xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision 4fc4dca8)
1 /*
2  * Copyright (C) 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 /**
18  * DOC: VC4 DSI0/DSI1 module
19  *
20  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
21  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22  * controller.
23  *
24  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25  * while the compute module brings both DSI0 and DSI1 out.
26  *
27  * This driver has been tested for DSI1 video-mode display only
28  * currently, with most of the information necessary for DSI0
29  * hopefully present.
30  */
31 
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_edid.h>
34 #include <drm/drm_mipi_dsi.h>
35 #include <drm/drm_of.h>
36 #include <drm/drm_panel.h>
37 #include <drm/drm_probe_helper.h>
38 #include <linux/clk.h>
39 #include <linux/clk-provider.h>
40 #include <linux/completion.h>
41 #include <linux/component.h>
42 #include <linux/dmaengine.h>
43 #include <linux/i2c.h>
44 #include <linux/io.h>
45 #include <linux/of_address.h>
46 #include <linux/of_platform.h>
47 #include <linux/pm_runtime.h>
48 #include "vc4_drv.h"
49 #include "vc4_regs.h"
50 
51 #define DSI_CMD_FIFO_DEPTH  16
52 #define DSI_PIX_FIFO_DEPTH 256
53 #define DSI_PIX_FIFO_WIDTH   4
54 
55 #define DSI0_CTRL		0x00
56 
57 /* Command packet control. */
58 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
59 #define DSI1_TXPKT1C		0x04
60 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
61 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
62 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
63 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
64 
65 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
66 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
67 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
68 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
69 /* Primary display where cmdfifo provides part of the payload and
70  * pixelvalve the rest.
71  */
72 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
73 /* Secondary display where cmdfifo provides part of the payload and
74  * pixfifo the rest.
75  */
76 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
77 
78 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
79 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
80 
81 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
82 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
83 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
84 # define DSI_TXPKT1C_CMD_CTRL_TX	0
85 /* Command with BTA for either ack or read data. */
86 # define DSI_TXPKT1C_CMD_CTRL_RX	1
87 /* Trigger according to TRIG_CMD */
88 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
89 /* BTA alone for getting error status after a command, or a TE trigger
90  * without a previous command.
91  */
92 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
93 
94 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
95 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
96 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
97 # define DSI_TXPKT1C_CMD_EN		BIT(0)
98 
99 /* Command packet header. */
100 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
101 #define DSI1_TXPKT1H		0x08
102 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
103 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
104 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
105 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
106 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
107 # define DSI_TXPKT1H_BC_DT_SHIFT	0
108 
109 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
110 #define DSI1_RXPKT1H		0x14
111 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
112 # define DSI_RXPKT1H_DET_ERR		BIT(30)
113 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
114 # define DSI_RXPKT1H_COR_ERR		BIT(28)
115 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
116 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
117 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
118 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
119 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
120 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
121 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
122 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
123 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
124 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
125 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
126 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
127 
128 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
129 #define DSI1_RXPKT2H		0x18
130 # define DSI_RXPKT1H_DET_ERR		BIT(30)
131 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
132 # define DSI_RXPKT1H_COR_ERR		BIT(28)
133 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
134 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
135 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
136 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
137 # define DSI_RXPKT1H_DT_SHIFT		0
138 
139 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
140 #define DSI1_TXPKT_CMD_FIFO	0x1c
141 
142 #define DSI0_DISP0_CTRL		0x18
143 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
144 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
145 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
146 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
147 # define DSI_DISP0_LP_STOP_DISABLE	0
148 # define DSI_DISP0_LP_STOP_PERLINE	1
149 # define DSI_DISP0_LP_STOP_PERFRAME	2
150 
151 /* Transmit RGB pixels and null packets only during HACTIVE, instead
152  * of going to LP-STOP.
153  */
154 # define DSI_DISP_HACTIVE_NULL		BIT(10)
155 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
156 # define DSI_DISP_VBLP_CTRL		BIT(9)
157 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
158 # define DSI_DISP_HFP_CTRL		BIT(8)
159 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
160 # define DSI_DISP_HBP_CTRL		BIT(7)
161 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
162 # define DSI_DISP0_CHANNEL_SHIFT	5
163 /* Enables end events for HSYNC/VSYNC, not just start events. */
164 # define DSI_DISP0_ST_END		BIT(4)
165 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
166 # define DSI_DISP0_PFORMAT_SHIFT	2
167 # define DSI_PFORMAT_RGB565		0
168 # define DSI_PFORMAT_RGB666_PACKED	1
169 # define DSI_PFORMAT_RGB666		2
170 # define DSI_PFORMAT_RGB888		3
171 /* Default is VIDEO mode. */
172 # define DSI_DISP0_COMMAND_MODE		BIT(1)
173 # define DSI_DISP0_ENABLE		BIT(0)
174 
175 #define DSI0_DISP1_CTRL		0x1c
176 #define DSI1_DISP1_CTRL		0x2c
177 /* Format of the data written to TXPKT_PIX_FIFO. */
178 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
179 # define DSI_DISP1_PFORMAT_SHIFT	1
180 # define DSI_DISP1_PFORMAT_16BIT	0
181 # define DSI_DISP1_PFORMAT_24BIT	1
182 # define DSI_DISP1_PFORMAT_32BIT_LE	2
183 # define DSI_DISP1_PFORMAT_32BIT_BE	3
184 
185 /* DISP1 is always command mode. */
186 # define DSI_DISP1_ENABLE		BIT(0)
187 
188 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
189 
190 #define DSI0_INT_STAT		0x24
191 #define DSI0_INT_EN		0x28
192 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
193 # define DSI1_INT_PHY_D3_STOP		BIT(29)
194 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
195 # define DSI1_INT_PHY_D2_STOP		BIT(27)
196 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
197 # define DSI1_INT_PHY_D1_STOP		BIT(25)
198 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
199 # define DSI1_INT_PHY_D0_STOP		BIT(23)
200 # define DSI1_INT_FIFO_ERR		BIT(22)
201 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
202 # define DSI1_INT_PHY_RXLPDT		BIT(20)
203 # define DSI1_INT_PHY_RXTRIG		BIT(19)
204 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
205 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
206 
207 /* Signaled when the clock lane enters the given state. */
208 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
209 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
210 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
211 
212 /* Signaled on timeouts */
213 # define DSI1_INT_PR_TO			BIT(13)
214 # define DSI1_INT_TA_TO			BIT(12)
215 # define DSI1_INT_LPRX_TO		BIT(11)
216 # define DSI1_INT_HSTX_TO		BIT(10)
217 
218 /* Contention on a line when trying to drive the line low */
219 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
220 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
221 
222 /* Control error: incorrect line state sequence on data lane 0. */
223 # define DSI1_INT_ERR_CONTROL		BIT(7)
224 /* LPDT synchronization error (bits received not a multiple of 8. */
225 
226 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
227 /* Signaled after receiving an error packet from the display in
228  * response to a read.
