xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 DSI0/DSI1 module
8  *
9  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
10  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
11  * controller.
12  *
13  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14  * while the compute module brings both DSI0 and DSI1 out.
15  *
16  * This driver has been tested for DSI1 video-mode display only
17  * currently, with most of the information necessary for DSI0
18  * hopefully present.
19  */
20 
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
27 #include <linux/i2c.h>
28 #include <linux/io.h>
29 #include <linux/of_address.h>
30 #include <linux/of_platform.h>
31 #include <linux/pm_runtime.h>
32 
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_of.h>
37 #include <drm/drm_panel.h>
38 #include <drm/drm_probe_helper.h>
39 
40 #include "vc4_drv.h"
41 #include "vc4_regs.h"
42 
43 #define DSI_CMD_FIFO_DEPTH  16
44 #define DSI_PIX_FIFO_DEPTH 256
45 #define DSI_PIX_FIFO_WIDTH   4
46 
47 #define DSI0_CTRL		0x00
48 
49 /* Command packet control. */
50 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
51 #define DSI1_TXPKT1C		0x04
52 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
53 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
54 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
55 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
56 
57 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
58 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
59 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
60 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
61 /* Primary display where cmdfifo provides part of the payload and
62  * pixelvalve the rest.
63  */
64 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
65 /* Secondary display where cmdfifo provides part of the payload and
66  * pixfifo the rest.
67  */
68 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
69 
70 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
71 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
72 
73 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
74 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
75 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
76 # define DSI_TXPKT1C_CMD_CTRL_TX	0
77 /* Command with BTA for either ack or read data. */
78 # define DSI_TXPKT1C_CMD_CTRL_RX	1
79 /* Trigger according to TRIG_CMD */
80 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
81 /* BTA alone for getting error status after a command, or a TE trigger
82  * without a previous command.
83  */
84 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
85 
86 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
87 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
88 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
89 # define DSI_TXPKT1C_CMD_EN		BIT(0)
90 
91 /* Command packet header. */
92 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
93 #define DSI1_TXPKT1H		0x08
94 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
95 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
96 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
97 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
98 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
99 # define DSI_TXPKT1H_BC_DT_SHIFT	0
100 
101 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
102 #define DSI1_RXPKT1H		0x14
103 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
104 # define DSI_RXPKT1H_DET_ERR		BIT(30)
105 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
106 # define DSI_RXPKT1H_COR_ERR		BIT(28)
107 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
108 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
109 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
110 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
111 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
112 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
113 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
114 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
115 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
116 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
117 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
118 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
119 
120 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
121 #define DSI1_RXPKT2H		0x18
122 # define DSI_RXPKT1H_DET_ERR		BIT(30)
123 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
124 # define DSI_RXPKT1H_COR_ERR		BIT(28)
125 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
126 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
127 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
128 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
129 # define DSI_RXPKT1H_DT_SHIFT		0
130 
131 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
132 #define DSI1_TXPKT_CMD_FIFO	0x1c
133 
134 #define DSI0_DISP0_CTRL		0x18
135 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
136 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
137 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
138 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
139 # define DSI_DISP0_LP_STOP_DISABLE	0
140 # define DSI_DISP0_LP_STOP_PERLINE	1
141 # define DSI_DISP0_LP_STOP_PERFRAME	2
142 
143 /* Transmit RGB pixels and null packets only during HACTIVE, instead
144  * of going to LP-STOP.
145  */
146 # define DSI_DISP_HACTIVE_NULL		BIT(10)
147 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
148 # define DSI_DISP_VBLP_CTRL		BIT(9)
149 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
150 # define DSI_DISP_HFP_CTRL		BIT(8)
151 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HBP_CTRL		BIT(7)
153 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
154 # define DSI_DISP0_CHANNEL_SHIFT	5
155 /* Enables end events for HSYNC/VSYNC, not just start events. */
156 # define DSI_DISP0_ST_END		BIT(4)
157 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
158 # define DSI_DISP0_PFORMAT_SHIFT	2
159 # define DSI_PFORMAT_RGB565		0
160 # define DSI_PFORMAT_RGB666_PACKED	1
161 # define DSI_PFORMAT_RGB666		2
162 # define DSI_PFORMAT_RGB888		3
163 /* Default is VIDEO mode. */
164 # define DSI_DISP0_COMMAND_MODE		BIT(1)
165 # define DSI_DISP0_ENABLE		BIT(0)
166 
167 #define DSI0_DISP1_CTRL		0x1c
168 #define DSI1_DISP1_CTRL		0x2c
169 /* Format of the data written to TXPKT_PIX_FIFO. */
170 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
171 # define DSI_DISP1_PFORMAT_SHIFT	1
172 # define DSI_DISP1_PFORMAT_16BIT	0
173 # define DSI_DISP1_PFORMAT_24BIT	1
174 # define DSI_DISP1_PFORMAT_32BIT_LE	2
175 # define DSI_DISP1_PFORMAT_32BIT_BE	3
176 
177 /* DISP1 is always command mode. */
178 # define DSI_DISP1_ENABLE		BIT(0)
179 
180 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
181 
182 #define DSI0_INT_STAT		0x24
183 #define DSI0_INT_EN		0x28
184 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
185 # define DSI1_INT_PHY_D3_STOP		BIT(29)
186 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
187 # define DSI1_INT_PHY_D2_STOP		BIT(27)
188 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
189 # define DSI1_INT_PHY_D1_STOP		BIT(25)
190 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
191 # define DSI1_INT_PHY_D0_STOP		BIT(23)
192 # define DSI1_INT_FIFO_ERR		BIT(22)
193 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
194 # define DSI1_INT_PHY_RXLPDT		BIT(20)
195 # define DSI1_INT_PHY_RXTRIG		BIT(19)
196 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
197 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
198 
199 /* Signaled when the clock lane enters the given state. */
200 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
201 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
202 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
203 
204 /* Signaled on timeouts */
205 # define DSI1_INT_PR_TO			BIT(13)
206 # define DSI1_INT_TA_TO			BIT(12)
207 # define DSI1_INT_LPRX_TO		BIT(11)
208 # define DSI1_INT_HSTX_TO		BIT(10)
209 
210 /* Contention on a line when trying to drive the line low */
211 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
212 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
213 
214 /* Control error: incorrect line state sequence on data lane 0. */
215 # define DSI1_INT_ERR_CONTROL		BIT(7)
216 /* LPDT synchronization error (bits received not a multiple of 8. */
217 
218 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
219 /* Signaled after receiving an error packet from the display in
220  * response to a read.
