1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2016 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 DSI0/DSI1 module 8 * 9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 11 * controller. 12 * 13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 14 * while the compute module brings both DSI0 and DSI1 out. 15 * 16 * This driver has been tested for DSI1 video-mode display only 17 * currently, with most of the information necessary for DSI0 18 * hopefully present. 19 */ 20 21 #include <linux/clk-provider.h> 22 #include <linux/clk.h> 23 #include <linux/completion.h> 24 #include <linux/component.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/i2c.h> 28 #include <linux/io.h> 29 #include <linux/of_address.h> 30 #include <linux/of_platform.h> 31 #include <linux/pm_runtime.h> 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_bridge.h> 35 #include <drm/drm_edid.h> 36 #include <drm/drm_mipi_dsi.h> 37 #include <drm/drm_of.h> 38 #include <drm/drm_panel.h> 39 #include <drm/drm_probe_helper.h> 40 #include <drm/drm_simple_kms_helper.h> 41 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 #define DSI_CMD_FIFO_DEPTH 16 46 #define DSI_PIX_FIFO_DEPTH 256 47 #define DSI_PIX_FIFO_WIDTH 4 48 49 #define DSI0_CTRL 0x00 50 51 /* Command packet control. */ 52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 53 #define DSI1_TXPKT1C 0x04 54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 58 59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 63 /* Primary display where cmdfifo provides part of the payload and 64 * pixelvalve the rest. 65 */ 66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 67 /* Secondary display where cmdfifo provides part of the payload and 68 * pixfifo the rest. 69 */ 70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 71 72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 74 75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 77 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 78 # define DSI_TXPKT1C_CMD_CTRL_TX 0 79 /* Command with BTA for either ack or read data. */ 80 # define DSI_TXPKT1C_CMD_CTRL_RX 1 81 /* Trigger according to TRIG_CMD */ 82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 83 /* BTA alone for getting error status after a command, or a TE trigger 84 * without a previous command. 85 */ 86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 87 88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 91 # define DSI_TXPKT1C_CMD_EN BIT(0) 92 93 /* Command packet header. */ 94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 95 #define DSI1_TXPKT1H 0x08 96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 101 # define DSI_TXPKT1H_BC_DT_SHIFT 0 102 103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 104 #define DSI1_RXPKT1H 0x14 105 # define DSI_RXPKT1H_CRC_ERR BIT(31) 106 # define DSI_RXPKT1H_DET_ERR BIT(30) 107 # define DSI_RXPKT1H_ECC_ERR BIT(29) 108 # define DSI_RXPKT1H_COR_ERR BIT(28) 109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 121 122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 123 #define DSI1_RXPKT2H 0x18 124 # define DSI_RXPKT1H_DET_ERR BIT(30) 125 # define DSI_RXPKT1H_ECC_ERR BIT(29) 126 # define DSI_RXPKT1H_COR_ERR BIT(28) 127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 131 # define DSI_RXPKT1H_DT_SHIFT 0 132 133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 134 #define DSI1_TXPKT_CMD_FIFO 0x1c 135 136 #define DSI0_DISP0_CTRL 0x18 137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 141 # define DSI_DISP0_LP_STOP_DISABLE 0 142 # define DSI_DISP0_LP_STOP_PERLINE 1 143 # define DSI_DISP0_LP_STOP_PERFRAME 2 144 145 /* Transmit RGB pixels and null packets only during HACTIVE, instead 146 * of going to LP-STOP. 147 */ 148 # define DSI_DISP_HACTIVE_NULL BIT(10) 149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 150 # define DSI_DISP_VBLP_CTRL BIT(9) 151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 152 # define DSI_DISP_HFP_CTRL BIT(8) 153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 154 # define DSI_DISP_HBP_CTRL BIT(7) 155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 156 # define DSI_DISP0_CHANNEL_SHIFT 5 157 /* Enables end events for HSYNC/VSYNC, not just start events. */ 158 # define DSI_DISP0_ST_END BIT(4) 159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 160 # define DSI_DISP0_PFORMAT_SHIFT 2 161 # define DSI_PFORMAT_RGB565 0 162 # define DSI_PFORMAT_RGB666_PACKED 1 163 # define DSI_PFORMAT_RGB666 2 164 # define DSI_PFORMAT_RGB888 3 165 /* Default is VIDEO mode. */ 166 # define DSI_DISP0_COMMAND_MODE BIT(1) 167 # define DSI_DISP0_ENABLE BIT(0) 168 169 #define DSI0_DISP1_CTRL 0x1c 170 #define DSI1_DISP1_CTRL 0x2c 171 /* Format of the data written to TXPKT_PIX_FIFO. */ 172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 173 # define DSI_DISP1_PFORMAT_SHIFT 1 174 # define DSI_DISP1_PFORMAT_16BIT 0 175 # define DSI_DISP1_PFORMAT_24BIT 1 176 # define DSI_DISP1_PFORMAT_32BIT_LE 2 177 # define DSI_DISP1_PFORMAT_32BIT_BE 3 178 179 /* DISP1 is always command mode. */ 180 # define DSI_DISP1_ENABLE BIT(0) 181 182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 183 184 #define DSI0_INT_STAT 0x24 185 #define DSI0_INT_EN 0x28 186 # define DSI0_INT_FIFO_ERR BIT(25) 187 # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23) 188 # define DSI0_INT_CMDC_DONE_SHIFT 23 189 # define DSI0_INT_CMDC_DONE_NO_REPEAT 1 190 # define DSI0_INT_CMDC_DONE_REPEAT 3 191 # define DSI0_INT_PHY_DIR_RTF BIT(22) 192 # define DSI0_INT_PHY_D1_ULPS BIT(21) 193 # define DSI0_INT_PHY_D1_STOP BIT(20) 194 # define DSI0_INT_PHY_RXLPDT BIT(19) 195 # define DSI0_INT_PHY_RXTRIG BIT(18) 196 # define DSI0_INT_PHY_D0_ULPS BIT(17) 197 # define DSI0_INT_PHY_D0_LPDT BIT(16) 198 # define DSI0_INT_PHY_D0_FTR BIT(15) 199 # define DSI0_INT_PHY_D0_STOP BIT(14) 200 /* Signaled when the clock lane enters the given state. */ 201 # define DSI0_INT_PHY_CLK_ULPS BIT(13) 202 # define DSI0_INT_PHY_CLK_HS BIT(12) 203 # define DSI0_INT_PHY_CLK_FTR BIT(11) 204 /* Signaled on timeouts */ 205 # define DSI0_INT_PR_TO BIT(10) 206 # define DSI0_INT_TA_TO BIT(9) 207 # define DSI0_INT_LPRX_TO BIT(8) 208 # define DSI0_INT_HSTX_TO BIT(7) 209 /* Contention on a line when trying to drive the line low */ 210 # define DSI0_INT_ERR_CONT_LP1 BIT(6) 211 # define DSI0_INT_ERR_CONT_LP0 BIT(5) 212 /* Control error: incorrect line state sequence on data lane 0. */ 213 # define DSI0_INT_ERR_CONTROL BIT(4) 214 # define DSI0_INT_ERR_SYNC_ESC BIT(3) 215 # define DSI0_INT_RX2_PKT BIT(2) 216 # define DSI0_INT_RX1_PKT BIT(1) 217 # define DSI0_INT_CMD_PKT BIT(0) 218 219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \ 220 DSI0_INT_ERR_CONTROL | \ 221 DSI0_INT_ERR_CONT_LP0 | \ 222 DSI0_INT_ERR_CONT_LP1 | \ 223 DSI0_INT_HSTX_TO | \ 224 DSI0_INT_LPRX_TO | \ 225 DSI0_INT_TA_TO | \ 226 DSI0_INT_PR_TO) 227 228 # define DSI1_INT_PHY_D3_ULPS BIT(30) 229 # define DSI1_INT_PHY_D3_STOP BIT(29) 230 # define DSI1_INT_PHY_D2_ULPS BIT(28) 231 # define DSI1_INT_PHY_D2_STOP BIT(27) 232 # define DSI1_INT_PHY_D1_ULPS BIT(26) 