229  */
230 # define DSI1_INT_RXPKT2		BIT(5)
231 /* Signaled after receiving a packet.  The header and optional short
232  * response will be in RXPKT1H, and a long response will be in the
233  * RXPKT_FIFO.
234  */
235 # define DSI1_INT_RXPKT1		BIT(4)
236 # define DSI1_INT_TXPKT2_DONE		BIT(3)
237 # define DSI1_INT_TXPKT2_END		BIT(2)
238 /* Signaled after all repeats of TXPKT1 are transferred. */
239 # define DSI1_INT_TXPKT1_DONE		BIT(1)
240 /* Signaled after each TXPKT1 repeat is scheduled. */
241 # define DSI1_INT_TXPKT1_END		BIT(0)
242 
243 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
244 					 DSI1_INT_ERR_CONTROL |	 \
245 					 DSI1_INT_ERR_CONT_LP0 | \
246 					 DSI1_INT_ERR_CONT_LP1 | \
247 					 DSI1_INT_HSTX_TO |	 \
248 					 DSI1_INT_LPRX_TO |	 \
249 					 DSI1_INT_TA_TO |	 \
250 					 DSI1_INT_PR_TO)
251 
252 #define DSI0_STAT		0x2c
253 #define DSI0_HSTX_TO_CNT	0x30
254 #define DSI0_LPRX_TO_CNT	0x34
255 #define DSI0_TA_TO_CNT		0x38
256 #define DSI0_PR_TO_CNT		0x3c
257 #define DSI0_PHYC		0x40
258 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
259 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
260 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
261 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
262 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
263 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
264 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
265 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
266 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
267 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
268 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
269 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
270 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
271 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
272 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
273 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
274 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
275 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
276 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
277 
278 #define DSI0_HS_CLT0		0x44
279 #define DSI0_HS_CLT1		0x48
280 #define DSI0_HS_CLT2		0x4c
281 #define DSI0_HS_DLT3		0x50
282 #define DSI0_HS_DLT4		0x54
283 #define DSI0_HS_DLT5		0x58
284 #define DSI0_HS_DLT6		0x5c
285 #define DSI0_HS_DLT7		0x60
286 
287 #define DSI0_PHY_AFEC0		0x64
288 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
289 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
290 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
291 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
292 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
293 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
294 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
295 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
296 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
297 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
298 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
299 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
300 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
301 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
302 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
303 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
304 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
305 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
306 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
307 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
308 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
309 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
310 # define DSI1_PHY_AFEC0_RESET			BIT(13)
311 # define DSI1_PHY_AFEC0_PD			BIT(12)
312 # define DSI0_PHY_AFEC0_RESET			BIT(11)
313 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
314 # define DSI0_PHY_AFEC0_PD			BIT(10)
315 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
316 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
317 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
318 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
319 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
320 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
321 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
322 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
323 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
324 
325 #define DSI0_PHY_AFEC1		0x68
326 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
327 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
328 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
329 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
330 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
331 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
332 
333 #define DSI0_TST_SEL		0x6c
334 #define DSI0_TST_MON		0x70
335 #define DSI0_ID			0x74
336 # define DSI_ID_VALUE		0x00647369
337 
338 #define DSI1_CTRL		0x00
339 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
340 # define DSI_CTRL_HS_CLKC_SHIFT		14
341 # define DSI_CTRL_HS_CLKC_BYTE		0
342 # define DSI_CTRL_HS_CLKC_DDR2		1
343 # define DSI_CTRL_HS_CLKC_DDR		2
344 
345 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
346 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
347 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
348 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
349 # define DSI_CTRL_CAL_BYTE		BIT(9)
350 # define DSI_CTRL_INV_BYTE		BIT(8)
351 # define DSI_CTRL_CLR_LDF		BIT(7)
352 # define DSI0_CTRL_CLR_PBCF		BIT(6)
353 # define DSI1_CTRL_CLR_RXF		BIT(6)
354 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
355 # define DSI1_CTRL_CLR_PDF		BIT(5)
356 # define DSI0_CTRL_CLR_PDF		BIT(4)
357 # define DSI1_CTRL_CLR_CDF		BIT(4)
358 # define DSI0_CTRL_CLR_CDF		BIT(3)
359 # define DSI0_CTRL_CTRL2		BIT(2)
360 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
361 # define DSI0_CTRL_CTRL1		BIT(1)
362 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
363 # define DSI0_CTRL_CTRL0		BIT(0)
364 # define DSI1_CTRL_EN			BIT(0)
365 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
366 					 DSI0_CTRL_CLR_PBCF | \
367 					 DSI0_CTRL_CLR_CPBCF |	\
368 					 DSI0_CTRL_CLR_PDF | \
369 					 DSI0_CTRL_CLR_CDF)
370 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
371 					 DSI1_CTRL_CLR_RXF | \
372 					 DSI1_CTRL_CLR_PDF | \
373 					 DSI1_CTRL_CLR_CDF)
374 
375 #define DSI1_TXPKT2C		0x0c
376 #define DSI1_TXPKT2H		0x10
377 #define DSI1_TXPKT_PIX_FIFO	0x20
378 #define DSI1_RXPKT_FIFO		0x24
379 #define DSI1_DISP0_CTRL		0x28
380 #define DSI1_INT_STAT		0x30
381 #define DSI1_INT_EN		0x34
382 /* State reporting bits.  These mostly behave like INT_STAT, where
383  * writing a 1 clears the bit.