221  */
222 # define DSI1_INT_RXPKT2		BIT(5)
223 /* Signaled after receiving a packet.  The header and optional short
224  * response will be in RXPKT1H, and a long response will be in the
225  * RXPKT_FIFO.
226  */
227 # define DSI1_INT_RXPKT1		BIT(4)
228 # define DSI1_INT_TXPKT2_DONE		BIT(3)
229 # define DSI1_INT_TXPKT2_END		BIT(2)
230 /* Signaled after all repeats of TXPKT1 are transferred. */
231 # define DSI1_INT_TXPKT1_DONE		BIT(1)
232 /* Signaled after each TXPKT1 repeat is scheduled. */
233 # define DSI1_INT_TXPKT1_END		BIT(0)
234 
235 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
236 					 DSI1_INT_ERR_CONTROL |	 \
237 					 DSI1_INT_ERR_CONT_LP0 | \
238 					 DSI1_INT_ERR_CONT_LP1 | \
239 					 DSI1_INT_HSTX_TO |	 \
240 					 DSI1_INT_LPRX_TO |	 \
241 					 DSI1_INT_TA_TO |	 \
242 					 DSI1_INT_PR_TO)
243 
244 #define DSI0_STAT		0x2c
245 #define DSI0_HSTX_TO_CNT	0x30
246 #define DSI0_LPRX_TO_CNT	0x34
247 #define DSI0_TA_TO_CNT		0x38
248 #define DSI0_PR_TO_CNT		0x3c
249 #define DSI0_PHYC		0x40
250 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
251 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
252 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
253 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
254 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
255 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
256 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
257 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
258 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
259 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
260 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
261 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
262 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
263 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
264 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
265 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
266 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
267 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
268 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
269 
270 #define DSI0_HS_CLT0		0x44
271 #define DSI0_HS_CLT1		0x48
272 #define DSI0_HS_CLT2		0x4c
273 #define DSI0_HS_DLT3		0x50
274 #define DSI0_HS_DLT4		0x54
275 #define DSI0_HS_DLT5		0x58
276 #define DSI0_HS_DLT6		0x5c
277 #define DSI0_HS_DLT7		0x60
278 
279 #define DSI0_PHY_AFEC0		0x64
280 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
281 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
282 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
283 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
284 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
285 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
286 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
287 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
288 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
289 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
290 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
291 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
292 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
293 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
294 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
295 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
296 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
297 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
298 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
299 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
300 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
301 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
302 # define DSI1_PHY_AFEC0_RESET			BIT(13)
303 # define DSI1_PHY_AFEC0_PD			BIT(12)
304 # define DSI0_PHY_AFEC0_RESET			BIT(11)
305 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
306 # define DSI0_PHY_AFEC0_PD			BIT(10)
307 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
308 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
309 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
310 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
311 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
312 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
313 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
314 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
315 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
316 
317 #define DSI0_PHY_AFEC1		0x68
318 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
319 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
320 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
321 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
322 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
323 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
324 
325 #define DSI0_TST_SEL		0x6c
326 #define DSI0_TST_MON		0x70
327 #define DSI0_ID			0x74
328 # define DSI_ID_VALUE		0x00647369
329 
330 #define DSI1_CTRL		0x00
331 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
332 # define DSI_CTRL_HS_CLKC_SHIFT		14
333 # define DSI_CTRL_HS_CLKC_BYTE		0
334 # define DSI_CTRL_HS_CLKC_DDR2		1
335 # define DSI_CTRL_HS_CLKC_DDR		2
336 
337 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
338 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
339 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
340 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
341 # define DSI_CTRL_CAL_BYTE		BIT(9)
342 # define DSI_CTRL_INV_BYTE		BIT(8)
343 # define DSI_CTRL_CLR_LDF		BIT(7)
344 # define DSI0_CTRL_CLR_PBCF		BIT(6)
345 # define DSI1_CTRL_CLR_RXF		BIT(6)
346 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
347 # define DSI1_CTRL_CLR_PDF		BIT(5)
348 # define DSI0_CTRL_CLR_PDF		BIT(4)
349 # define DSI1_CTRL_CLR_CDF		BIT(4)