233 # define DSI1_INT_PHY_D1_STOP BIT(25) 234 # define DSI1_INT_PHY_D0_ULPS BIT(24) 235 # define DSI1_INT_PHY_D0_STOP BIT(23) 236 # define DSI1_INT_FIFO_ERR BIT(22) 237 # define DSI1_INT_PHY_DIR_RTF BIT(21) 238 # define DSI1_INT_PHY_RXLPDT BIT(20) 239 # define DSI1_INT_PHY_RXTRIG BIT(19) 240 # define DSI1_INT_PHY_D0_LPDT BIT(18) 241 # define DSI1_INT_PHY_DIR_FTR BIT(17) 242 243 /* Signaled when the clock lane enters the given state. */ 244 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 245 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 246 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 247 248 /* Signaled on timeouts */ 249 # define DSI1_INT_PR_TO BIT(13) 250 # define DSI1_INT_TA_TO BIT(12) 251 # define DSI1_INT_LPRX_TO BIT(11) 252 # define DSI1_INT_HSTX_TO BIT(10) 253 254 /* Contention on a line when trying to drive the line low */ 255 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 256 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 257 258 /* Control error: incorrect line state sequence on data lane 0. */ 259 # define DSI1_INT_ERR_CONTROL BIT(7) 260 /* LPDT synchronization error (bits received not a multiple of 8. */ 261 262 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 263 /* Signaled after receiving an error packet from the display in 264 * response to a read. 265 */ 266 # define DSI1_INT_RXPKT2 BIT(5) 267 /* Signaled after receiving a packet. The header and optional short 268 * response will be in RXPKT1H, and a long response will be in the 269 * RXPKT_FIFO. 270 */ 271 # define DSI1_INT_RXPKT1 BIT(4) 272 # define DSI1_INT_TXPKT2_DONE BIT(3) 273 # define DSI1_INT_TXPKT2_END BIT(2) 274 /* Signaled after all repeats of TXPKT1 are transferred. */ 275 # define DSI1_INT_TXPKT1_DONE BIT(1) 276 /* Signaled after each TXPKT1 repeat is scheduled. */ 277 # define DSI1_INT_TXPKT1_END BIT(0) 278 279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 280 DSI1_INT_ERR_CONTROL | \ 281 DSI1_INT_ERR_CONT_LP0 | \ 282 DSI1_INT_ERR_CONT_LP1 | \ 283 DSI1_INT_HSTX_TO | \ 284 DSI1_INT_LPRX_TO | \ 285 DSI1_INT_TA_TO | \ 286 DSI1_INT_PR_TO) 287 288 #define DSI0_STAT 0x2c 289 #define DSI0_HSTX_TO_CNT 0x30 290 #define DSI0_LPRX_TO_CNT 0x34 291 #define DSI0_TA_TO_CNT 0x38 292 #define DSI0_PR_TO_CNT 0x3c 293 #define DSI0_PHYC 0x40 294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 296 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 299 # define DSI1_PHYC_CLANE_ULPS BIT(17) 300 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 301 # define DSI_PHYC_DLANE3_ULPS BIT(13) 302 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 303 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 304 # define DSI0_PHYC_CLANE_ULPS BIT(9) 305 # define DSI_PHYC_DLANE2_ULPS BIT(9) 306 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 307 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 308 # define DSI_PHYC_DLANE1_ULPS BIT(5) 309 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 310 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 311 # define DSI_PHYC_DLANE0_ULPS BIT(1) 312 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 313 314 #define DSI0_HS_CLT0 0x44 315 #define DSI0_HS_CLT1 0x48 316 #define DSI0_HS_CLT2 0x4c 317 #define DSI0_HS_DLT3 0x50 318 #define DSI0_HS_DLT4 0x54 319 #define DSI0_HS_DLT5 0x58 320 #define DSI0_HS_DLT6 0x5c 321 #define DSI0_HS_DLT7 0x60 322 323 #define DSI0_PHY_AFEC0 0x64 324 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 325 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 326 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 343 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 344 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 345 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 346 # define DSI1_PHY_AFEC0_RESET BIT(13) 347 # define DSI1_PHY_AFEC0_PD BIT(12) 348 # define DSI0_PHY_AFEC0_RESET BIT(11) 349 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 350 # define DSI0_PHY_AFEC0_PD BIT(10) 351 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10) 352 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 353 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 354 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 355 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8) 356 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 358 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 360 361 #define DSI0_PHY_AFEC1 0x68 362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 368 369 #define DSI0_TST_SEL 0x6c 370 #define DSI0_TST_MON 0x70 371 #define DSI0_ID 0x74 372 # define DSI_ID_VALUE 0x00647369 373 374 #define DSI1_CTRL 0x00 375 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 376 # define DSI_CTRL_HS_CLKC_SHIFT 14 377 # define DSI_CTRL_HS_CLKC_BYTE 0 378 # define DSI_CTRL_HS_CLKC_DDR2 1 379 # define DSI_CTRL_HS_CLKC_DDR 2 380 381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 382 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 383 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 384 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 385 # define DSI_CTRL_CAL_BYTE BIT(9) 386 # define DSI_CTRL_INV_BYTE BIT(8) 387 # define DSI_CTRL_CLR_LDF BIT(7) 388 # define DSI0_CTRL_CLR_PBCF BIT(6) 389 # define DSI1_CTRL_CLR_RXF BIT(6) 390 # define DSI0_CTRL_CLR_CPBCF BIT(5) 391 # define DSI1_CTRL_CLR_PDF BIT(5) 392 # define DSI0_CTRL_CLR_PDF BIT(4) 393 # define DSI1_CTRL_CLR_CDF BIT(4) 394 # define DSI0_CTRL_CLR_CDF BIT(3) 395 # define DSI0_CTRL_CTRL2 BIT(2) 396 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 397 # define DSI0_CTRL_CTRL1 BIT(1) 398 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 399 # define DSI0_CTRL_CTRL0 BIT(0) 400 # define DSI1_CTRL_EN BIT(0) 401 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 402 DSI0_CTRL_CLR_PBCF | \ 403 DSI0_CTRL_CLR_CPBCF | \ 404 DSI0_CTRL_CLR_PDF | \ 405 DSI0_CTRL_CLR_CDF) 406 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 407 DSI1_CTRL_CLR_RXF | \ 408 DSI1_CTRL_CLR_PDF | \ 409 DSI1_CTRL_CLR_CDF) 410 411 #define DSI1_TXPKT2C 0x0c 412 #define DSI1_TXPKT2H 0x10 413 #define DSI1_TXPKT_PIX_FIFO 0x20 414 #define DSI1_RXPKT_FIFO 0x24 415 #define DSI1_DISP0_CTRL 0x28 416 #define DSI1_INT_STAT 0x30 417 #define DSI1_INT_EN 0x34 418 /* State reporting bits. These mostly behave like INT_STAT, where 419 * writing a 1 clears the bit. 420 */ 421 #define DSI1_STAT 0x38 422 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 423 # define DSI1_STAT_PHY_D3_STOP BIT(30) 424 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 425 # define DSI1_STAT_PHY_D2_STOP BIT(28) 426 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 427 # define DSI1_STAT_PHY_D1_STOP BIT(26) 428 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 429 # define DSI1_STAT_PHY_D0_STOP BIT(24) 430 # define DSI1_STAT_FIFO_ERR BIT(23) 431 # define DSI1_STAT_PHY_RXLPDT BIT(22) 432 # define DSI1_STAT_PHY_RXTRIG BIT(21) 433 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 434 /* Set when in forward direction */ 435 # define DSI1_STAT_PHY_DIR BIT(19) 436 