384  */
385 #define DSI1_STAT		0x38
386 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
387 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
388 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
389 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
390 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
391 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
392 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
393 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
394 # define DSI1_STAT_FIFO_ERR		BIT(23)
395 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
396 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
397 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
398 /* Set when in forward direction */
399 # define DSI1_STAT_PHY_DIR		BIT(19)
400 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
401 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
402 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
403 # define DSI1_STAT_PR_TO		BIT(15)
404 # define DSI1_STAT_TA_TO		BIT(14)
405 # define DSI1_STAT_LPRX_TO		BIT(13)
406 # define DSI1_STAT_HSTX_TO		BIT(12)
407 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
408 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
409 # define DSI1_STAT_ERR_CONTROL		BIT(9)
410 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
411 # define DSI1_STAT_RXPKT2		BIT(7)
412 # define DSI1_STAT_RXPKT1		BIT(6)
413 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
414 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
415 # define DSI1_STAT_TXPKT2_END		BIT(3)
416 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
417 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
418 # define DSI1_STAT_TXPKT1_END		BIT(0)
419 
420 #define DSI1_HSTX_TO_CNT	0x3c
421 #define DSI1_LPRX_TO_CNT	0x40
422 #define DSI1_TA_TO_CNT		0x44
423 #define DSI1_PR_TO_CNT		0x48
424 #define DSI1_PHYC		0x4c
425 
426 #define DSI1_HS_CLT0		0x50
427 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
428 # define DSI_HS_CLT0_CZERO_SHIFT	18
429 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
430 # define DSI_HS_CLT0_CPRE_SHIFT		9
431 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
432 # define DSI_HS_CLT0_CPREP_SHIFT	0
433 
434 #define DSI1_HS_CLT1		0x54
435 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
436 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
437 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
438 # define DSI_HS_CLT1_CPOST_SHIFT	0
439 
440 #define DSI1_HS_CLT2		0x58
441 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
442 # define DSI_HS_CLT2_WUP_SHIFT		0
443 
444 #define DSI1_HS_DLT3		0x5c
445 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
446 # define DSI_HS_DLT3_EXIT_SHIFT		18
447 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
448 # define DSI_HS_DLT3_ZERO_SHIFT		9
449 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
450 # define DSI_HS_DLT3_PRE_SHIFT		0
451 
452 #define DSI1_HS_DLT4		0x60
453 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
454 # define DSI_HS_DLT4_ANLAT_SHIFT	18
455 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
456 # define DSI_HS_DLT4_TRAIL_SHIFT	9
457 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
458 # define DSI_HS_DLT4_LPX_SHIFT		0
459 
460 #define DSI1_HS_DLT5		0x64
461 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
462 # define DSI_HS_DLT5_INIT_SHIFT		0
463 
464 #define DSI1_HS_DLT6		0x68
465 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
466 # define DSI_HS_DLT6_TA_GET_SHIFT	24
467 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
468 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
469 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
470 # define DSI_HS_DLT6_TA_GO_SHIFT	8
471 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
472 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
473 
474 #define DSI1_HS_DLT7		0x6c
475 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
476 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
477 
478 #define DSI1_PHY_AFEC0		0x70
479 
480 #define DSI1_PHY_AFEC1		0x74
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
483 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
484 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
485 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
486 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
487 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
488 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
489 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
490 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
491 
492 #define DSI1_TST_SEL		0x78
493 #define DSI1_TST_MON		0x7c
494 #define DSI1_PHY_TST1		0x80
495 #define DSI1_PHY_TST2		0x84
496 #define DSI1_PHY_FIFO_STAT	0x88
497 /* Actually, all registers in the range that aren't otherwise claimed
498  * will return the ID.
499  */
500 #define DSI1_ID			0x8c
501 
502 /* General DSI hardware state. */
503 struct vc4_dsi {
504 	struct platform_device *pdev;
505 
506 	struct mipi_dsi_host dsi_host;
507 	struct drm_encoder *encoder;
508 	struct drm_bridge *bridge;
509 
510 	void __iomem *regs;
511 
512 	struct dma_chan *reg_dma_chan;
513 	dma_addr_t reg_dma_paddr;
514 	u32 *reg_dma_mem;
515 	dma_addr_t reg_paddr;
516 
517 	/* Whether we're on bcm2835's DSI0 or DSI1. */
518 	int port;
519 
520 	/* DSI channel for the panel we're connected to. */
521 	u32 channel;
522 	u32 lanes;
523 	u32 format;
524 	u32 divider;
525 	u32 mode_flags;
526 
527 	/* Input clock from CPRMAN to the digital PHY, for the DSI
528 	 * escape clock.
529 	 */
530 	struct clk *escape_clock;
531 
532 	/* Input clock to the analog PHY, used to generate the DSI bit
533 	 * clock.
534 	 */
535 	struct clk *pll_phy_clock;
536 
537 	/* HS Clocks generated within the DSI analog PHY. */
538 	struct clk_fixed_factor phy_clocks[3];
539 
540 	struct clk_hw_onecell_data *clk_onecell;
541 
542 	/* Pixel clock output to the pixelvalve, generated from the HS
543 	 * clock.
544 	 */
545 	struct clk *pixel_clock;
546 
547 	struct completion xfer_completion;
548 	int xfer_result;
549 
550 	struct debugfs_regset32 regset;
551 };
552 
553 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
554 
555 static inline void
556 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
557 {
558 	struct dma_chan *chan = dsi->reg_dma_chan;
559 	struct dma_async_tx_descriptor *tx;
560 	dma_cookie_t cookie;
561 	int ret;
562 
563 	/* DSI0 should be able to write normally. */
564 	if (!chan) {
565 		writel(val, dsi->regs + offset);
566 		return;
567 	}
568 
569 	*dsi->reg_dma_mem = val;
570 
571 	tx = chan->device->device_prep_dma_memcpy(chan,
572 						  dsi->reg_paddr + offset,
573 						  dsi->reg_dma_paddr,
574 						  4, 0);
575 	if (!tx) {
576 		DRM_ERROR("Failed to set up DMA register write\n");
577 		return;
578 	}
579 
580 	cookie = tx->tx_submit(tx);
581 	ret = dma_submit_error(cookie);
582 	if (ret) {
583 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
584 		return;
585 	}
586 	ret = dma_sync_wait(chan, cookie);
587 	if (ret)
588 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
589 }
590 
591 #define DSI_READ(offset) readl(dsi->regs + (offset))
592 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
593 #define DSI_PORT_READ(offset) \
594 	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
595 #define DSI_PORT_WRITE(offset, val) \
596 	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
597 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
598 
599 /* VC4 DSI encoder KMS struct */
600 struct vc4_dsi_encoder {
601 	struct vc4_encoder base;
602 	struct vc4_dsi *dsi;
603 };
604 
605 static inline struct vc4_dsi_encoder *
606 to_vc4_dsi_encoder(struct drm_encoder *encoder)
607 {
608 	return container_of(encoder, struct vc4_dsi_encoder, base.base);
609 }
610 
611 static const struct debugfs_reg32 dsi0_regs[] = {
612 	VC4_REG32(DSI0_CTRL),
613 	VC4_REG32(DSI0_STAT),
614 	VC4_REG32(DSI0_HSTX_TO_CNT),
615 	VC4_REG32(DSI0_LPRX_TO_CNT),
616 	VC4_REG32(DSI0_TA_TO_CNT),
