WRITE(PHY_AFEC0, afec0); 967 968 DSI_PORT_WRITE(PHY_AFEC1, 0); 969 970 /* AFEC reset hold time */ 971 mdelay(1); 972 } 973 974 ret = clk_prepare_enable(dsi->escape_clock); 975 if (ret) { 976 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 977 return; 978 } 979 980 ret = clk_prepare_enable(dsi->pll_phy_clock); 981 if (ret) { 982 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 983 return; 984 } 985 986 hs_clock = clk_get_rate(dsi->pll_phy_clock); 987 988 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 989 * not the pixel clock rate. DSIxP take from the APHY's byte, 990 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 991 * that rate. Separately, a value derived from PIX_CLK_DIV 992 * and HS_CLKC is fed into the PV to divide down to the actual 993 * pixel clock for pushing pixels into DSI. 994 */ 995 dsip_clock = phy_clock / 8; 996 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 997 if (ret) { 998 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 999 dsip_clock, ret); 1000 } 1001 1002 ret = clk_prepare_enable(dsi->pixel_clock); 1003 if (ret) { 1004 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 1005 return; 1006 } 1007 1008 /* How many ns one DSI unit interval is. Note that the clock 1009 * is DDR, so there's an extra divide by 2. 1010 */ 1011 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1012 1013 DSI_PORT_WRITE(HS_CLT0, 1014 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1015 DSI_HS_CLT0_CZERO) | 1016 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1017 DSI_HS_CLT0_CPRE) | 1018 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1019 DSI_HS_CLT0_CPREP)); 1020 1021 DSI_PORT_WRITE(HS_CLT1, 1022 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1023 DSI_HS_CLT1_CTRAIL) | 1024 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1025 DSI_HS_CLT1_CPOST)); 1026 1027 DSI_PORT_WRITE(HS_CLT2, 1028 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1029 DSI_HS_CLT2_WUP)); 1030 1031 DSI_PORT_WRITE(HS_DLT3, 1032 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1033 DSI_HS_DLT3_EXIT) | 1034 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1035 DSI_HS_DLT3_ZERO) | 1036 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1037 DSI_HS_DLT3_PRE)); 1038 1039 DSI_PORT_WRITE(HS_DLT4, 1040 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1041 DSI_HS_DLT4_LPX) | 1042 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1043 dsi_hs_timing(ui_ns, 60, 4)), 1044 DSI_HS_DLT4_TRAIL) | 1045 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1046 1047 /* T_INIT is how long STOP is driven after power-up to 1048 * indicate to the slave (also coming out of power-up) that 1049 * master init is complete, and should be greater than the 1050 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1051 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1052 * T_INIT,SLAVE, while allowing protocols on top of it to give 1053 * greater minimums. The vc4 firmware uses an extremely 1054 * conservative 5ms, and we maintain that here. 1055 */ 1056 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1057 5 * 1000 * 1000, 0), 1058 DSI_HS_DLT5_INIT)); 1059 1060 DSI_PORT_WRITE(HS_DLT6, 1061 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1062 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1063 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1064 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1065 1066 DSI_PORT_WRITE(HS_DLT7, 1067 VC4_SET_FIELD(dsi_esc_timing(1000000), 1068 DSI_HS_DLT7_LP_WUP)); 1069 1070 DSI_PORT_WRITE(PHYC, 1071 DSI_PHYC_DLANE0_ENABLE | 1072 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1073 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1074 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1075 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1076 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1077 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1078 (dsi->port == 0 ? 