350 # define DSI0_CTRL_CLR_CDF		BIT(3)
351 # define DSI0_CTRL_CTRL2		BIT(2)
352 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
353 # define DSI0_CTRL_CTRL1		BIT(1)
354 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
355 # define DSI0_CTRL_CTRL0		BIT(0)
356 # define DSI1_CTRL_EN			BIT(0)
357 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
358 					 DSI0_CTRL_CLR_PBCF | \
359 					 DSI0_CTRL_CLR_CPBCF |	\
360 					 DSI0_CTRL_CLR_PDF | \
361 					 DSI0_CTRL_CLR_CDF)
362 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
363 					 DSI1_CTRL_CLR_RXF | \
364 					 DSI1_CTRL_CLR_PDF | \
365 					 DSI1_CTRL_CLR_CDF)
366 
367 #define DSI1_TXPKT2C		0x0c
368 #define DSI1_TXPKT2H		0x10
369 #define DSI1_TXPKT_PIX_FIFO	0x20
370 #define DSI1_RXPKT_FIFO		0x24
371 #define DSI1_DISP0_CTRL		0x28
372 #define DSI1_INT_STAT		0x30
373 #define DSI1_INT_EN		0x34
374 /* State reporting bits.  These mostly behave like INT_STAT, where
375  * writing a 1 clears the bit.
376  */
377 #define DSI1_STAT		0x38
378 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
379 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
380 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
381 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
382 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
383 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
384 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
385 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
386 # define DSI1_STAT_FIFO_ERR		BIT(23)
387 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
388 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
389 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
390 /* Set when in forward direction */
391 # define DSI1_STAT_PHY_DIR		BIT(19)
392 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
393 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
394 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
395 # define DSI1_STAT_PR_TO		BIT(15)
396 # define DSI1_STAT_TA_TO		BIT(14)
397 # define DSI1_STAT_LPRX_TO		BIT(13)
398 # define DSI1_STAT_HSTX_TO		BIT(12)
399 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
400 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
401 # define DSI1_STAT_ERR_CONTROL		BIT(9)
402 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
403 # define DSI1_STAT_RXPKT2		BIT(7)
404 # define DSI1_STAT_RXPKT1		BIT(6)
405 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
406 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
407 # define DSI1_STAT_TXPKT2_END		BIT(3)
408 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
409 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
410 # define DSI1_STAT_TXPKT1_END		BIT(0)
411 
412 #define DSI1_HSTX_TO_CNT	0x3c
413 #define DSI1_LPRX_TO_CNT	0x40
414 #define DSI1_TA_TO_CNT		0x44
415 #define DSI1_PR_TO_CNT		0x48
416 #define DSI1_PHYC		0x4c
417 
418 #define DSI1_HS_CLT0		0x50
419 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
420 # define DSI_HS_CLT0_CZERO_SHIFT	18
421 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
422 # define DSI_HS_CLT0_CPRE_SHIFT		9
423 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
424 # define DSI_HS_CLT0_CPREP_SHIFT	0
425 
426 #define DSI1_HS_CLT1		0x54
427 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
428 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
429 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
430 # define DSI_HS_CLT1_CPOST_SHIFT	0
431 
432 #define DSI1_HS_CLT2		0x58
433 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
434 # define DSI_HS_CLT2_WUP_SHIFT		0
435 
436 #define DSI1_HS_DLT3		0x5c
437 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
438 # define DSI_HS_DLT3_EXIT_SHIFT		18
439 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
440 # define DSI_HS_DLT3_ZERO_SHIFT		9
441 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
442 # define DSI_HS_DLT3_PRE_SHIFT		0
443 
444 #define DSI1_HS_DLT4		0x60
445 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
446 # define DSI_HS_DLT4_ANLAT_SHIFT	18
447 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
448 # define DSI_HS_DLT4_TRAIL_SHIFT	9
449 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
450 # define DSI_HS_DLT4_LPX_SHIFT		0
451 
452 #define DSI1_HS_DLT5		0x64
453 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
454 # define DSI_HS_DLT5_INIT_SHIFT		0
455 
456 #define DSI1_HS_DLT6		0x68
457 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
458 # define DSI_HS_DLT6_TA_GET_SHIFT	24
459 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
460 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
461 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
462 # define DSI_HS_DLT6_TA_GO_SHIFT	8
463 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
464 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
465 
466 #define DSI1_HS_DLT7		0x6c
467 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
468 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
469 
470 #define DSI1_PHY_AFEC0		0x70
471 
472 #define DSI1_PHY_AFEC1		0x74
473 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
474 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
475 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
476 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
477 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
478 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
481 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
482 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
483 
484 #define DSI1_TST_SEL		0x78
485 #define DSI1_TST_MON		0x7c
486 #define DSI1_PHY_TST1		0x80
487 #define DSI1_PHY_TST2		0x84
488 #define DSI1_PHY_FIFO_STAT	0x88
489 /* Actually, all registers in the range that aren't otherwise claimed
490  * will return the ID.