617 	VC4_REG32(DSI0_PR_TO_CNT),
618 	VC4_REG32(DSI0_DISP0_CTRL),
619 	VC4_REG32(DSI0_DISP1_CTRL),
620 	VC4_REG32(DSI0_INT_STAT),
621 	VC4_REG32(DSI0_INT_EN),
622 	VC4_REG32(DSI0_PHYC),
623 	VC4_REG32(DSI0_HS_CLT0),
624 	VC4_REG32(DSI0_HS_CLT1),
625 	VC4_REG32(DSI0_HS_CLT2),
626 	VC4_REG32(DSI0_HS_DLT3),
627 	VC4_REG32(DSI0_HS_DLT4),
628 	VC4_REG32(DSI0_HS_DLT5),
629 	VC4_REG32(DSI0_HS_DLT6),
630 	VC4_REG32(DSI0_HS_DLT7),
631 	VC4_REG32(DSI0_PHY_AFEC0),
632 	VC4_REG32(DSI0_PHY_AFEC1),
633 	VC4_REG32(DSI0_ID),
634 };
635 
636 static const struct debugfs_reg32 dsi1_regs[] = {
637 	VC4_REG32(DSI1_CTRL),
638 	VC4_REG32(DSI1_STAT),
639 	VC4_REG32(DSI1_HSTX_TO_CNT),
640 	VC4_REG32(DSI1_LPRX_TO_CNT),
641 	VC4_REG32(DSI1_TA_TO_CNT),
642 	VC4_REG32(DSI1_PR_TO_CNT),
643 	VC4_REG32(DSI1_DISP0_CTRL),
644 	VC4_REG32(DSI1_DISP1_CTRL),
645 	VC4_REG32(DSI1_INT_STAT),
646 	VC4_REG32(DSI1_INT_EN),
647 	VC4_REG32(DSI1_PHYC),
648 	VC4_REG32(DSI1_HS_CLT0),
649 	VC4_REG32(DSI1_HS_CLT1),
650 	VC4_REG32(DSI1_HS_CLT2),
651 	VC4_REG32(DSI1_HS_DLT3),
652 	VC4_REG32(DSI1_HS_DLT4),
653 	VC4_REG32(DSI1_HS_DLT5),
654 	VC4_REG32(DSI1_HS_DLT6),
655 	VC4_REG32(DSI1_HS_DLT7),
656 	VC4_REG32(DSI1_PHY_AFEC0),
657 	VC4_REG32(DSI1_PHY_AFEC1),
658 	VC4_REG32(DSI1_ID),
659 };
660 
661 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
662 {
663 	drm_encoder_cleanup(encoder);
664 }
665 
666 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
667 	.destroy = vc4_dsi_encoder_destroy,
668 };
669 
670 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
671 {
672 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
673 
674 	if (latch)
675 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
676 	else
677 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
678 
679 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
680 }
681 
682 /* Enters or exits Ultra Low Power State. */
683 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
684 {
685 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
686 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
687 			 DSI_PHYC_DLANE0_ULPS |
688 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
689 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
690 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
691 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
692 			 DSI1_STAT_PHY_D0_ULPS |
693 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
694 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
695 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
696 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
697 			 DSI1_STAT_PHY_D0_STOP |
698 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
699 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
700 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
701 	int ret;
702 	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
703 				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
704 
705 	if (ulps == ulps_currently_enabled)
706 		return;
707 
708 	DSI_PORT_WRITE(STAT, stat_ulps);
709 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
710 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
711 	if (ret) {
712 		dev_warn(&dsi->pdev->dev,
713 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
714 			 DSI_PORT_READ(STAT));
715 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
716 		vc4_dsi_latch_ulps(dsi, false);
717 		return;
718 	}
719 
720 	/* The DSI module can't be disabled while the module is
721 	 * generating ULPS state.  So, to be able to disable the
722 	 * module, we have the AFE latch the ULPS state and continue
723 	 * on to having the module enter STOP.
724 	 */
725 	vc4_dsi_latch_ulps(dsi, ulps);
726 
727 	DSI_PORT_WRITE(STAT, stat_stop);
728 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
729 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
730 	if (ret) {
731 		dev_warn(&dsi->pdev->dev,
732 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
733 			 DSI_PORT_READ(STAT));
734 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
735 		return;
736 	}
737 }
738 
739 static u32
740 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
741 {
742 	/* The HS timings have to be rounded up to a multiple of 8
743 	 * because we're using the byte clock.
744 	 */
745 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
746 }
747 
748 /* ESC always runs at 100Mhz. */
749 #define ESC_TIME_NS 10
750 
751 static u32
752 dsi_esc_timing(u32 ns)
753 {
754 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
755 }
756 
757 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
758 {
759 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
760 	struct vc4_dsi *dsi = vc4_encoder->dsi;
761 	struct device *dev = &dsi->pdev->dev;
762 
763 	drm_bridge_disable(dsi->bridge);
764 	vc4_dsi_ulps(dsi, true);
765 	drm_bridge_post_disable(dsi->bridge);
766 
767 	clk_disable_unprepare(dsi->pll_phy_clock);
768 	clk_disable_unprepare(dsi->escape_clock);
769 	clk_disable_unprepare(dsi->pixel_clock);
770 
771 	pm_runtime_put(dev);
772 }
773 
774 /* Extends the mode's blank intervals to handle BCM2835's integer-only
775  * DSI PLL divider.
776  *
777  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
778  * driver since most peripherals are hanging off of the PLLD_PER
779  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
780  * the pixel clock), only has an integer divider off of DSI.
781  *
782  * To get our panel mode to refresh at the expected 60Hz, we need to
783  * extend the horizontal blank time.  This means we drive a
784  * higher-than-expected clock rate to the panel, but that's what the
785  * firmware does too.
786  */
787 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
788 				       const struct drm_display_mode *mode,
789 				       struct drm_display_mode *adjusted_mode)
790 {
791 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
792 	struct vc4_dsi *dsi = vc4_encoder->dsi;
793 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
794 	unsigned long parent_rate = clk_get_rate(phy_parent);
795 	unsigned long pixel_clock_hz = mode->clock * 1000;
796 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
797 	int divider;
798 
799 	/* Find what divider gets us a faster clock than the requested
800 	 * pixel clock.
801 	 */
802 	for (divider = 1; divider < 8; divider++) {
803 		if (parent_rate / divider < pll_clock) {
804 			divider--;
805 			break;
806 		}
807 	}
808 
809 	/* Now that we've picked a PLL divider, calculate back to its
810 	 * pixel clock.
811 	 */
812 	pll_clock = parent_rate / divider;
813 	pixel_clock_hz = pll_clock / dsi->divider;
814 
815 	adjusted_mode->clock = pixel_clock_hz / 1000;
816 
817 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
818 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
819 				mode->clock;
820 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
821 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
822 
823 	return true;
824 }
825 
826 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
827 {
828 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
829 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
830 	struct vc4_dsi *dsi = vc4_encoder->dsi;
831 	struct device *dev = &dsi->pdev->dev;
832 	bool debug_dump_regs = false;
833 	unsigned long hs_clock;
834 	u32 ui_ns;
835 	/* Minimum LP state duration in escape clock cycles. */
836 	u32 lpx = dsi_esc_timing(60);
837 	unsigned long pixel_clock_hz = mode->clock * 1000;
838 	unsigned long dsip_clock;
839 	unsigned long phy_clock;
840 	int ret;
841 
842 	ret = pm_runtime_get_sync(dev);
843 	if (ret) {
844 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
845 		return;
846 	}
847 
848 	if (debug_dump_regs) {
849 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
850 		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
851 		drm_print_regset32(&p, &dsi->regset);
852 	}
853 
854 	/* Round up the clk_set_rate() request slightly, since
855 	 * PLLD_DSI1 is an integer divider and its rate selection will
856 	 * never round up.