1079 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1080 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1081 1082 DSI_PORT_WRITE(CTRL, 1083 DSI_PORT_READ(CTRL) | 1084 DSI_CTRL_CAL_BYTE); 1085 1086 /* HS timeout in HS clock cycles: disabled. */ 1087 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1088 /* LP receive timeout in HS clocks. */ 1089 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1090 /* Bus turnaround timeout */ 1091 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1092 /* Display reset sequence timeout */ 1093 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1094 1095 /* Set up DISP1 for transferring long command payloads through 1096 * the pixfifo. 1097 */ 1098 DSI_PORT_WRITE(DISP1_CTRL, 1099 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1100 DSI_DISP1_PFORMAT) | 1101 DSI_DISP1_ENABLE); 1102 1103 /* Ungate the block. */ 1104 if (dsi->port == 0) 1105 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1106 else 1107 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1108 1109 /* Bring AFE out of reset. */ 1110 if (dsi->port == 0) { 1111 } else { 1112 DSI_PORT_WRITE(PHY_AFEC0, 1113 DSI_PORT_READ(PHY_AFEC0) & 1114 ~DSI1_PHY_AFEC0_RESET); 1115 } 1116 1117 vc4_dsi_ulps(dsi, false); 1118 1119 drm_bridge_pre_enable(dsi->bridge); 1120 1121 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1122 DSI_PORT_WRITE(DISP0_CTRL, 1123 VC4_SET_FIELD(dsi->divider, 1124 DSI_DISP0_PIX_CLK_DIV) | 1125 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1126 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1127 DSI_DISP0_LP_STOP_CTRL) | 1128 DSI_DISP0_ST_END | 1129 DSI_DISP0_ENABLE); 1130 } else { 1131 DSI_PORT_WRITE(DISP0_CTRL, 1132 DSI_DISP0_COMMAND_MODE | 1133 DSI_DISP0_ENABLE); 1134 } 1135 1136 drm_bridge_enable(dsi->bridge); 1137 1138 if (debug_dump_regs) { 1139 DRM_INFO("DSI regs after:\n"); 1140 vc4_dsi_dump_regs(dsi); 1141 } 1142 } 1143 1144 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1145 const struct mipi_dsi_msg *msg) 1146 { 1147 struct vc4_dsi *dsi = host_to_dsi(host); 1148 struct mipi_dsi_packet packet; 1149 u32 pkth = 0, pktc = 0; 1150 int i, ret; 1151 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1152 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1153 1154 mipi_dsi_create_packet(&packet, msg); 1155 1156 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1157 pkth |= VC4_SET_FIELD(packet.header[1] | 1158 (packet.header[2] << 8), 1159 DSI_TXPKT1H_BC_PARAM); 1160 if (is_long) { 1161 /* Divide data across the various FIFOs we have available. 1162 * The command FIFO takes byte-oriented data, but is of 1163 * limited size. The pixel FIFO (never actually used for 1164 * pixel data in reality) is word oriented, and substantially 1165 * larger. So, we use the pixel FIFO for most of the data, 1166 * sending the residual bytes in the command FIFO at the start. 1167 * 1168 * With this arrangement, the command FIFO will never get full. 1169 */ 1170 if (packet.payload_length <= 16) { 1171 cmd_fifo_len = packet.payload_length; 1172 pix_fifo_len = 0; 1173 } else { 1174 cmd_fifo_len = (packet.payload_length % 1175 DSI_PIX_FIFO_WIDTH); 1176 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1177 DSI_PIX_FIFO_WIDTH); 1178 } 1179 1180 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1181 1182 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1183 } 1184 1185 if (msg->rx_len) { 1186 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1187 DSI_TXPKT1C_CMD_CTRL); 1188 } else { 1189 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1190 DSI_TXPKT1C_CMD_CTRL); 1191 } 1192 1193 for (i = 0; i < cmd_fifo_len; i++) 1194 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1195 for (i = 0; i < pix_fifo_len; i++) { 1196 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1197 1198 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1199 pix[0] | 1200 pix[1] << 8 | 1201 pix[2] << 16 | 1202 pix[3] << 24); 1203 } 1204 1205 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1206 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1207 if (is_long) 1208 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1209 