491  */
492 #define DSI1_ID			0x8c
493 
494 /* General DSI hardware state. */
495 struct vc4_dsi {
496 	struct platform_device *pdev;
497 
498 	struct mipi_dsi_host dsi_host;
499 	struct drm_encoder *encoder;
500 	struct drm_bridge *bridge;
501 
502 	void __iomem *regs;
503 
504 	struct dma_chan *reg_dma_chan;
505 	dma_addr_t reg_dma_paddr;
506 	u32 *reg_dma_mem;
507 	dma_addr_t reg_paddr;
508 
509 	/* Whether we're on bcm2835's DSI0 or DSI1. */
510 	int port;
511 
512 	/* DSI channel for the panel we're connected to. */
513 	u32 channel;
514 	u32 lanes;
515 	u32 format;
516 	u32 divider;
517 	u32 mode_flags;
518 
519 	/* Input clock from CPRMAN to the digital PHY, for the DSI
520 	 * escape clock.
521 	 */
522 	struct clk *escape_clock;
523 
524 	/* Input clock to the analog PHY, used to generate the DSI bit
525 	 * clock.
526 	 */
527 	struct clk *pll_phy_clock;
528 
529 	/* HS Clocks generated within the DSI analog PHY. */
530 	struct clk_fixed_factor phy_clocks[3];
531 
532 	struct clk_hw_onecell_data *clk_onecell;
533 
534 	/* Pixel clock output to the pixelvalve, generated from the HS
535 	 * clock.
536 	 */
537 	struct clk *pixel_clock;
538 
539 	struct completion xfer_completion;
540 	int xfer_result;
541 
542 	struct debugfs_regset32 regset;
543 };
544 
545 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
546 
547 static inline void
548 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
549 {
550 	struct dma_chan *chan = dsi->reg_dma_chan;
551 	struct dma_async_tx_descriptor *tx;
552 	dma_cookie_t cookie;
553 	int ret;
554 
555 	/* DSI0 should be able to write normally. */
556 	if (!chan) {
557 		writel(val, dsi->regs + offset);
558 		return;
559 	}
560 
561 	*dsi->reg_dma_mem = val;
562 
563 	tx = chan->device->device_prep_dma_memcpy(chan,
564 						  dsi->reg_paddr + offset,
565 						  dsi->reg_dma_paddr,
566 						  4, 0);
567 	if (!tx) {
568 		DRM_ERROR("Failed to set up DMA register write\n");
569 		return;
570 	}
571 
572 	cookie = tx->tx_submit(tx);
573 	ret = dma_submit_error(cookie);
574 	if (ret) {
575 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
576 		return;
577 	}
578 	ret = dma_sync_wait(chan, cookie);
579 	if (ret)
580 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
581 }
582 
583 #define DSI_READ(offset) readl(dsi->regs + (offset))
584 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
585 #define DSI_PORT_READ(offset) \
586 	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
587 #define DSI_PORT_WRITE(offset, val) \
588 	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
589 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
590 
591 /* VC4 DSI encoder KMS struct */
592 struct vc4_dsi_encoder {
593 	struct vc4_encoder base;
594 	struct vc4_dsi *dsi;
595 };
596 
597 static inline struct vc4_dsi_encoder *
598 to_vc4_dsi_encoder(struct drm_encoder *encoder)
599 {
600 	return container_of(encoder, struct vc4_dsi_encoder, base.base);
601 }
602 
603 static const struct debugfs_reg32 dsi0_regs[] = {
604 	VC4_REG32(DSI0_CTRL),
605 	VC4_REG32(DSI0_STAT),
606 	VC4_REG32(DSI0_HSTX_TO_CNT),
607 	VC4_REG32(DSI0_LPRX_TO_CNT),
608 	VC4_REG32(DSI0_TA_TO_CNT),
609 	VC4_REG32(DSI0_PR_TO_CNT),
610 	VC4_REG32(DSI0_DISP0_CTRL),
611 	VC4_REG32(DSI0_DISP1_CTRL),
612 	VC4_REG32(DSI0_INT_STAT),
613 	VC4_REG32(DSI0_INT_EN),
614 	VC4_REG32(DSI0_PHYC),
615 	VC4_REG32(DSI0_HS_CLT0),
616 	VC4_REG32(DSI0_HS_CLT1),
617 	VC4_REG32(DSI0_HS_CLT2),
618 	VC4_REG32(DSI0_HS_DLT3),
619 	VC4_REG32(DSI0_HS_DLT4),
620 	VC4_REG32(DSI0_HS_DLT5),
621 	VC4_REG32(DSI0_HS_DLT6),
622 	VC4_REG32(DSI0_HS_DLT7),
623 	VC4_REG32(DSI0_PHY_AFEC0),
624 	VC4_REG32(DSI0_PHY_AFEC1),
625 	VC4_REG32(DSI0_ID),
626 };
627 
628 static const struct debugfs_reg32 dsi1_regs[] = {
629 	VC4_REG32(DSI1_CTRL),
630 	VC4_REG32(DSI1_STAT),
631 	VC4_REG32(DSI1_HSTX_TO_CNT),
632 	VC4_REG32(DSI1_LPRX_TO_CNT),
633 	VC4_REG32(DSI1_TA_TO_CNT),
634 	VC4_REG32(DSI1_PR_TO_CNT),
635 	VC4_REG32(DSI1_DISP0_CTRL),
636 	VC4_REG32(DSI1_DISP1_CTRL),
637 	VC4_REG32(DSI1_INT_STAT),
638 	VC4_REG32(DSI1_INT_EN),
639 	VC4_REG32(DSI1_PHYC),
640 	VC4_REG32(DSI1_HS_CLT0),
641 	VC4_REG32(DSI1_HS_CLT1),
642 	VC4_REG32(DSI1_HS_CLT2),
643 	VC4_REG32(DSI1_HS_DLT3),
644 	VC4_REG32(DSI1_HS_DLT4),
645 	VC4_REG32(DSI1_HS_DLT5),
646 	VC4_REG32(DSI1_HS_DLT6),
647 	VC4_REG32(DSI1_HS_DLT7),
648 	VC4_REG32(DSI1_PHY_AFEC0),
649 	VC4_REG32(DSI1_PHY_AFEC1),
650 	VC4_REG32(DSI1_ID),
651 };
652 
653 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
654 {
655 	drm_encoder_cleanup(encoder);
656 }
657 
658 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
659 	.destroy = vc4_dsi_encoder_destroy,
660 };
661 
662 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
663 {
664 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
665 
666 	if (latch)
667 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