857 	 */
858 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
859 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
860 	if (ret) {
861 		dev_err(&dsi->pdev->dev,
862 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
863 	}
864 
865 	/* Reset the DSI and all its fifos. */
866 	DSI_PORT_WRITE(CTRL,
867 		       DSI_CTRL_SOFT_RESET_CFG |
868 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
869 
870 	DSI_PORT_WRITE(CTRL,
871 		       DSI_CTRL_HSDT_EOT_DISABLE |
872 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
873 
874 	/* Clear all stat bits so we see what has happened during enable. */
875 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
876 
877 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
878 	if (dsi->port == 0) {
879 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
880 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
881 
882 		if (dsi->lanes < 2)
883 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
884 
885 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
886 			afec0 |= DSI0_PHY_AFEC0_RESET;
887 
888 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
889 
890 		DSI_PORT_WRITE(PHY_AFEC1,
891 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
892 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
893 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
894 	} else {
895 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
896 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
897 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
898 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
899 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
900 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
901 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
902 
903 		if (dsi->lanes < 4)
904 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
905 		if (dsi->lanes < 3)
906 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
907 		if (dsi->lanes < 2)
908 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
909 
910 		afec0 |= DSI1_PHY_AFEC0_RESET;
911 
912 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
913 
914 		DSI_PORT_WRITE(PHY_AFEC1, 0);
915 
916 		/* AFEC reset hold time */
917 		mdelay(1);
918 	}
919 
920 	ret = clk_prepare_enable(dsi->escape_clock);
921 	if (ret) {
922 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
923 		return;
924 	}
925 
926 	ret = clk_prepare_enable(dsi->pll_phy_clock);
927 	if (ret) {
928 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
929 		return;
930 	}
931 
932 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
933 
934 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
935 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
936 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
937 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
938 	 * and HS_CLKC is fed into the PV to divide down to the actual
939 	 * pixel clock for pushing pixels into DSI.
940 	 */
941 	dsip_clock = phy_clock / 8;
942 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
943 	if (ret) {
944 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
945 			dsip_clock, ret);
946 	}
947 
948 	ret = clk_prepare_enable(dsi->pixel_clock);
949 	if (ret) {
950 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
951 		return;
952 	}
953 
954 	/* How many ns one DSI unit interval is.  Note that the clock
955 	 * is DDR, so there's an extra divide by 2.
956 	 */
957 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
958 
959 	DSI_PORT_WRITE(HS_CLT0,
960 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
961 				     DSI_HS_CLT0_CZERO) |
962 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
963 				     DSI_HS_CLT0_CPRE) |
964 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
965 				     DSI_HS_CLT0_CPREP));
966 
967 	DSI_PORT_WRITE(HS_CLT1,
968 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
969 				     DSI_HS_CLT1_CTRAIL) |
970 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
971 				     DSI_HS_CLT1_CPOST));
972 
973 	DSI_PORT_WRITE(HS_CLT2,
974 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
975 				     DSI_HS_CLT2_WUP));
976 
977 	DSI_PORT_WRITE(HS_DLT3,
978 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
979 				     DSI_HS_DLT3_EXIT) |
980 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
981 				     DSI_HS_DLT3_ZERO) |
982 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
983 				     DSI_HS_DLT3_PRE));
984 
985 	DSI_PORT_WRITE(HS_DLT4,
986 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
987 				     DSI_HS_DLT4_LPX) |
988 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
989 					 dsi_hs_timing(ui_ns, 60, 4)),
990 				     DSI_HS_DLT4_TRAIL) |
991 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
992 
993 	/* T_INIT is how long STOP is driven after power-up to
994 	 * indicate to the slave (also coming out of power-up) that
995 	 * master init is complete, and should be greater than the
996 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
997 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
998 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
999 	 * greater minimums.  The vc4 firmware uses an extremely
1000 	 * conservative 5ms, and we maintain that here.
1001 	 */
1002 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
1003 							    5 * 1000 * 1000, 0),
1004 					      DSI_HS_DLT5_INIT));
1005 
1006 	DSI_PORT_WRITE(HS_DLT6,
1007 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1008 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1009 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1010 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1011 
1012 	DSI_PORT_WRITE(HS_DLT7,
1013 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1014 				     DSI_HS_DLT7_LP_WUP));
1015 
1016 	DSI_PORT_WRITE(PHYC,
1017 		       DSI_PHYC_DLANE0_ENABLE |
1018 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1019 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1020 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1021 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1022 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1023 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1024 		       (dsi->port == 0 ?
1025 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1026 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1027 
1028 	DSI_PORT_WRITE(CTRL,
1029 		       DSI_PORT_READ(CTRL) |
1030 		       DSI_CTRL_CAL_BYTE);
1031 
1032 	/* HS timeout in HS clock cycles: disabled. */
1033 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1034 	/* LP receive timeout in HS clocks. */
1035 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1036 	/* Bus turnaround timeout */
1037 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1038 	/* Display reset sequence timeout */
1039 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1040 
1041 	/* Set up DISP1 for transferring long command payloads through
1042 	 * the pixfifo.
1043 	 */
1044 	DSI_PORT_WRITE(DISP1_CTRL,
1045 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1046 				     DSI_DISP1_PFORMAT) |
1047 		       DSI_DISP1_ENABLE);
1048 
1049 	/* Ungate the block. */
1050 	if (dsi->port == 0)
1051 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1052 	else
1053 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1054 
1055 	/* Bring AFE out of reset. */
1056 	if (dsi->port == 0) {
1057 	} else {
1058 		DSI_PORT_WRITE(PHY_AFEC0,
1059 			       DSI_PORT_READ(PHY_AFEC0) &
1060 			       ~DSI1_PHY_AFEC0_RESET);
1061 	}
1062 
1063 	vc4_dsi_ulps(dsi, false);
1064 
1065 	drm_bridge_pre_enable(dsi->bridge);
1066 
1067 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1068 		DSI_PORT_WRITE(DISP0_CTRL,
1069 			       VC4_SET_FIELD(dsi->divider,
1070 					     DSI_DISP0_PIX_CLK_DIV) |
1071 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1072 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1073 					     DSI_DISP0_LP_STOP_CTRL) |
1074 			       DSI_DISP0_ST_END |
1075 			       DSI_DISP0_ENABLE);
1076 	} else {
1077 		DSI_PORT_WRITE(DISP0_CTRL,
1078 			       DSI_DISP0_COMMAND_MODE |
1079 			       DSI_DISP0_ENABLE);
1080 	}
1081 
1082 	drm_bridge_enable(dsi->bridge);
1083 
1084 	if (debug_dump_regs) {
1085 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1086 		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1087 		drm_print_regset32(&p, &dsi->regset);
1088 	}
1089 }
1090 
1091 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1092 				     const struct mipi_dsi_msg *msg)
1093 {
1094 	struct vc4_dsi *dsi = host_to_dsi(host);
1095 	struct mipi_dsi_packet packet;
1096 	u32 pkth = 0, pktc = 0;
1097 	int i, ret;
1098 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1099 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1100 
1101 	mipi_dsi_create_packet(&packet, msg);
1102 
1103 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1104 	pkth |= VC4_SET_FIELD(packet.header[1] |
1105 			      (packet.header[2] << 8),
1106 			      DSI_TXPKT1H_BC_PARAM);
1107 	if (is_long) {
1108 		/* Divide data across the various FIFOs we have available.