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 437 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 438 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 439 # define DSI1_STAT_PR_TO BIT(15) 440 # define DSI1_STAT_TA_TO BIT(14) 441 # define DSI1_STAT_LPRX_TO BIT(13) 442 # define DSI1_STAT_HSTX_TO BIT(12) 443 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 444 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 445 # define DSI1_STAT_ERR_CONTROL BIT(9) 446 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 447 # define DSI1_STAT_RXPKT2 BIT(7) 448 # define DSI1_STAT_RXPKT1 BIT(6) 449 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 450 # define DSI1_STAT_TXPKT2_DONE BIT(4) 451 # define DSI1_STAT_TXPKT2_END BIT(3) 452 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 453 # define DSI1_STAT_TXPKT1_DONE BIT(1) 454 # define DSI1_STAT_TXPKT1_END BIT(0) 455 456 #define DSI1_HSTX_TO_CNT 0x3c 457 #define DSI1_LPRX_TO_CNT 0x40 458 #define DSI1_TA_TO_CNT 0x44 459 #define DSI1_PR_TO_CNT 0x48 460 #define DSI1_PHYC 0x4c 461 462 #define DSI1_HS_CLT0 0x50 463 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 464 # define DSI_HS_CLT0_CZERO_SHIFT 18 465 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 466 # define DSI_HS_CLT0_CPRE_SHIFT 9 467 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 468 # define DSI_HS_CLT0_CPREP_SHIFT 0 469 470 #define DSI1_HS_CLT1 0x54 471 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 472 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 473 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 474 # define DSI_HS_CLT1_CPOST_SHIFT 0 475 476 #define DSI1_HS_CLT2 0x58 477 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 478 # define DSI_HS_CLT2_WUP_SHIFT 0 479 480 #define DSI1_HS_DLT3 0x5c 481 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 482 # define DSI_HS_DLT3_EXIT_SHIFT 18 483 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 484 # define DSI_HS_DLT3_ZERO_SHIFT 9 485 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 486 # define DSI_HS_DLT3_PRE_SHIFT 0 487 488 #define DSI1_HS_DLT4 0x60 489 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 490 # define DSI_HS_DLT4_ANLAT_SHIFT 18 491 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 492 # define DSI_HS_DLT4_TRAIL_SHIFT 9 493 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 494 # define DSI_HS_DLT4_LPX_SHIFT 0 495 496 #define DSI1_HS_DLT5 0x64 497 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 498 # define DSI_HS_DLT5_INIT_SHIFT 0 499 500 #define DSI1_HS_DLT6 0x68 501 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 502 # define DSI_HS_DLT6_TA_GET_SHIFT 24 503 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 504 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 505 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 506 # define DSI_HS_DLT6_TA_GO_SHIFT 8 507 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 508 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 509 510 #define DSI1_HS_DLT7 0x6c 511 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 512 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 513 514 #define DSI1_PHY_AFEC0 0x70 515 516 #define DSI1_PHY_AFEC1 0x74 517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 527 528 #define DSI1_TST_SEL 0x78 529 #define DSI1_TST_MON 0x7c 530 #define DSI1_PHY_TST1 0x80 531 #define DSI1_PHY_TST2 0x84 532 #define DSI1_PHY_FIFO_STAT 0x88 533 /* Actually, all registers in the range that aren't otherwise claimed 534 * will return the ID. 535 */ 536 #define DSI1_ID 0x8c 537 538 struct vc4_dsi_variant { 539 /* Whether we're on bcm2835's DSI0 or DSI1. */ 540 unsigned int port; 541 542 bool broken_axi_workaround; 543 544 const char *debugfs_name; 545 const struct debugfs_reg32 *regs; 546 size_t nregs; 547 548 }; 549 550 /* General DSI hardware state. */ 551 struct vc4_dsi { 552 struct platform_device *pdev; 553 554 struct mipi_dsi_host dsi_host; 555 struct drm_encoder *encoder; 556 struct drm_bridge *bridge; 557 struct list_head bridge_chain; 558 559 void __iomem *regs; 560 561 struct dma_chan *reg_dma_chan; 562 dma_addr_t reg_dma_paddr; 563 u32 *reg_dma_mem; 564 dma_addr_t reg_paddr; 565 566 const struct vc4_dsi_variant *variant; 567 568 /* DSI channel for the panel we're connected to. */ 569 u32 channel; 570 u32 lanes; 571 u32 format; 572 u32 divider; 573 u32 mode_flags; 574 575 /* Input clock from CPRMAN to the digital PHY, for the DSI 576 * escape clock. 577 */ 578 struct clk *escape_clock; 579 580 /* Input clock to the analog PHY, used to generate the DSI bit 581 * clock. 582 */ 583 struct clk *pll_phy_clock; 584 585 /* HS Clocks generated within the DSI analog PHY. */ 586 struct clk_fixed_factor phy_clocks[3]; 587 588 struct clk_hw_onecell_data *clk_onecell; 589 590 /* Pixel clock output to the pixelvalve, generated from the HS 591 * clock. 592 */ 593 struct clk *pixel_clock; 594 595 struct completion xfer_completion; 596 int xfer_result; 597 598 struct debugfs_regset32 regset; 599 }; 600 601 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 602 603 static inline void 604 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 605 { 606 struct dma_chan *chan = dsi->reg_dma_chan; 607 struct dma_async_tx_descriptor *tx; 608 dma_cookie_t cookie; 609 int ret; 610 611 /* DSI0 should be able to write normally. */ 612 if (!chan) { 613 writel(val, dsi->regs + offset); 614 return; 615 } 616 617 *dsi->reg_dma_mem = val; 618 619 tx = chan->device->device_prep_dma_memcpy(chan, 620 dsi->reg_paddr + offset, 621 dsi->reg_dma_paddr, 622 4, 0); 623 if (!tx) { 624 DRM_ERROR("Failed to set up DMA register write\n"); 625 return; 626 } 627 628 cookie = tx->tx_submit(tx); 629 ret = dma_submit_error(cookie); 630 if (ret) { 631 DRM_ERROR("Failed to submit DMA: %d\n", ret); 632 return; 633 } 634 ret = dma_sync_wait(chan, cookie); 635 if (ret) 636 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 637 } 638 639 #define DSI_READ(offset) readl(dsi->regs + (offset)) 640 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 641 #define DSI_PORT_READ(offset) \ 642 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset) 643 #define DSI_PORT_WRITE(offset, val) \ 644 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val) 645 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit) 646 647 /* VC4 DSI encoder KMS struct */ 648 struct vc4_dsi_encoder { 649 struct vc4_encoder base; 650 struct vc4_dsi *dsi; 651 }; 652 653 static inline struct vc4_dsi_encoder * 654 to_vc4_dsi_encoder(struct drm_encoder *encoder) 655 { 656 return container_of(encoder, struct vc4_dsi_encoder, base.base); 657 } 658 659 static const struct debugfs_reg32 dsi0_regs[] = { 660 VC4_REG32(DSI0_CTRL), 661 VC4_REG32(DSI0_STAT), 662 VC4_REG32(DSI0_HSTX_TO_CNT), 663 VC4_REG32(DSI0_LPRX_TO_CNT), 664 VC4_REG32(DSI0_TA_TO_CNT), 665 VC4_REG32(DSI0_PR_TO_CNT), 666 VC4_REG32(DSI0_DISP0_CTRL), 667 VC4_REG32(DSI0_DISP1_CTRL), 668 VC4_REG32(DSI0_INT_STAT), 669 VC4_REG32(DSI0_INT_EN), 670 VC4_REG32(DSI0_PHYC), 671 VC4_REG32(DSI0_HS_CLT0), 