668 	else
669 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
670 
671 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
672 }
673 
674 /* Enters or exits Ultra Low Power State. */
675 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
676 {
677 	bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
678 	u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
679 			 DSI_PHYC_DLANE0_ULPS |
680 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
681 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
682 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
683 	u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
684 			 DSI1_STAT_PHY_D0_ULPS |
685 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
686 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
687 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
688 	u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
689 			 DSI1_STAT_PHY_D0_STOP |
690 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
691 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
692 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
693 	int ret;
694 	bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
695 				       DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
696 
697 	if (ulps == ulps_currently_enabled)
698 		return;
699 
700 	DSI_PORT_WRITE(STAT, stat_ulps);
701 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
702 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
703 	if (ret) {
704 		dev_warn(&dsi->pdev->dev,
705 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
706 			 DSI_PORT_READ(STAT));
707 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
708 		vc4_dsi_latch_ulps(dsi, false);
709 		return;
710 	}
711 
712 	/* The DSI module can't be disabled while the module is
713 	 * generating ULPS state.  So, to be able to disable the
714 	 * module, we have the AFE latch the ULPS state and continue
715 	 * on to having the module enter STOP.
716 	 */
717 	vc4_dsi_latch_ulps(dsi, ulps);
718 
719 	DSI_PORT_WRITE(STAT, stat_stop);
720 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
721 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
722 	if (ret) {
723 		dev_warn(&dsi->pdev->dev,
724 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
725 			 DSI_PORT_READ(STAT));
726 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
727 		return;
728 	}
729 }
730 
731 static u32
732 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
733 {
734 	/* The HS timings have to be rounded up to a multiple of 8
735 	 * because we're using the byte clock.
736 	 */
737 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
738 }
739 
740 /* ESC always runs at 100Mhz. */
741 #define ESC_TIME_NS 10
742 
743 static u32
744 dsi_esc_timing(u32 ns)
745 {
746 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
747 }
748 
749 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
750 {
751 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
752 	struct vc4_dsi *dsi = vc4_encoder->dsi;
753 	struct device *dev = &dsi->pdev->dev;
754 
755 	drm_bridge_disable(dsi->bridge);
756 	vc4_dsi_ulps(dsi, true);
757 	drm_bridge_post_disable(dsi->bridge);
758 
759 	clk_disable_unprepare(dsi->pll_phy_clock);
760 	clk_disable_unprepare(dsi->escape_clock);
761 	clk_disable_unprepare(dsi->pixel_clock);
762 
763 	pm_runtime_put(dev);
764 }
765 
766 /* Extends the mode's blank intervals to handle BCM2835's integer-only
767  * DSI PLL divider.
768  *
769  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
770  * driver since most peripherals are hanging off of the PLLD_PER
771  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
772  * the pixel clock), only has an integer divider off of DSI.
773  *
774  * To get our panel mode to refresh at the expected 60Hz, we need to
775  * extend the horizontal blank time.  This means we drive a
776  * higher-than-expected clock rate to the panel, but that's what the
777  * firmware does too.
778  */
779 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
780 				       const struct drm_display_mode *mode,
781 				       struct drm_display_mode *adjusted_mode)
782 {
783 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
784 	struct vc4_dsi *dsi = vc4_encoder->dsi;
785 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
786 	unsigned long parent_rate = clk_get_rate(phy_parent);
787 	unsigned long pixel_clock_hz = mode->clock * 1000;
788 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
789 	int divider;
790 
791 	/* Find what divider gets us a faster clock than the requested
792 	 * pixel clock.
793 	 */
794 	for (divider = 1; divider < 8; divider++) {
795 		if (parent_rate / divider < pll_clock) {
796 			divider--;
797 			break;
798 		}
799 	}
800 
801 	/* Now that we've picked a PLL divider, calculate back to its
802 	 * pixel clock.