1109 		 * The command FIFO takes byte-oriented data, but is of
1110 		 * limited size. The pixel FIFO (never actually used for
1111 		 * pixel data in reality) is word oriented, and substantially
1112 		 * larger. So, we use the pixel FIFO for most of the data,
1113 		 * sending the residual bytes in the command FIFO at the start.
1114 		 *
1115 		 * With this arrangement, the command FIFO will never get full.
1116 		 */
1117 		if (packet.payload_length <= 16) {
1118 			cmd_fifo_len = packet.payload_length;
1119 			pix_fifo_len = 0;
1120 		} else {
1121 			cmd_fifo_len = (packet.payload_length %
1122 					DSI_PIX_FIFO_WIDTH);
1123 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1124 					DSI_PIX_FIFO_WIDTH);
1125 		}
1126 
1127 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1128 
1129 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1130 	}
1131 
1132 	if (msg->rx_len) {
1133 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1134 				      DSI_TXPKT1C_CMD_CTRL);
1135 	} else {
1136 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1137 				      DSI_TXPKT1C_CMD_CTRL);
1138 	}
1139 
1140 	for (i = 0; i < cmd_fifo_len; i++)
1141 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1142 	for (i = 0; i < pix_fifo_len; i++) {
1143 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1144 
1145 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1146 			       pix[0] |
1147 			       pix[1] << 8 |
1148 			       pix[2] << 16 |
1149 			       pix[3] << 24);
1150 	}
1151 
1152 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1153 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1154 	if (is_long)
1155 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1156 
1157 	/* Send one copy of the packet.  Larger repeats are used for pixel
1158 	 * data in command mode.
1159 	 */
1160 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1161 
1162 	pktc |= DSI_TXPKT1C_CMD_EN;
1163 	if (pix_fifo_len) {
1164 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1165 				      DSI_TXPKT1C_DISPLAY_NO);
1166 	} else {
1167 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1168 				      DSI_TXPKT1C_DISPLAY_NO);
1169 	}
1170 
1171 	/* Enable the appropriate interrupt for the transfer completion. */
1172 	dsi->xfer_result = 0;
1173 	reinit_completion(&dsi->xfer_completion);
1174 	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1175 	if (msg->rx_len) {
1176 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1177 					DSI1_INT_PHY_DIR_RTF));
1178 	} else {
1179 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1180 					DSI1_INT_TXPKT1_DONE));
1181 	}
1182 
1183 	/* Send the packet. */
1184 	DSI_PORT_WRITE(TXPKT1H, pkth);
1185 	DSI_PORT_WRITE(TXPKT1C, pktc);
1186 
1187 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1188 					 msecs_to_jiffies(1000))) {
1189 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1190 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1191 			DSI_PORT_READ(INT_STAT));
1192 		ret = -ETIMEDOUT;
1193 	} else {
1194 		ret = dsi->xfer_result;
1195 	}
1196 
1197 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1198 
1199 	if (ret)
1200 		goto reset_fifo_and_return;
1201 
1202 	if (ret == 0 && msg->rx_len) {
1203 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1204 		u8 *msg_rx = msg->rx_buf;
1205 
1206 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1207 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1208 						  DSI_RXPKT1H_BC_PARAM);
1209 
1210 			if (rxlen != msg->rx_len) {
1211 				DRM_ERROR("DSI returned %db, expecting %db\n",
1212 					  rxlen, (int)msg->rx_len);
1213 				ret = -ENXIO;
1214 				goto reset_fifo_and_return;
1215 			}
1216 
1217 			for (i = 0; i < msg->rx_len; i++)
1218 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1219 		} else {
1220 			/* FINISHME: Handle AWER */
1221 
1222 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1223 						  DSI_RXPKT1H_SHORT_0);
1224 			if (msg->rx_len > 1) {
1225 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1226 							  DSI_RXPKT1H_SHORT_1);
1227 			}
1228 		}
1229 	}
1230 
1231 	return ret;
1232 
1233 reset_fifo_and_return:
1234 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1235 
1236 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1237 	udelay(1);
1238 	DSI_PORT_WRITE(CTRL,
1239 		       DSI_PORT_READ(CTRL) |
1240 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1241 
1242 	DSI_PORT_WRITE(TXPKT1C, 0);
1243 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1244 	return ret;
1245 }
1246 
1247 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1248 			       struct mipi_dsi_device *device)
1249 {
1250 	struct vc4_dsi *dsi = host_to_dsi(host);
1251 
1252 	dsi->lanes = device->lanes;
1253 	dsi->channel = device->channel;
1254 	dsi->mode_flags = device->mode_flags;
1255 
1256 	switch (device->format) {
1257 	case MIPI_DSI_FMT_RGB888:
1258 		dsi->format = DSI_PFORMAT_RGB888;
1259 		dsi->divider = 24 / dsi->lanes;
1260 		break;
1261 	case MIPI_DSI_FMT_RGB666:
1262 		dsi->format = DSI_PFORMAT_RGB666;
1263 		dsi->divider = 24 / dsi->lanes;
1264 		break;
1265 	case MIPI_DSI_FMT_RGB666_PACKED:
1266 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1267 		dsi->divider = 18 / dsi->lanes;
1268 		break;
1269 	case MIPI_DSI_FMT_RGB565:
1270 		dsi->format = DSI_PFORMAT_RGB565;
1271 		dsi->divider = 16 / dsi->lanes;
1272 		break;
1273 	default:
1274 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1275 			dsi->format);
1276 		return 0;
1277 	}
1278 
1279 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1280 		dev_err(&dsi->pdev->dev,
1281 			"Only VIDEO mode panels supported currently.\n");
1282 		return 0;
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1289 			       struct mipi_dsi_device *device)
1290 {
1291 	return 0;
1292 }
1293 
1294 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1295 	.attach = vc4_dsi_host_attach,
1296 	.detach = vc4_dsi_host_detach,
1297 	.transfer = vc4_dsi_host_transfer,
1298 };
1299 
1300 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1301 	.disable = vc4_dsi_encoder_disable,
1302 	.enable = vc4_dsi_encoder_enable,
1303 	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1304 };
1305 
1306 static const struct of_device_id vc4_dsi_dt_match[] = {
1307 	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1308 	{}
1309 };
1310 
1311 static void dsi_handle_error(struct vc4_dsi *dsi,
1312 			     irqreturn_t *ret, u32 stat, u32 bit,
1313 			     const char *type)
1314 {
1315 	if (!(stat & bit))
1316 		return;
1317 
1318 	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1319 	*ret = IRQ_HANDLED;
1320 }
1321 
1322 /*
1323  * Initial handler for port 1 where we need the reg_dma workaround.