672 VC4_REG32(DSI0_HS_CLT1), 673 VC4_REG32(DSI0_HS_CLT2), 674 VC4_REG32(DSI0_HS_DLT3), 675 VC4_REG32(DSI0_HS_DLT4), 676 VC4_REG32(DSI0_HS_DLT5), 677 VC4_REG32(DSI0_HS_DLT6), 678 VC4_REG32(DSI0_HS_DLT7), 679 VC4_REG32(DSI0_PHY_AFEC0), 680 VC4_REG32(DSI0_PHY_AFEC1), 681 VC4_REG32(DSI0_ID), 682 }; 683 684 static const struct debugfs_reg32 dsi1_regs[] = { 685 VC4_REG32(DSI1_CTRL), 686 VC4_REG32(DSI1_STAT), 687 VC4_REG32(DSI1_HSTX_TO_CNT), 688 VC4_REG32(DSI1_LPRX_TO_CNT), 689 VC4_REG32(DSI1_TA_TO_CNT), 690 VC4_REG32(DSI1_PR_TO_CNT), 691 VC4_REG32(DSI1_DISP0_CTRL), 692 VC4_REG32(DSI1_DISP1_CTRL), 693 VC4_REG32(DSI1_INT_STAT), 694 VC4_REG32(DSI1_INT_EN), 695 VC4_REG32(DSI1_PHYC), 696 VC4_REG32(DSI1_HS_CLT0), 697 VC4_REG32(DSI1_HS_CLT1), 698 VC4_REG32(DSI1_HS_CLT2), 699 VC4_REG32(DSI1_HS_DLT3), 700 VC4_REG32(DSI1_HS_DLT4), 701 VC4_REG32(DSI1_HS_DLT5), 702 VC4_REG32(DSI1_HS_DLT6), 703 VC4_REG32(DSI1_HS_DLT7), 704 VC4_REG32(DSI1_PHY_AFEC0), 705 VC4_REG32(DSI1_PHY_AFEC1), 706 VC4_REG32(DSI1_ID), 707 }; 708 709 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 710 { 711 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 712 713 if (latch) 714 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 715 else 716 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 717 718 DSI_PORT_WRITE(PHY_AFEC0, afec0); 719 } 720 721 /* Enters or exits Ultra Low Power State. */ 722 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 723 { 724 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 725 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 726 DSI_PHYC_DLANE0_ULPS | 727 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 728 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 729 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 730 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 731 DSI1_STAT_PHY_D0_ULPS | 732 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 733 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 734 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 735 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 736 DSI1_STAT_PHY_D0_STOP | 737 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 738 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 739 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 740 int ret; 741 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 742 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 743 744 if (ulps == ulps_currently_enabled) 745 return; 746 747 DSI_PORT_WRITE(STAT, stat_ulps); 748 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 749 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 750 if (ret) { 751 dev_warn(&dsi->pdev->dev, 752 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 753 DSI_PORT_READ(STAT)); 754 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 755 vc4_dsi_latch_ulps(dsi, false); 756 return; 757 } 758 759 /* The DSI module can't be disabled while the module is 760 * generating ULPS state. So, to be able to disable the 761 * module, we have the AFE latch the ULPS state and continue 762 * on to having the module enter STOP. 763 */ 764 vc4_dsi_latch_ulps(dsi, ulps); 765 766 DSI_PORT_WRITE(STAT, stat_stop); 767 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 768 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 769 if (ret) { 770 dev_warn(&dsi->pdev->dev, 771 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 772 DSI_PORT_READ(STAT)); 773 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 774 return; 775 } 776 } 777 778 static u32 779 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 780 { 781 /* The HS timings have to be rounded up to a multiple of 8 782 * because we're using the byte clock. 783 */ 784 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 785 } 786 787 /* ESC always runs at 100Mhz. */ 788 #define ESC_TIME_NS 10 789 790 static u32 791 dsi_esc_timing(u32 ns) 792 { 793 return DIV_ROUND_UP(ns, ESC_TIME_NS); 794 } 795 796 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 797 { 798 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 799 struct vc4_dsi *dsi = vc4_encoder->dsi; 800 struct device *dev = &dsi->pdev->dev; 801 struct drm_bridge *iter; 802 803 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 804 if (iter->funcs->disable) 805 iter->funcs->disable(iter); 806 807 if (iter == dsi->bridge) 808 break; 809 } 810 811 vc4_dsi_ulps(dsi, true); 812 813 list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) { 814 if (iter->funcs->post_disable) 815 iter->funcs->post_disable(iter); 816 } 817 818 clk_disable_unprepare(dsi->pll_phy_clock); 819 clk_disable_unprepare(dsi->escape_clock); 820 clk_disable_unprepare(dsi->pixel_clock); 821 822 pm_runtime_put(dev); 823 } 824 825 /* Extends the mode's blank intervals to handle BCM2835's integer-only 826 * DSI PLL divider. 827 * 828 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 829 * driver since most peripherals are hanging off of the PLLD_PER 830 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 831 * the pixel clock), only has an integer divider off of DSI. 832 * 833 * To get our panel mode to refresh at the expected 60Hz, we need to 834 * extend the horizontal blank time. This means we drive a 835 * higher-than-expected clock rate to the panel, but that's what the 836 * firmware does too. 837 */ 838 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 839 const struct drm_display_mode *mode, 840 struct drm_display_mode *adjusted_mode) 841 { 842 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 843 struct vc4_dsi *dsi = vc4_encoder->dsi; 844 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 845 unsigned long parent_rate = clk_get_rate(phy_parent); 846 unsigned long pixel_clock_hz = mode->clock * 1000; 847 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 848 int divider; 849 850 /* Find what divider gets us a faster clock than the requested 851 * pixel clock. 852 */ 853 for (divider = 1; divider < 255; divider++) { 854 if (parent_rate / (divider + 1) < pll_clock) 855 break; 856 } 857 858 /* Now that we've picked a PLL divider, calculate back to its 859 * pixel clock. 