803 	 */
804 	pll_clock = parent_rate / divider;
805 	pixel_clock_hz = pll_clock / dsi->divider;
806 
807 	adjusted_mode->clock = pixel_clock_hz / 1000;
808 
809 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
810 	adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
811 				mode->clock;
812 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
813 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
814 
815 	return true;
816 }
817 
818 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
819 {
820 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
821 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
822 	struct vc4_dsi *dsi = vc4_encoder->dsi;
823 	struct device *dev = &dsi->pdev->dev;
824 	bool debug_dump_regs = false;
825 	unsigned long hs_clock;
826 	u32 ui_ns;
827 	/* Minimum LP state duration in escape clock cycles. */
828 	u32 lpx = dsi_esc_timing(60);
829 	unsigned long pixel_clock_hz = mode->clock * 1000;
830 	unsigned long dsip_clock;
831 	unsigned long phy_clock;
832 	int ret;
833 
834 	ret = pm_runtime_get_sync(dev);
835 	if (ret) {
836 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
837 		return;
838 	}
839 
840 	if (debug_dump_regs) {
841 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
842 		dev_info(&dsi->pdev->dev, "DSI regs before:\n");
843 		drm_print_regset32(&p, &dsi->regset);
844 	}
845 
846 	/* Round up the clk_set_rate() request slightly, since
847 	 * PLLD_DSI1 is an integer divider and its rate selection will
848 	 * never round up.
849 	 */
850 	phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
851 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
852 	if (ret) {
853 		dev_err(&dsi->pdev->dev,
854 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
855 	}
856 
857 	/* Reset the DSI and all its fifos. */
858 	DSI_PORT_WRITE(CTRL,
859 		       DSI_CTRL_SOFT_RESET_CFG |
860 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
861 
862 	DSI_PORT_WRITE(CTRL,
863 		       DSI_CTRL_HSDT_EOT_DISABLE |
864 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
865 
866 	/* Clear all stat bits so we see what has happened during enable. */
867 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
868 
869 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
870 	if (dsi->port == 0) {
871 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
872 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
873 
874 		if (dsi->lanes < 2)
875 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
876 
877 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
878 			afec0 |= DSI0_PHY_AFEC0_RESET;
879 
880 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
881 
882 		DSI_PORT_WRITE(PHY_AFEC1,
883 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
884 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
885 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
886 	} else {
887 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
888 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
889 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
890 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
891 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
892 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
893 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
894 
895 		if (dsi->lanes < 4)
896 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
897 		if (dsi->lanes < 3)
898 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
899 		if (dsi->lanes < 2)
900 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
901 
902 		afec0 |= DSI1_PHY_AFEC0_RESET;
903 
904 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
905 
906 		DSI_PORT_WRITE(PHY_AFEC1, 0);
907 
908 		/* AFEC reset hold time */
909 		mdelay(1);
910 	}
911 
912 	ret = clk_prepare_enable(dsi->escape_clock);
913 	if (ret) {
914 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
915 		return;
916 	}
917 
918 	ret = clk_prepare_enable(dsi->pll_phy_clock);
919 	if (ret) {
920 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
921 		return;
922 	}
923 
924 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
925 
926 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
927 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
928 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
929 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
930 	 * and HS_CLKC is fed into the PV to divide down to the actual
931 	 * pixel clock for pushing pixels into DSI.
932 	 */
933 	dsip_clock = phy_clock / 8;
934 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
935 	if (ret) {
936 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
937 			dsip_clock, ret);
938 	}
939 
940 	ret = clk_prepare_enable(dsi->pixel_clock);
941 	if (ret) {
942 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
943 		return;
944 	}
945 
946 	/* How many ns one DSI unit interval is.  Note that the clock
947 	 * is DDR, so there's an extra divide by 2.
948 	 */
949 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
950 
951 	DSI_PORT_WRITE(HS_CLT0,
952 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
953 				     DSI_HS_CLT0_CZERO) |
954 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
955 				     DSI_HS_CLT0_CPRE) |
956 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
957 				     DSI_HS_CLT0_CPREP));
958 
959 	DSI_PORT_WRITE(HS_CLT1,
960 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
961 				     DSI_HS_CLT1_CTRAIL) |
962 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
963 				     DSI_HS_CLT1_CPOST));
964 
965 	DSI_PORT_WRITE(HS_CLT2,
966 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
967 				     DSI_HS_CLT2_WUP));
968 
969 	DSI_PORT_WRITE(HS_DLT3,
970 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
971 				     DSI_HS_DLT3_EXIT) |
972 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
973 				     DSI_HS_DLT3_ZERO) |
974 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
975 				     DSI_HS_DLT3_PRE));
976 
977 	DSI_PORT_WRITE(HS_DLT4,
978 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
979 				     DSI_HS_DLT4_LPX) |
980 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
981 					 dsi_hs_timing(ui_ns, 60, 4)),
982 				     DSI_HS_DLT4_TRAIL) |
983 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
984 
985 	/* T_INIT is how long STOP is driven after power-up to
986 	 * indicate to the slave (also coming out of power-up) that
987 	 * master init is complete, and should be greater than the
988 	 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE.  The
989 	 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
990 	 * T_INIT,SLAVE, while allowing protocols on top of it to give
991 	 * greater minimums.  The vc4 firmware uses an extremely
992 	 * conservative 5ms, and we maintain that here.