1324  * The register DMA writes sleep, so we can't do it in the top half.
1325  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1326  * parent interrupt contrller until our interrupt thread is done.
1327  */
1328 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1329 {
1330 	struct vc4_dsi *dsi = data;
1331 	u32 stat = DSI_PORT_READ(INT_STAT);
1332 
1333 	if (!stat)
1334 		return IRQ_NONE;
1335 
1336 	return IRQ_WAKE_THREAD;
1337 }
1338 
1339 /*
1340  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1341  * 1 where we need the reg_dma workaround.
1342  */
1343 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1344 {
1345 	struct vc4_dsi *dsi = data;
1346 	u32 stat = DSI_PORT_READ(INT_STAT);
1347 	irqreturn_t ret = IRQ_NONE;
1348 
1349 	DSI_PORT_WRITE(INT_STAT, stat);
1350 
1351 	dsi_handle_error(dsi, &ret, stat,
1352 			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1353 	dsi_handle_error(dsi, &ret, stat,
1354 			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1355 	dsi_handle_error(dsi, &ret, stat,
1356 			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1357 	dsi_handle_error(dsi, &ret, stat,
1358 			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1359 	dsi_handle_error(dsi, &ret, stat,
1360 			 DSI1_INT_HSTX_TO, "HSTX timeout");
1361 	dsi_handle_error(dsi, &ret, stat,
1362 			 DSI1_INT_LPRX_TO, "LPRX timeout");
1363 	dsi_handle_error(dsi, &ret, stat,
1364 			 DSI1_INT_TA_TO, "turnaround timeout");
1365 	dsi_handle_error(dsi, &ret, stat,
1366 			 DSI1_INT_PR_TO, "peripheral reset timeout");
1367 
1368 	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1369 		complete(&dsi->xfer_completion);
1370 		ret = IRQ_HANDLED;
1371 	} else if (stat & DSI1_INT_HSTX_TO) {
1372 		complete(&dsi->xfer_completion);
1373 		dsi->xfer_result = -ETIMEDOUT;
1374 		ret = IRQ_HANDLED;
1375 	}
1376 
1377 	return ret;
1378 }
1379 
1380 /**
1381  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1382  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1383  * @dsi: DSI encoder
1384  */
1385 static int
1386 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1387 {
1388 	struct device *dev = &dsi->pdev->dev;
1389 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1390 	static const struct {
1391 		const char *dsi0_name, *dsi1_name;
1392 		int div;
1393 	} phy_clocks[] = {
1394 		{ "dsi0_byte", "dsi1_byte", 8 },
1395 		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1396 		{ "dsi0_ddr", "dsi1_ddr", 2 },
1397 	};
1398 	int i;
1399 
1400 	dsi->clk_onecell = devm_kzalloc(dev,
1401 					sizeof(*dsi->clk_onecell) +
1402 					ARRAY_SIZE(phy_clocks) *
1403 					sizeof(struct clk_hw *),
1404 					GFP_KERNEL);
1405 	if (!dsi->clk_onecell)
1406 		return -ENOMEM;
1407 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1408 
1409 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1410 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1411 		struct clk_init_data init;
1412 		int ret;
1413 
1414 		/* We just use core fixed factor clock ops for the PHY
1415 		 * clocks.  The clocks are actually gated by the
1416 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1417 		 * setting if we use the DDR/DDR2 clocks.  However,
1418 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1419 		 * setting both our parent DSI PLL's rate and this
1420 		 * clock's rate, so it knows if DDR/DDR2 are going to
1421 		 * be used and could enable the gates itself.
1422 		 */
1423 		fix->mult = 1;
1424 		fix->div = phy_clocks[i].div;
1425 		fix->hw.init = &init;
1426 
1427 		memset(&init, 0, sizeof(init));
1428 		init.parent_names = &parent_name;
1429 		init.num_parents = 1;
1430 		if (dsi->port == 1)
1431 			init.name = phy_clocks[i].dsi1_name;
1432 		else
1433 			init.name = phy_clocks[i].dsi0_name;
1434 		init.ops = &clk_fixed_factor_ops;
1435 
1436 		ret = devm_clk_hw_register(dev, &fix->hw);
1437 		if (ret)
1438 			return ret;
1439 
1440 		dsi->clk_onecell->hws[i] = &fix->hw;
1441 	}
1442 
1443 	return of_clk_add_hw_provider(dev->of_node,
1444 				      of_clk_hw_onecell_get,
1445 				      dsi->clk_onecell);
1446 }
1447 
1448 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1449 {
1450 	struct platform_device *pdev = to_platform_device(dev);
1451 	struct drm_device *drm = dev_get_drvdata(master);
1452 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1453 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1454 	struct vc4_dsi_encoder *vc4_dsi_encoder;
1455 	struct drm_panel *panel;
1456 	const struct of_device_id *match;
1457 	dma_cap_mask_t dma_mask;
1458 	int ret;
1459 
1460 	match = of_match_device(vc4_dsi_dt_match, dev);
1461 	if (!match)
1462 		return -ENODEV;
1463 
1464 	dsi->port = (uintptr_t)match->data;
1465 
1466 	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1467 				       GFP_KERNEL);
1468 	if (!vc4_dsi_encoder)
1469 		return -ENOMEM;
1470 	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1471 	vc4_dsi_encoder->dsi = dsi;
1472 	dsi->encoder = &vc4_dsi_encoder->base.base;
1473 
1474 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1475 	if (IS_ERR(dsi->regs))
1476 		return PTR_ERR(dsi->regs);
1477 
1478 	dsi->regset.base = dsi->regs;
1479 	if (dsi->port == 0) {
1480 		dsi->regset.regs = dsi0_regs;
1481 		dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1482 	} else {
1483 		dsi->regset.regs = dsi1_regs;
1484 		dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1485 	}
1486 
1487 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1488 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1489 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1490 		return -ENODEV;
1491 	}
1492 
1493 	/* DSI1 has a broken AXI slave that doesn't respond to writes
1494 	 * from the ARM.  It does handle writes from the DMA engine,
1495 	 * so set up a channel for talking to it.