860 */ 861 pll_clock = parent_rate / divider; 862 pixel_clock_hz = pll_clock / dsi->divider; 863 864 adjusted_mode->clock = pixel_clock_hz / 1000; 865 866 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 867 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 868 mode->clock; 869 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 870 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 871 872 return true; 873 } 874 875 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 876 { 877 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 878 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 879 struct vc4_dsi *dsi = vc4_encoder->dsi; 880 struct device *dev = &dsi->pdev->dev; 881 bool debug_dump_regs = false; 882 struct drm_bridge *iter; 883 unsigned long hs_clock; 884 u32 ui_ns; 885 /* Minimum LP state duration in escape clock cycles. */ 886 u32 lpx = dsi_esc_timing(60); 887 unsigned long pixel_clock_hz = mode->clock * 1000; 888 unsigned long dsip_clock; 889 unsigned long phy_clock; 890 int ret; 891 892 ret = pm_runtime_resume_and_get(dev); 893 if (ret) { 894 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port); 895 return; 896 } 897 898 if (debug_dump_regs) { 899 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 900 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 901 drm_print_regset32(&p, &dsi->regset); 902 } 903 904 /* Round up the clk_set_rate() request slightly, since 905 * PLLD_DSI1 is an integer divider and its rate selection will 906 * never round up. 907 */ 908 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 909 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 910 if (ret) { 911 dev_err(&dsi->pdev->dev, 912 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 913 } 914 915 /* Reset the DSI and all its fifos. */ 916 DSI_PORT_WRITE(CTRL, 917 DSI_CTRL_SOFT_RESET_CFG | 918 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 919 920 DSI_PORT_WRITE(CTRL, 921 DSI_CTRL_HSDT_EOT_DISABLE | 922 DSI_CTRL_RX_LPDT_EOT_DISABLE); 923 924 /* Clear all stat bits so we see what has happened during enable. */ 925 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 926 927 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 928 if (dsi->variant->port == 0) { 929 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 930 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 931 932 if (dsi->lanes < 2) 933 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 934 935 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 936 afec0 |= DSI0_PHY_AFEC0_RESET; 937 938 DSI_PORT_WRITE(PHY_AFEC0, afec0); 939 940 /* AFEC reset hold time */ 941 mdelay(1); 942 943 DSI_PORT_WRITE(PHY_AFEC1, 944 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 945 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 946 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 947 } else { 948 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 949 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 950 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 951 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 952 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 953 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 954 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 955 956 if (dsi->lanes < 4) 957 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 958 if (dsi->lanes < 3) 959 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 960 if (dsi->lanes < 2) 961 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 962 963 afec0 |= DSI1_PHY_AFEC0_RESET; 964 965 DSI_PORT_WRITE(PHY_AFEC0, afec0); 966 967 DSI_PORT_WRITE(PHY_AFEC1, 0); 968 969 /* AFEC reset hold time */ 970 mdelay(1); 971 } 972 973 ret = clk_prepare_enable(dsi->escape_clock); 974 if (ret) { 975 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 976 return; 977 } 978 979 ret = clk_prepare_enable(dsi->pll_phy_clock); 980 if (ret) { 981 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 982 return; 983 } 984 985 hs_clock = clk_get_rate(dsi->pll_phy_clock); 986 987 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 988 * not the pixel clock rate. DSIxP take from the APHY's byte, 989 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 990 * that rate. Separately, a value derived from PIX_CLK_DIV 991 * and HS_CLKC is fed into the PV to divide down to the actual 992 * pixel clock for pushing pixels into DSI. 993 */ 994 dsip_clock = phy_clock / 8; 995 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 996 if (ret) { 997 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 998 dsip_clock, ret); 999 } 1000 1001 ret = clk_prepare_enable(dsi->pixel_clock); 1002 if (ret) { 1003 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 1004 return; 1005 } 1006 1007 /* How many ns one DSI unit interval is. Note that the clock 1008 * is DDR, so there's an extra divide by 2. 1009 */ 1010 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 1011 1012 DSI_PORT_WRITE(HS_CLT0, 1013 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 1014 DSI_HS_CLT0_CZERO) | 1015 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 1016 DSI_HS_CLT0_CPRE) | 1017 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 1018 DSI_HS_CLT0_CPREP)); 1019 1020 DSI_PORT_WRITE(HS_CLT1, 1021 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 1022 DSI_HS_CLT1_CTRAIL) | 1023 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 1024 DSI_HS_CLT1_CPOST)); 1025 1026 DSI_PORT_WRITE(HS_CLT2, 1027 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 1028 DSI_HS_CLT2_WUP)); 1029 1030 DSI_PORT_WRITE(HS_DLT3, 1031 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 1032 DSI_HS_DLT3_EXIT) | 1033 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 1034 DSI_HS_DLT3_ZERO) | 1035 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 1036 DSI_HS_DLT3_PRE)); 1037 1038 DSI_PORT_WRITE(HS_DLT4, 1039 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 1040 DSI_HS_DLT4_LPX) | 1041 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 1042 dsi_hs_timing(ui_ns, 60, 4)), 1043 DSI_HS_DLT4_TRAIL) | 1044 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 1045 1046 /* T_INIT is how long STOP is driven after power-up to 1047 * indicate to the slave (also coming out of power-up) that 1048 * master init is complete, and should be greater than the 1049 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 1050 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 1051 * T_INIT,SLAVE, while allowing protocols on top of it to give 1052 * greater minimums. The vc4 firmware uses an extremely 1053 * conservative 5ms, and we maintain that here. 1054 */ 1055 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1056 5 * 1000 * 1000, 0), 1057 DSI_HS_DLT5_INIT)); 1058 1059 DSI_PORT_WRITE(HS_DLT6, 1060 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1061 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1062 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1063 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1064 1065 DSI_PORT_WRITE(HS_DLT7, 1066 VC4_SET_FIELD(dsi_esc_timing(1000000), 1067 DSI_HS_DLT7_LP_WUP)); 1068 1069 DSI_PORT_WRITE(PHYC, 1070 DSI_PHYC_DLANE0_ENABLE | 1071 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1072 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1073 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1074 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1075 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1076 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1077 (dsi->variant->port == 0 ? 1078 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1079 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1080 1081 DSI_PORT_WRITE(CTRL, 1082 DSI_PORT_READ(CTRL) | 1083 DSI_CTRL_CAL_BYTE); 1084 1085 /* HS timeout in HS clock cycles: disabled. */ 1086 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1087 /* LP receive timeout in HS clocks. */ 1088 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1089 /* Bus turnaround timeout */ 1090 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1091 /* Display reset sequence timeout */ 1092 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1093 1094 /* Set up DISP1 for transferring long command payloads through 1095 * the pixfifo. 