993 	 */
994 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
995 							    5 * 1000 * 1000, 0),
996 					      DSI_HS_DLT5_INIT));
997 
998 	DSI_PORT_WRITE(HS_DLT6,
999 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1000 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1001 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1002 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1003 
1004 	DSI_PORT_WRITE(HS_DLT7,
1005 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1006 				     DSI_HS_DLT7_LP_WUP));
1007 
1008 	DSI_PORT_WRITE(PHYC,
1009 		       DSI_PHYC_DLANE0_ENABLE |
1010 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1011 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1012 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1013 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1014 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1015 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1016 		       (dsi->port == 0 ?
1017 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1018 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1019 
1020 	DSI_PORT_WRITE(CTRL,
1021 		       DSI_PORT_READ(CTRL) |
1022 		       DSI_CTRL_CAL_BYTE);
1023 
1024 	/* HS timeout in HS clock cycles: disabled. */
1025 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1026 	/* LP receive timeout in HS clocks. */
1027 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1028 	/* Bus turnaround timeout */
1029 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1030 	/* Display reset sequence timeout */
1031 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1032 
1033 	/* Set up DISP1 for transferring long command payloads through
1034 	 * the pixfifo.
1035 	 */
1036 	DSI_PORT_WRITE(DISP1_CTRL,
1037 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1038 				     DSI_DISP1_PFORMAT) |
1039 		       DSI_DISP1_ENABLE);
1040 
1041 	/* Ungate the block. */
1042 	if (dsi->port == 0)
1043 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1044 	else
1045 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1046 
1047 	/* Bring AFE out of reset. */
1048 	if (dsi->port == 0) {
1049 	} else {
1050 		DSI_PORT_WRITE(PHY_AFEC0,
1051 			       DSI_PORT_READ(PHY_AFEC0) &
1052 			       ~DSI1_PHY_AFEC0_RESET);
1053 	}
1054 
1055 	vc4_dsi_ulps(dsi, false);
1056 
1057 	drm_bridge_pre_enable(dsi->bridge);
1058 
1059 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1060 		DSI_PORT_WRITE(DISP0_CTRL,
1061 			       VC4_SET_FIELD(dsi->divider,
1062 					     DSI_DISP0_PIX_CLK_DIV) |
1063 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1064 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1065 					     DSI_DISP0_LP_STOP_CTRL) |
1066 			       DSI_DISP0_ST_END |
1067 			       DSI_DISP0_ENABLE);
1068 	} else {
1069 		DSI_PORT_WRITE(DISP0_CTRL,
1070 			       DSI_DISP0_COMMAND_MODE |
1071 			       DSI_DISP0_ENABLE);
1072 	}
1073 
1074 	drm_bridge_enable(dsi->bridge);
1075 
1076 	if (debug_dump_regs) {
1077 		struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
1078 		dev_info(&dsi->pdev->dev, "DSI regs after:\n");
1079 		drm_print_regset32(&p, &dsi->regset);
1080 	}
1081 }
1082 
1083 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1084 				     const struct mipi_dsi_msg *msg)
1085 {
1086 	struct vc4_dsi *dsi = host_to_dsi(host);
1087 	struct mipi_dsi_packet packet;
1088 	u32 pkth = 0, pktc = 0;
1089 	int i, ret;
1090 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1091 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1092 
1093 	mipi_dsi_create_packet(&packet, msg);
1094 
1095 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1096 	pkth |= VC4_SET_FIELD(packet.header[1] |
1097 			      (packet.header[2] << 8),
1098 			      DSI_TXPKT1H_BC_PARAM);
1099 	if (is_long) {
1100 		/* Divide data across the various FIFOs we have available.
1101 		 * The command FIFO takes byte-oriented data, but is of
1102 		 * limited size. The pixel FIFO (never actually used for
1103 		 * pixel data in reality) is word oriented, and substantially
1104 		 * larger. So, we use the pixel FIFO for most of the data,
1105 		 * sending the residual bytes in the command FIFO at the start.
1106 		 *
1107 		 * With this arrangement, the command FIFO will never get full.
1108 		 */
1109 		if (packet.payload_length <= 16) {
1110 			cmd_fifo_len = packet.payload_length;
1111 			pix_fifo_len = 0;
1112 		} else {
1113 			cmd_fifo_len = (packet.payload_length %
1114 					DSI_PIX_FIFO_WIDTH);
1115 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1116 					DSI_PIX_FIFO_WIDTH);
1117 		}
1118 
1119 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1120 
1121 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1122 	}
1123 
1124 	if (msg->rx_len) {
1125 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1126 				      DSI_TXPKT1C_CMD_CTRL);
1127 	} else {
1128 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1129 				      DSI_TXPKT1C_CMD_CTRL);
1130 	}
1131 
1132 	for (i = 0; i < cmd_fifo_len; i++)
1133 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1134 	for (i = 0; i < pix_fifo_len; i++) {
1135 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1136 
1137 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1138 			       pix[0] |
1139 			       pix[1] << 8 |
1140 			       pix[2] << 16 |
1141 			       pix[3] << 24);
1142 	}
1143 
1144 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1145 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1146 	if (is_long)
1147 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1148 
1149 	/* Send one copy of the packet.  Larger repeats are used for pixel
1150 	 * data in command mode.