1210 /* Send one copy of the packet. Larger repeats are used for pixel 1211 * data in command mode. 1212 */ 1213 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1214 1215 pktc |= DSI_TXPKT1C_CMD_EN; 1216 if (pix_fifo_len) { 1217 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1218 DSI_TXPKT1C_DISPLAY_NO); 1219 } else { 1220 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1221 DSI_TXPKT1C_DISPLAY_NO); 1222 } 1223 1224 /* Enable the appropriate interrupt for the transfer completion. */ 1225 dsi->xfer_result = 0; 1226 reinit_completion(&dsi->xfer_completion); 1227 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1228 if (msg->rx_len) { 1229 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1230 DSI1_INT_PHY_DIR_RTF)); 1231 } else { 1232 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1233 DSI1_INT_TXPKT1_DONE)); 1234 } 1235 1236 /* Send the packet. */ 1237 DSI_PORT_WRITE(TXPKT1H, pkth); 1238 DSI_PORT_WRITE(TXPKT1C, pktc); 1239 1240 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1241 msecs_to_jiffies(1000))) { 1242 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1243 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1244 DSI_PORT_READ(INT_STAT)); 1245 ret = -ETIMEDOUT; 1246 } else { 1247 ret = dsi->xfer_result; 1248 } 1249 1250 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1251 1252 if (ret) 1253 goto reset_fifo_and_return; 1254 1255 if (ret == 0 && msg->rx_len) { 1256 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1257 u8 *msg_rx = msg->rx_buf; 1258 1259 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1260 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1261 DSI_RXPKT1H_BC_PARAM); 1262 1263 if (rxlen != msg->rx_len) { 1264 DRM_ERROR("DSI returned %db, expecting %db\n", 1265 rxlen, (int)msg->rx_len); 1266 ret = -ENXIO; 1267 goto reset_fifo_and_return; 1268 } 1269 1270 for (i = 0; i < msg->rx_len; i++) 1271 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1272 } else { 1273 /* FINISHME: Handle AWER */ 1274 1275 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1276 DSI_RXPKT1H_SHORT_0); 1277 if (msg->rx_len > 1) { 1278 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1279 DSI_RXPKT1H_SHORT_1); 1280 } 1281 } 1282 } 1283 1284 return ret; 1285 1286 reset_fifo_and_return: 1287 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1288 1289 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1290 udelay(1); 1291 DSI_PORT_WRITE(CTRL, 1292 DSI_PORT_READ(CTRL) | 1293 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1294 1295 DSI_PORT_WRITE(TXPKT1C, 0); 1296 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1297 return ret; 1298 } 1299 1300 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1301 struct mipi_dsi_device *device) 1302 { 1303 struct vc4_dsi *dsi = host_to_dsi(host); 1304 1305 dsi->lanes = device->lanes; 1306 dsi->channel = device->channel; 1307 dsi->mode_flags = device->mode_flags; 1308 1309 switch (device->format) { 1310 case MIPI_DSI_FMT_RGB888: 1311 dsi->format = DSI_PFORMAT_RGB888; 1312 dsi->divider = 24 / dsi->lanes; 1313 break; 1314 case MIPI_DSI_FMT_RGB666: 1315 dsi->format = DSI_PFORMAT_RGB666; 1316 dsi->divider = 24 / dsi->lanes; 1317 break; 1318 case MIPI_DSI_FMT_RGB666_PACKED: 1319 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1320 dsi->divider = 18 / dsi->lanes; 1321 break; 1322 case MIPI_DSI_FMT_RGB565: 1323 dsi->format = DSI_PFORMAT_RGB565; 1324 dsi->divider = 16 / dsi->lanes; 1325 break; 1326 default: 1327 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1328 dsi->format); 1329 return 0; 1330 } 1331 1332 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1333 dev_err(&dsi->pdev->dev, 1334 "Only VIDEO mode panels supported currently.