1096 */ 1097 DSI_PORT_WRITE(DISP1_CTRL, 1098 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1099 DSI_DISP1_PFORMAT) | 1100 DSI_DISP1_ENABLE); 1101 1102 /* Ungate the block. */ 1103 if (dsi->variant->port == 0) 1104 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1105 else 1106 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1107 1108 /* Bring AFE out of reset. */ 1109 DSI_PORT_WRITE(PHY_AFEC0, 1110 DSI_PORT_READ(PHY_AFEC0) & 1111 ~DSI_PORT_BIT(PHY_AFEC0_RESET)); 1112 1113 vc4_dsi_ulps(dsi, false); 1114 1115 list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) { 1116 if (iter->funcs->pre_enable) 1117 iter->funcs->pre_enable(iter); 1118 } 1119 1120 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1121 DSI_PORT_WRITE(DISP0_CTRL, 1122 VC4_SET_FIELD(dsi->divider, 1123 DSI_DISP0_PIX_CLK_DIV) | 1124 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1125 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1126 DSI_DISP0_LP_STOP_CTRL) | 1127 DSI_DISP0_ST_END | 1128 DSI_DISP0_ENABLE); 1129 } else { 1130 DSI_PORT_WRITE(DISP0_CTRL, 1131 DSI_DISP0_COMMAND_MODE | 1132 DSI_DISP0_ENABLE); 1133 } 1134 1135 list_for_each_entry(iter, &dsi->bridge_chain, chain_node) { 1136 if (iter->funcs->enable) 1137 iter->funcs->enable(iter); 1138 } 1139 1140 if (debug_dump_regs) { 1141 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1142 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1143 drm_print_regset32(&p, &dsi->regset); 1144 } 1145 } 1146 1147 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1148 const struct mipi_dsi_msg *msg) 1149 { 1150 struct vc4_dsi *dsi = host_to_dsi(host); 1151 struct mipi_dsi_packet packet; 1152 u32 pkth = 0, pktc = 0; 1153 int i, ret; 1154 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1155 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1156 1157 mipi_dsi_create_packet(&packet, msg); 1158 1159 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1160 pkth |= VC4_SET_FIELD(packet.header[1] | 1161 (packet.header[2] << 8), 1162 DSI_TXPKT1H_BC_PARAM); 1163 if (is_long) { 1164 /* Divide data across the various FIFOs we have available. 1165 * The command FIFO takes byte-oriented data, but is of 1166 * limited size. The pixel FIFO (never actually used for 1167 * pixel data in reality) is word oriented, and substantially 1168 * larger. So, we use the pixel FIFO for most of the data, 1169 * sending the residual bytes in the command FIFO at the start. 1170 * 1171 * With this arrangement, the command FIFO will never get full. 1172 */ 1173 if (packet.payload_length <= 16) { 1174 cmd_fifo_len = packet.payload_length; 1175 pix_fifo_len = 0; 1176 } else { 1177 cmd_fifo_len = (packet.payload_length % 1178 DSI_PIX_FIFO_WIDTH); 1179 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1180 DSI_PIX_FIFO_WIDTH); 1181 } 1182 1183 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1184 1185 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1186 } 1187 1188 if (msg->rx_len) { 1189 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1190 DSI_TXPKT1C_CMD_CTRL); 1191 } else { 1192 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1193 DSI_TXPKT1C_CMD_CTRL); 1194 } 1195 1196 for (i = 0; i < cmd_fifo_len; i++) 1197 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1198 for (i = 0; i < pix_fifo_len; i++) { 1199 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1200 1201 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1202 pix[0] | 1203 pix[1] << 8 | 1204 pix[2] << 16 | 1205 pix[3] << 24); 1206 } 1207 1208 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1209 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1210 if (is_long) 1211 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1212 1213 /* Send one copy of the packet. Larger repeats are used for pixel 1214 * data in command mode. 1215 */ 1216 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1217 1218 pktc |= DSI_TXPKT1C_CMD_EN; 1219 if (pix_fifo_len) { 1220 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1221 DSI_TXPKT1C_DISPLAY_NO); 1222 } else { 1223 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1224 DSI_TXPKT1C_DISPLAY_NO); 1225 } 1226 1227 /* Enable the appropriate interrupt for the transfer completion. */ 1228 dsi->xfer_result = 0; 1229 reinit_completion(&dsi->xfer_completion); 1230 if (dsi->variant->port == 0) { 1231 DSI_PORT_WRITE(INT_STAT, 1232 DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF); 1233 if (msg->rx_len) { 1234 DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1235 DSI0_INT_PHY_DIR_RTF)); 1236 } else { 1237 DSI_PORT_WRITE(INT_EN, 1238 (DSI0_INTERRUPTS_ALWAYS_ENABLED | 1239 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT, 1240 DSI0_INT_CMDC_DONE))); 1241 } 1242 } else { 1243 DSI_PORT_WRITE(INT_STAT, 1244 DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1245 if (msg->rx_len) { 1246 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1247 DSI1_INT_PHY_DIR_RTF)); 1248 } else { 1249 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1250 DSI1_INT_TXPKT1_DONE)); 1251 } 1252 } 1253 1254 /* Send the packet. */ 1255 DSI_PORT_WRITE(TXPKT1H, pkth); 1256 DSI_PORT_WRITE(TXPKT1C, pktc); 1257 1258 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1259 msecs_to_jiffies(1000))) { 1260 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1261 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1262 DSI_PORT_READ(INT_STAT)); 1263 ret = -ETIMEDOUT; 1264 } else { 1265 ret = dsi->xfer_result; 1266 } 1267 1268 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1269 1270 if (ret) 1271 goto reset_fifo_and_return; 1272 1273 if (ret == 0 && msg->rx_len) { 1274 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1275 u8 *msg_rx = msg->rx_buf; 1276 1277 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1278 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1279 DSI_RXPKT1H_BC_PARAM); 1280 1281 if (rxlen != msg->rx_len) { 1282 DRM_ERROR("DSI returned %db, expecting %db\n", 1283 rxlen, (int)msg->rx_len); 1284 ret = -ENXIO; 1285 goto reset_fifo_and_return; 1286 } 1287 1288 for (i = 0; i < msg->rx_len; i++) 1289 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1290 } else { 1291 /* FINISHME: Handle AWER */ 1292 1293 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1294 DSI_RXPKT1H_SHORT_0); 1295 if (msg->rx_len > 1) { 1296 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1297 DSI_RXPKT1H_SHORT_1); 1298 } 1299 } 1300 } 1301 1302 return ret; 1303 1304 reset_fifo_and_return: 1305 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1306 1307 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1308 udelay(1); 1309 DSI_PORT_WRITE(CTRL, 1310 DSI_PORT_READ(CTRL) | 1311 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1312 1313 DSI_PORT_WRITE(TXPKT1C, 0); 1314 DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED)); 