1496 	 */
1497 	if (dsi->port == 1) {
1498 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1499 						      &dsi->reg_dma_paddr,
1500 						      GFP_KERNEL);
1501 		if (!dsi->reg_dma_mem) {
1502 			DRM_ERROR("Failed to get DMA memory\n");
1503 			return -ENOMEM;
1504 		}
1505 
1506 		dma_cap_zero(dma_mask);
1507 		dma_cap_set(DMA_MEMCPY, dma_mask);
1508 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1509 		if (IS_ERR(dsi->reg_dma_chan)) {
1510 			ret = PTR_ERR(dsi->reg_dma_chan);
1511 			if (ret != -EPROBE_DEFER)
1512 				DRM_ERROR("Failed to get DMA channel: %d\n",
1513 					  ret);
1514 			return ret;
1515 		}
1516 
1517 		/* Get the physical address of the device's registers.  The
1518 		 * struct resource for the regs gives us the bus address
1519 		 * instead.
1520 		 */
1521 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1522 							     0, NULL, NULL));
1523 	}
1524 
1525 	init_completion(&dsi->xfer_completion);
1526 	/* At startup enable error-reporting interrupts and nothing else. */
1527 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1528 	/* Clear any existing interrupt state. */
1529 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1530 
1531 	if (dsi->reg_dma_mem)
1532 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1533 						vc4_dsi_irq_defer_to_thread_handler,
1534 						vc4_dsi_irq_handler,
1535 						IRQF_ONESHOT,
1536 						"vc4 dsi", dsi);
1537 	else
1538 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1539 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1540 	if (ret) {
1541 		if (ret != -EPROBE_DEFER)
1542 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1543 		return ret;
1544 	}
1545 
1546 	dsi->escape_clock = devm_clk_get(dev, "escape");
1547 	if (IS_ERR(dsi->escape_clock)) {
1548 		ret = PTR_ERR(dsi->escape_clock);
1549 		if (ret != -EPROBE_DEFER)
1550 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1551 		return ret;
1552 	}
1553 
1554 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1555 	if (IS_ERR(dsi->pll_phy_clock)) {
1556 		ret = PTR_ERR(dsi->pll_phy_clock);
1557 		if (ret != -EPROBE_DEFER)
1558 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1559 		return ret;
1560 	}
1561 
1562 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1563 	if (IS_ERR(dsi->pixel_clock)) {
1564 		ret = PTR_ERR(dsi->pixel_clock);
1565 		if (ret != -EPROBE_DEFER)
1566 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1567 		return ret;
1568 	}
1569 
1570 	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1571 					  &panel, &dsi->bridge);
1572 	if (ret) {
1573 		/* If the bridge or panel pointed by dev->of_node is not
1574 		 * enabled, just return 0 here so that we don't prevent the DRM
1575 		 * dev from being registered. Of course that means the DSI
1576 		 * encoder won't be exposed, but that's not a problem since
1577 		 * nothing is connected to it.
1578 		 */
1579 		if (ret == -ENODEV)
1580 			return 0;
1581 
1582 		return ret;
1583 	}
1584 
1585 	if (panel) {
1586 		dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1587 							DRM_MODE_CONNECTOR_DSI);
1588 		if (IS_ERR(dsi->bridge))
1589 			return PTR_ERR(dsi->bridge);
1590 	}
1591 
1592 	/* The esc clock rate is supposed to always be 100Mhz. */
1593 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1594 	if (ret) {
1595 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1596 		return ret;
1597 	}
1598 
1599 	ret = vc4_dsi_init_phy_clocks(dsi);
1600 	if (ret)
1601 		return ret;
1602 
1603 	if (dsi->port == 1)
1604 		vc4->dsi1 = dsi;
1605 
1606 	drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1607 			 DRM_MODE_ENCODER_DSI, NULL);
1608 	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1609 
1610 	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1611 	if (ret) {
1612 		dev_err(dev, "bridge attach failed: %d\n", ret);
1613 		return ret;
1614 	}
1615 	/* Disable the atomic helper calls into the bridge.  We
1616 	 * manually call the bridge pre_enable / enable / etc. calls
1617 	 * from our driver, since we need to sequence them within the
1618 	 * encoder's enable/disable paths.
1619 	 */
1620 	dsi->encoder->bridge = NULL;
1621 
1622 	if (dsi->port == 0)
1623 		vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1624 	else
1625 		vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1626 
1627 	pm_runtime_enable(dev);
1628 
1629 	return 0;
1630 }
1631 
1632 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1633 			   void *data)
1634 {
1635 	struct drm_device *drm = dev_get_drvdata(master);
1636 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1637 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1638 
1639 	if (dsi->bridge)
1640 		pm_runtime_disable(dev);
1641 
1642 	vc4_dsi_encoder_destroy(dsi->encoder);
1643 
1644 	if (dsi->port == 1)
1645 		vc4->dsi1 = NULL;
1646 }
1647 
1648 static const struct component_ops vc4_dsi_ops = {
1649 	.bind   = vc4_dsi_bind,
1650 	.unbind = vc4_dsi_unbind,
1651 };
1652 
1653 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1654 {
1655 	struct device *dev = &pdev->dev;
1656 	struct vc4_dsi *dsi;
1657 	int ret;
1658 
1659 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1660 	if (!dsi)
1661 		return -ENOMEM;
1662 	dev_set_drvdata(dev, dsi);
1663 
1664 	dsi->pdev = pdev;
1665 
1666 	/* Note, the initialization sequence for DSI and panels is
1667 	 * tricky.  The component bind above won't get past its
1668 	 * -EPROBE_DEFER until the panel/bridge probes.  The
1669 	 * panel/bridge will return -EPROBE_DEFER until it has a
1670 	 * mipi_dsi_host to register its device to.  So, we register
1671 	 * the host during pdev probe time, so vc4 as a whole can then
1672 	 * -EPROBE_DEFER its component bind process until the panel
1673 	 * successfully attaches.
1674 	 */
1675 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1676 	dsi->dsi_host.dev = dev;
1677 	mipi_dsi_host_register(&dsi->dsi_host);
1678 
1679 	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1680 	if (ret) {
1681 		mipi_dsi_host_unregister(&dsi->dsi_host);
1682 		return ret;
1683 	}
1684 
1685 	return 0;
1686 }
1687 
1688 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1689 {
1690 	struct device *dev = &pdev->dev;
1691 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1692 
1693 	component_del(&pdev->dev, &vc4_dsi_ops);
1694 	mipi_dsi_host_unregister(&dsi->dsi_host);
1695 
1696 	return 0;
1697 }
1698 
1699 struct platform_driver vc4_dsi_driver = {
1700 	.probe = vc4_dsi_dev_probe,
1701 	.remove = vc4_dsi_dev_remove,
1702 	.driver = {
1703 		.name = "vc4_dsi",
1704 		.of_match_table = vc4_dsi_dt_match,
1705 	},
1706 };
1707