\n"); 1335 return 0; 1336 } 1337 1338 return 0; 1339 } 1340 1341 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1342 struct mipi_dsi_device *device) 1343 { 1344 return 0; 1345 } 1346 1347 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1348 .attach = vc4_dsi_host_attach, 1349 .detach = vc4_dsi_host_detach, 1350 .transfer = vc4_dsi_host_transfer, 1351 }; 1352 1353 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1354 .disable = vc4_dsi_encoder_disable, 1355 .enable = vc4_dsi_encoder_enable, 1356 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1357 }; 1358 1359 static const struct of_device_id vc4_dsi_dt_match[] = { 1360 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1361 {} 1362 }; 1363 1364 static void dsi_handle_error(struct vc4_dsi *dsi, 1365 irqreturn_t *ret, u32 stat, u32 bit, 1366 const char *type) 1367 { 1368 if (!(stat & bit)) 1369 return; 1370 1371 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1372 *ret = IRQ_HANDLED; 1373 } 1374 1375 /* 1376 * Initial handler for port 1 where we need the reg_dma workaround. 1377 * The register DMA writes sleep, so we can't do it in the top half. 1378 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1379 * parent interrupt contrller until our interrupt thread is done. 1380 */ 1381 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1382 { 1383 struct vc4_dsi *dsi = data; 1384 u32 stat = DSI_PORT_READ(INT_STAT); 1385 1386 if (!stat) 1387 return IRQ_NONE; 1388 1389 return IRQ_WAKE_THREAD; 1390 } 1391 1392 /* 1393 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1394 * 1 where we need the reg_dma workaround. 1395 */ 1396 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1397 { 1398 struct vc4_dsi *dsi = data; 1399 u32 stat = DSI_PORT_READ(INT_STAT); 1400 irqreturn_t ret = IRQ_NONE; 1401 1402 DSI_PORT_WRITE(INT_STAT, stat); 1403 1404 dsi_handle_error(dsi, &ret, stat, 1405 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1406 dsi_handle_error(dsi, &ret, stat, 1407 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1408 dsi_handle_error(dsi, &ret, stat, 1409 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1410 dsi_handle_error(dsi, &ret, stat, 1411 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1412 dsi_handle_error(dsi, &ret, stat, 1413 DSI1_INT_HSTX_TO, "HSTX timeout"); 1414 dsi_handle_error(dsi, &ret, stat, 1415 DSI1_INT_LPRX_TO, "LPRX timeout"); 1416 dsi_handle_error(dsi, &ret, stat, 1417 DSI1_INT_TA_TO, "turnaround timeout"); 1418 dsi_handle_error(dsi, &ret, stat, 1419 DSI1_INT_PR_TO, "peripheral reset timeout"); 1420 1421 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1422 complete(&dsi->xfer_completion); 1423 ret = IRQ_HANDLED; 1424 } else if (stat & DSI1_INT_HSTX_TO) { 1425 complete(&dsi->xfer_completion); 1426 dsi->xfer_result = -ETIMEDOUT; 1427 ret = IRQ_HANDLED; 1428 } 1429 1430 return ret; 1431 } 1432 1433 /** 1434 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1435 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1436 * @dsi: DSI encoder 1437 */ 1438 static int 1439 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1440 { 1441 struct device *dev = &dsi->pdev->dev; 1442 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1443 static const struct { 1444 const char *dsi0_name, *dsi1_name; 1445 int div; 1446 } phy_clocks[] = { 1447 { "dsi0_byte", "dsi1_byte", 8 }, 1448 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1449 { "dsi0_ddr", "dsi1_ddr", 2 }, 1450 }; 1451 int i; 1452 1453 dsi->clk_onecell = devm_kzalloc(dev, 1454 sizeof(*dsi->clk_onecell) + 1455 ARRAY_SIZE(phy_clocks) * 1456 sizeof(struct clk_hw *), 1457 GFP_KERNEL); 1458 if (!dsi->clk_onecell) 1459 return -ENOMEM; 1460 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1461 1462 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1463 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1464 struct clk_init_data init; 1465 int ret; 1466 1467 /* We just use core fixed factor clock ops for the PHY 1468 * clocks. The clocks are actually gated by the 1469 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1470 * setting if we use the DDR/DDR2 clocks. However, 1471 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1472 * setting both our parent DSI PLL's rate and this 1473 * clock's rate, so it knows if DDR/DDR2 are going to 1474 * be used and could enable the gates itself. 