1315 return ret; 1316 } 1317 1318 static const struct component_ops vc4_dsi_ops; 1319 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1320 struct mipi_dsi_device *device) 1321 { 1322 struct vc4_dsi *dsi = host_to_dsi(host); 1323 1324 dsi->lanes = device->lanes; 1325 dsi->channel = device->channel; 1326 dsi->mode_flags = device->mode_flags; 1327 1328 switch (device->format) { 1329 case MIPI_DSI_FMT_RGB888: 1330 dsi->format = DSI_PFORMAT_RGB888; 1331 dsi->divider = 24 / dsi->lanes; 1332 break; 1333 case MIPI_DSI_FMT_RGB666: 1334 dsi->format = DSI_PFORMAT_RGB666; 1335 dsi->divider = 24 / dsi->lanes; 1336 break; 1337 case MIPI_DSI_FMT_RGB666_PACKED: 1338 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1339 dsi->divider = 18 / dsi->lanes; 1340 break; 1341 case MIPI_DSI_FMT_RGB565: 1342 dsi->format = DSI_PFORMAT_RGB565; 1343 dsi->divider = 16 / dsi->lanes; 1344 break; 1345 default: 1346 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1347 dsi->format); 1348 return 0; 1349 } 1350 1351 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1352 dev_err(&dsi->pdev->dev, 1353 "Only VIDEO mode panels supported currently.\n"); 1354 return 0; 1355 } 1356 1357 return component_add(&dsi->pdev->dev, &vc4_dsi_ops); 1358 } 1359 1360 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1361 struct mipi_dsi_device *device) 1362 { 1363 struct vc4_dsi *dsi = host_to_dsi(host); 1364 1365 component_del(&dsi->pdev->dev, &vc4_dsi_ops); 1366 return 0; 1367 } 1368 1369 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1370 .attach = vc4_dsi_host_attach, 1371 .detach = vc4_dsi_host_detach, 1372 .transfer = vc4_dsi_host_transfer, 1373 }; 1374 1375 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1376 .disable = vc4_dsi_encoder_disable, 1377 .enable = vc4_dsi_encoder_enable, 1378 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1379 }; 1380 1381 static const struct vc4_dsi_variant bcm2711_dsi1_variant = { 1382 .port = 1, 1383 .debugfs_name = "dsi1_regs", 1384 .regs = dsi1_regs, 1385 .nregs = ARRAY_SIZE(dsi1_regs), 1386 }; 1387 1388 static const struct vc4_dsi_variant bcm2835_dsi0_variant = { 1389 .port = 0, 1390 .debugfs_name = "dsi0_regs", 1391 .regs = dsi0_regs, 1392 .nregs = ARRAY_SIZE(dsi0_regs), 1393 }; 1394 1395 static const struct vc4_dsi_variant bcm2835_dsi1_variant = { 1396 .port = 1, 1397 .broken_axi_workaround = true, 1398 .debugfs_name = "dsi1_regs", 1399 .regs = dsi1_regs, 1400 .nregs = ARRAY_SIZE(dsi1_regs), 1401 }; 1402 1403 static const struct of_device_id vc4_dsi_dt_match[] = { 1404 { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant }, 1405 { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant }, 1406 { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant }, 1407 {} 1408 }; 1409 1410 static void dsi_handle_error(struct vc4_dsi *dsi, 1411 irqreturn_t *ret, u32 stat, u32 bit, 1412 const char *type) 1413 { 1414 if (!(stat & bit)) 1415 return; 1416 1417 DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type); 1418 *ret = IRQ_HANDLED; 1419 } 1420 1421 /* 1422 * Initial handler for port 1 where we need the reg_dma workaround. 1423 * The register DMA writes sleep, so we can't do it in the top half. 1424 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1425 * parent interrupt contrller until our interrupt thread is done. 1426 */ 1427 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1428 { 1429 struct vc4_dsi *dsi = data; 1430 u32 stat = DSI_PORT_READ(INT_STAT); 1431 1432 if (!stat) 1433 return IRQ_NONE; 1434 1435 return IRQ_WAKE_THREAD; 1436 } 1437 1438 /* 1439 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1440 * 1 where we need the reg_dma workaround. 1441 */ 1442 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1443 { 1444 struct vc4_dsi *dsi = data; 1445 u32 stat = DSI_PORT_READ(INT_STAT); 1446 irqreturn_t ret = IRQ_NONE; 1447 1448 DSI_PORT_WRITE(INT_STAT, stat); 1449 1450 dsi_handle_error(dsi, &ret, stat, 1451 DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync"); 1452 dsi_handle_error(dsi, &ret, stat, 1453 DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence"); 1454 dsi_handle_error(dsi, &ret, stat, 1455 DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention"); 1456 dsi_handle_error(dsi, &ret, stat, 1457 DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention"); 1458 dsi_handle_error(dsi, &ret, stat, 1459 DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout"); 1460 dsi_handle_error(dsi, &ret, stat, 1461 DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout"); 1462 dsi_handle_error(dsi, &ret, stat, 1463 DSI_PORT_BIT(INT_TA_TO), "turnaround timeout"); 1464 dsi_handle_error(dsi, &ret, stat, 1465 DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout"); 1466 1467 if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE : 1468 DSI0_INT_CMDC_DONE_MASK) | 1469 DSI_PORT_BIT(INT_PHY_DIR_RTF))) { 1470 complete(&dsi->xfer_completion); 1471 ret = IRQ_HANDLED; 1472 } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) { 1473 complete(&dsi->xfer_completion); 1474 dsi->xfer_result = -ETIMEDOUT; 1475 ret = IRQ_HANDLED; 1476 } 1477 1478 return ret; 1479 } 1480 1481 /** 1482 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1483 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1484 * @dsi: DSI encoder 1485 */ 1486 static int 1487 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1488 { 1489 struct device *dev = &dsi->pdev->dev; 1490 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1491 static const struct { 1492 const char *name; 1493 int div; 1494 } phy_clocks[] = { 1495 { "byte", 8 }, 1496 { "ddr2", 4 }, 1497 { "ddr", 2 }, 1498 }; 1499 int i; 1500 1501 dsi->clk_onecell = devm_kzalloc(dev, 1502 sizeof(*dsi->clk_onecell) + 1503 ARRAY_SIZE(phy_clocks) * 1504 sizeof(struct clk_hw *), 1505 GFP_KERNEL); 1506 if (!dsi->clk_onecell) 1507 return -ENOMEM; 1508 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1509 1510 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1511 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1512 struct clk_init_data init; 1513 char clk_name[16]; 1514 int ret; 1515 1516 snprintf(clk_name, sizeof(clk_name), 1517 "dsi%u_%s", dsi->variant->port, phy_clocks[i].name); 1518 1519 /* We just use core fixed factor clock ops for the PHY 1520 * clocks. The clocks are actually gated by the 1521 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1522 * setting if we use the DDR/DDR2 clocks. However, 1523 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1524 * setting both our parent DSI PLL's rate and this 1525 * clock's rate, so it knows if DDR/DDR2 are going to 1526 * be used and could enable the gates itself. 1527 */ 1528 fix->mult = 1; 1529 fix->div = phy_clocks[i].div; 1530 fix->hw.init = &init; 1531 1532 memset(&init, 0, sizeof(init)); 1533 init.parent_names = &parent_name; 1534 init.num_parents = 1; 1535 init.name = clk_name; 1536 init.ops = &clk_fixed_factor_ops; 1537 1538 ret = devm_clk_hw_register(dev, &fix->hw); 1539 if (ret) 1540 return ret; 1541 1542 dsi->clk_onecell->hws[i] = &fix->hw; 1543 } 1544 1545 return of_clk_add_hw_provider(dev->of_node, 1546 of_clk_hw_onecell_get, 1547 dsi->clk_onecell); 1548 } 1549 1550 static void vc4_dsi_dma_mem_release(void *ptr) 1551 { 1552 struct vc4_dsi *dsi = ptr; 1553 struct device *dev = &dsi->pdev->dev; 1554 1555 dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr); 1556 dsi->reg_dma_mem = NULL; 1557 } 1558 1559 static void vc4_dsi_dma_chan_release(void *ptr) 1560 { 1561 struct vc4_dsi *dsi = ptr; 1562 1563 dma_release_channel(dsi->reg_dma_chan); 1564 dsi->reg_dma_chan = NULL; 1565 } 1566 1567 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1568 { 1569 struct platform_device *pdev = to_platform_device(dev); 1570 struct drm_device *drm = dev_get_drvdata(master); 1571 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1572 struct vc4_dsi_encoder *vc4_dsi_encoder; 1573 int ret; 1574 1575 dsi->variant = of_device_get_match_data(dev); 1576 1577 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1578 GFP_KERNEL); 1579 if (!vc4_dsi_encoder) 1580 return -ENOMEM; 1581 1582 INIT_LIST_HEAD(&dsi->bridge_chain); 1583 vc4_dsi_encoder->base.type = dsi->variant->port ? 1584 VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0; 1585 vc4_dsi_encoder->dsi = dsi; 1586 dsi->encoder = &vc4_dsi_encoder->base.base; 1587 1588 dsi->regs = vc4_ioremap_regs(pdev, 0); 1589 if (IS_ERR(dsi->regs)) 1590 return PTR_ERR(dsi->regs); 1591 1592 dsi->regset.base = dsi->regs; 1593 dsi->regset.regs = dsi->variant->regs; 1594 dsi->regset.nregs = dsi->variant->nregs; 1595 1596 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1597 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1598 DSI_PORT_READ(ID), DSI_ID_VALUE); 1599 return -ENODEV; 1600 } 1601 1602 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to 1603 * writes from the ARM. It does handle writes from the DMA engine, 1604 * so set up a channel for talking to it. 1605 */ 1606 if (dsi->variant->broken_axi_workaround) { 1607 dma_cap_mask_t dma_mask; 1608 1609 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1610 &dsi->reg_dma_paddr, 1611 GFP_KERNEL); 1612 if (!dsi->reg_dma_mem) { 1613 DRM_ERROR("Failed to get DMA memory\n"); 1614 return -ENOMEM; 1615 } 1616 1617 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi); 1618 if (ret) 1619 return ret; 1620 1621 dma_cap_zero(dma_mask); 1622 dma_cap_set(DMA_MEMCPY, dma_mask); 1623 1624 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1625 if (IS_ERR(dsi->reg_dma_chan)) { 1626 ret = PTR_ERR(dsi->reg_dma_chan); 1627 if (ret != -EPROBE_DEFER) 1628 DRM_ERROR("Failed to get DMA channel: %d\n", 1629 ret); 1630 return ret; 1631 } 1632 1633 ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi); 1634 if (ret) 1635 return ret; 1636 1637 /* Get the physical address of the device's registers. The 1638 * struct resource for the regs gives us the bus address 1639 * instead. 1640 */ 1641 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1642 0, NULL, NULL)); 1643 } 1644 1645 init_completion(&dsi->xfer_completion); 1646 /* At startup enable error-reporting interrupts and nothing else. */ 1647 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1648 /* Clear any existing interrupt state. */ 1649 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1650 1651 if (dsi->reg_dma_mem) 1652 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1653 vc4_dsi_irq_defer_to_thread_handler, 1654 vc4_dsi_irq_handler, 1655 IRQF_ONESHOT, 1656 "vc4 dsi", dsi); 1657 else 1658 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1659 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1660 if (ret) { 1661 if (ret != -EPROBE_DEFER) 1662 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1663 return ret; 1664 } 1665 1666 dsi->escape_clock = devm_clk_get(dev, "escape"); 1667 if (IS_ERR(dsi->escape_clock)) { 1668 ret = PTR_ERR(dsi->escape_clock); 1669 if (ret != -EPROBE_DEFER) 1670 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1671 return ret; 1672 } 1673 1674 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1675 if (IS_ERR(dsi->pll_phy_clock)) { 1676 ret = PTR_ERR(dsi->pll_phy_clock); 1677 if (ret != -EPROBE_DEFER) 1678 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1679 return ret; 1680 } 1681 1682 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1683 if (IS_ERR(dsi->pixel_clock)) { 1684 ret = PTR_ERR(dsi->pixel_clock); 1685 if (ret != -EPROBE_DEFER) 1686 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1687 return ret; 1688 } 1689 1690 dsi->bridge = devm_drm_of_get_bridge(dev, dev->of_node, 0, 0); 1691 if (IS_ERR(dsi->bridge)) 1692 return PTR_ERR(dsi->bridge); 1693 1694 /* The esc clock rate is supposed to always be 100Mhz. */ 1695 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1696 if (ret) { 1697 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1698 return ret; 1699 } 1700 1701 ret = vc4_dsi_init_phy_clocks(dsi); 1702 if (ret) 1703 return ret; 1704 1705 drm_simple_encoder_init(drm, dsi->encoder, DRM_MODE_ENCODER_DSI); 1706 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1707 1708 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0); 1709 if (ret) 1710 return ret; 1711 /* Disable the atomic helper calls into the bridge. We 1712 * manually call the bridge pre_enable / enable / etc. calls 1713 * from our driver, since we need to sequence them within the 1714 * encoder's enable/disable paths. 1715 */ 1716 list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain); 1717 1718 vc4_debugfs_add_regset32(drm, dsi->variant->debugfs_name, &dsi->regset); 1719 1720 pm_runtime_enable(dev); 1721 1722 return 0; 1723 } 1724 1725 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1726 void *data) 1727 { 1728 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1729 1730 pm_runtime_disable(dev); 1731 1732 /* 1733 * Restore the bridge_chain so the bridge detach procedure can happen 1734 * normally. 1735 */ 1736 list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain); 1737 drm_encoder_cleanup(dsi->encoder); 1738 } 1739 1740 static const struct component_ops vc4_dsi_ops = { 1741 .bind = vc4_dsi_bind, 1742 .unbind = vc4_dsi_unbind, 1743 }; 1744 1745 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1746 { 1747 struct device *dev = &pdev->dev; 1748 struct vc4_dsi *dsi; 1749 1750 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1751 if (!dsi) 1752 return -ENOMEM; 1753 dev_set_drvdata(dev, dsi); 1754 1755 dsi->pdev = pdev; 1756 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1757 dsi->dsi_host.dev = dev; 1758 mipi_dsi_host_register(&dsi->dsi_host); 1759 1760 return 0; 1761 } 1762 1763 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1764 { 1765 struct device *dev = &pdev->dev; 1766 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1767 1768 mipi_dsi_host_unregister(&dsi->dsi_host); 1769 return 0; 1770 } 1771 1772 struct platform_driver vc4_dsi_driver = { 1773 .probe = vc4_dsi_dev_probe, 1774 .remove = vc4_dsi_dev_remove, 1775 .driver = { 1776 .name = "vc4_dsi", 1777 .of_match_table = vc4_dsi_dt_match, 1778 }, 1779 }; 1780