1475 */ 1476 fix->mult = 1; 1477 fix->div = phy_clocks[i].div; 1478 fix->hw.init = &init; 1479 1480 memset(&init, 0, sizeof(init)); 1481 init.parent_names = &parent_name; 1482 init.num_parents = 1; 1483 if (dsi->port == 1) 1484 init.name = phy_clocks[i].dsi1_name; 1485 else 1486 init.name = phy_clocks[i].dsi0_name; 1487 init.ops = &clk_fixed_factor_ops; 1488 1489 ret = devm_clk_hw_register(dev, &fix->hw); 1490 if (ret) 1491 return ret; 1492 1493 dsi->clk_onecell->hws[i] = &fix->hw; 1494 } 1495 1496 return of_clk_add_hw_provider(dev->of_node, 1497 of_clk_hw_onecell_get, 1498 dsi->clk_onecell); 1499 } 1500 1501 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1502 { 1503 struct platform_device *pdev = to_platform_device(dev); 1504 struct drm_device *drm = dev_get_drvdata(master); 1505 struct vc4_dev *vc4 = to_vc4_dev(drm); 1506 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1507 struct vc4_dsi_encoder *vc4_dsi_encoder; 1508 struct drm_panel *panel; 1509 const struct of_device_id *match; 1510 dma_cap_mask_t dma_mask; 1511 int ret; 1512 1513 match = of_match_device(vc4_dsi_dt_match, dev); 1514 if (!match) 1515 return -ENODEV; 1516 1517 dsi->port = (uintptr_t)match->data; 1518 1519 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1520 GFP_KERNEL); 1521 if (!vc4_dsi_encoder) 1522 return -ENOMEM; 1523 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1524 vc4_dsi_encoder->dsi = dsi; 1525 dsi->encoder = &vc4_dsi_encoder->base.base; 1526 1527 dsi->regs = vc4_ioremap_regs(pdev, 0); 1528 if (IS_ERR(dsi->regs)) 1529 return PTR_ERR(dsi->regs); 1530 1531 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1532 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1533 DSI_PORT_READ(ID), DSI_ID_VALUE); 1534 return -ENODEV; 1535 } 1536 1537 /* DSI1 has a broken AXI slave that doesn't respond to writes 1538 * from the ARM. It does handle writes from the DMA engine, 1539 * so set up a channel for talking to it. 1540 */ 1541 if (dsi->port == 1) { 1542 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1543 &dsi->reg_dma_paddr, 1544 GFP_KERNEL); 1545 if (!dsi->reg_dma_mem) { 1546 DRM_ERROR("Failed to get DMA memory\n"); 1547 return -ENOMEM; 1548 } 1549 1550 dma_cap_zero(dma_mask); 1551 dma_cap_set(DMA_MEMCPY, dma_mask); 1552 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1553 if (IS_ERR(dsi->reg_dma_chan)) { 1554 ret = PTR_ERR(dsi->reg_dma_chan); 1555 if (ret != -EPROBE_DEFER) 1556 DRM_ERROR("Failed to get DMA channel: %d\n", 1557 ret); 1558 return ret; 1559 } 1560 1561 /* Get the physical address of the device's registers. The 1562 * struct resource for the regs gives us the bus address 1563 * instead. 1564 */ 1565 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1566 0, NULL, NULL)); 1567 } 1568 1569 init_completion(&dsi->xfer_completion); 1570 /* At startup enable error-reporting interrupts and nothing else. */ 1571 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1572 /* Clear any existing interrupt state. */ 1573 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1574 1575 if (dsi->reg_dma_mem) 1576 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1577 vc4_dsi_irq_defer_to_thread_handler, 1578 vc4_dsi_irq_handler, 1579 IRQF_ONESHOT, 1580 "vc4 dsi", dsi); 1581 else 1582 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1583 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1584 if (ret) { 1585 if (ret != -EPROBE_DEFER) 1586 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1587 return ret; 1588 } 1589 1590 dsi->escape_clock = devm_clk_get(dev, "escape"); 1591 if (IS_ERR(dsi->escape_clock)) { 1592 ret = PTR_ERR(dsi->escape_clock); 1593 if (ret != -EPROBE_DEFER) 1594 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1595 return ret; 1596 } 1597 1598 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1599 if (IS_ERR(dsi->pll_phy_clock)) { 1600 ret = PTR_ERR(dsi->pll_phy_clock); 1601 if (ret != -EPROBE_DEFER) 1602 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1603 return ret; 1604 } 1605 1606 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1607 if (IS_ERR(dsi->pixel_clock)) { 1608 ret = PTR_ERR(dsi->pixel_clock); 1609 if (ret != -EPROBE_DEFER) 1610 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1611 return ret; 1612 } 1613 1614 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1615 &panel, &dsi->bridge); 1616 if (ret) { 1617 /* If the bridge or panel pointed by dev->of_node is not 1618 * enabled, just return 0 here so that we don't prevent the DRM 1619 * dev from being registered. Of course that means the DSI 1620 * encoder won't be exposed, but that's not a problem since 1621 * nothing is connected to it. 1622 */ 1623 if (ret == -ENODEV) 1624 return 0; 1625 1626 return ret; 1627 } 1628 1629 if (panel) { 1630 dsi->bridge = devm_drm_panel_bridge_add(dev, panel, 1631 DRM_MODE_CONNECTOR_DSI); 1632 if (IS_ERR(dsi->bridge)) 1633 return PTR_ERR(dsi->bridge); 1634 } 1635 1636 /* The esc clock rate is supposed to always be 100Mhz. */ 1637 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1638 if (ret) { 1639 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1640 return ret; 1641 } 1642 1643 ret = vc4_dsi_init_phy_clocks(dsi); 1644 if (ret) 1645 return ret; 1646 1647 if (dsi->port == 1) 1648 vc4->dsi1 = dsi; 1649 1650 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, 1651 DRM_MODE_ENCODER_DSI, NULL); 1652 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1653 1654 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL); 1655 if (ret) { 1656 dev_err(dev, "bridge attach failed: %d\n", ret); 1657 return ret; 1658 } 1659 /* Disable the atomic helper calls into the bridge. We 1660 * manually call the bridge pre_enable / enable / etc. calls 1661 * from our driver, since we need to sequence them within the 1662 * encoder's enable/disable paths. 1663 */ 1664 dsi->encoder->bridge = NULL; 1665 1666 pm_runtime_enable(dev); 1667 1668 return 0; 1669 } 1670 1671 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1672 void *data) 1673 { 1674 struct drm_device *drm = dev_get_drvdata(master); 1675 struct vc4_dev *vc4 = to_vc4_dev(drm); 1676 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1677 1678 if (dsi->bridge) 1679 pm_runtime_disable(dev); 1680 1681 vc4_dsi_encoder_destroy(dsi->encoder); 1682 1683 if (dsi->port == 1) 1684 vc4->dsi1 = NULL; 1685 } 1686 1687 static const struct component_ops vc4_dsi_ops = { 1688 .bind = vc4_dsi_bind, 1689 .unbind = vc4_dsi_unbind, 1690 }; 1691 1692 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1693 { 1694 struct device *dev = &pdev->dev; 1695 struct vc4_dsi *dsi; 1696 int ret; 1697 1698 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1699 if (!dsi) 1700 return -ENOMEM; 1701 dev_set_drvdata(dev, dsi); 1702 1703 dsi->pdev = pdev; 1704 1705 /* Note, the initialization sequence for DSI and panels is 1706 * tricky. The component bind above won't get past its 1707 * -EPROBE_DEFER until the panel/bridge probes. The 1708 * panel/bridge will return -EPROBE_DEFER until it has a 1709 * mipi_dsi_host to register its device to. So, we register 1710 * the host during pdev probe time, so vc4 as a whole can then 1711 * -EPROBE_DEFER its component bind process until the panel 1712 * successfully attaches. 1713 */ 1714 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1715 dsi->dsi_host.dev = dev; 1716 mipi_dsi_host_register(&dsi->dsi_host); 1717 1718 ret = component_add(&pdev->dev, &vc4_dsi_ops); 1719 if (ret) { 1720 mipi_dsi_host_unregister(&dsi->dsi_host); 1721 return ret; 1722 } 1723 1724 return 0; 1725 } 1726 1727 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1728 { 1729 struct device *dev = &pdev->dev; 1730 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1731 1732 component_del(&pdev->dev, &vc4_dsi_ops); 1733 mipi_dsi_host_unregister(&dsi->dsi_host); 1734 1735 return 0; 1736 } 1737 1738 struct platform_driver vc4_dsi_driver = { 1739 .probe = vc4_dsi_dev_probe, 1740 .remove = vc4_dsi_dev_remove, 1741 .driver = { 1742 .name = "vc4_dsi", 1743 .of_match_table = vc4_dsi_dt_match, 1744 }, 1745 }; 1746