1151 	 */
1152 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1153 
1154 	pktc |= DSI_TXPKT1C_CMD_EN;
1155 	if (pix_fifo_len) {
1156 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1157 				      DSI_TXPKT1C_DISPLAY_NO);
1158 	} else {
1159 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1160 				      DSI_TXPKT1C_DISPLAY_NO);
1161 	}
1162 
1163 	/* Enable the appropriate interrupt for the transfer completion. */
1164 	dsi->xfer_result = 0;
1165 	reinit_completion(&dsi->xfer_completion);
1166 	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1167 	if (msg->rx_len) {
1168 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1169 					DSI1_INT_PHY_DIR_RTF));
1170 	} else {
1171 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1172 					DSI1_INT_TXPKT1_DONE));
1173 	}
1174 
1175 	/* Send the packet. */
1176 	DSI_PORT_WRITE(TXPKT1H, pkth);
1177 	DSI_PORT_WRITE(TXPKT1C, pktc);
1178 
1179 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1180 					 msecs_to_jiffies(1000))) {
1181 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1182 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1183 			DSI_PORT_READ(INT_STAT));
1184 		ret = -ETIMEDOUT;
1185 	} else {
1186 		ret = dsi->xfer_result;
1187 	}
1188 
1189 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1190 
1191 	if (ret)
1192 		goto reset_fifo_and_return;
1193 
1194 	if (ret == 0 && msg->rx_len) {
1195 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1196 		u8 *msg_rx = msg->rx_buf;
1197 
1198 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1199 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1200 						  DSI_RXPKT1H_BC_PARAM);
1201 
1202 			if (rxlen != msg->rx_len) {
1203 				DRM_ERROR("DSI returned %db, expecting %db\n",
1204 					  rxlen, (int)msg->rx_len);
1205 				ret = -ENXIO;
1206 				goto reset_fifo_and_return;
1207 			}
1208 
1209 			for (i = 0; i < msg->rx_len; i++)
1210 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1211 		} else {
1212 			/* FINISHME: Handle AWER */
1213 
1214 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1215 						  DSI_RXPKT1H_SHORT_0);
1216 			if (msg->rx_len > 1) {
1217 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1218 							  DSI_RXPKT1H_SHORT_1);
1219 			}
1220 		}
1221 	}
1222 
1223 	return ret;
1224 
1225 reset_fifo_and_return:
1226 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1227 
1228 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1229 	udelay(1);
1230 	DSI_PORT_WRITE(CTRL,
1231 		       DSI_PORT_READ(CTRL) |
1232 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1233 
1234 	DSI_PORT_WRITE(TXPKT1C, 0);
1235 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1236 	return ret;
1237 }
1238 
1239 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1240 			       struct mipi_dsi_device *device)
1241 {
1242 	struct vc4_dsi *dsi = host_to_dsi(host);
1243 
1244 	dsi->lanes = device->lanes;
1245 	dsi->channel = device->channel;
1246 	dsi->mode_flags = device->mode_flags;
1247 
1248 	switch (device->format) {
1249 	case MIPI_DSI_FMT_RGB888:
1250 		dsi->format = DSI_PFORMAT_RGB888;
1251 		dsi->divider = 24 / dsi->lanes;
1252 		break;
1253 	case MIPI_DSI_FMT_RGB666:
1254 		dsi->format = DSI_PFORMAT_RGB666;
1255 		dsi->divider = 24 / dsi->lanes;
1256 		break;
1257 	case MIPI_DSI_FMT_RGB666_PACKED:
1258 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1259 		dsi->divider = 18 / dsi->lanes;
1260 		break;
1261 	case MIPI_DSI_FMT_RGB565:
1262 		dsi->format = DSI_PFORMAT_RGB565;
1263 		dsi->divider = 16 / dsi->lanes;
1264 		break;
1265 	default:
1266 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1267 			dsi->format);
1268 		return 0;
1269 	}
1270 
1271 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1272 		dev_err(&dsi->pdev->dev,
1273 			"Only VIDEO mode panels supported currently.\n");
1274 		return 0;
1275 	}
1276 
1277 	return 0;
1278 }
1279 
1280 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1281 			       struct mipi_dsi_device *device)
1282 {
1283 	return 0;
1284 }
1285 
1286 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1287 	.attach = vc4_dsi_host_attach,
1288 	.detach = vc4_dsi_host_detach,
1289 	.transfer = vc4_dsi_host_transfer,
1290 };
1291 
1292 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1293 	.disable = vc4_dsi_encoder_disable,
1294 	.enable = vc4_dsi_encoder_enable,
1295 	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1296 };
1297 
1298 static const struct of_device_id vc4_dsi_dt_match[] = {
1299 	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1300 	{}
1301 };
1302 
1303 static void dsi_handle_error(struct vc4_dsi *dsi,
1304 			     irqreturn_t *ret, u32 stat, u32 bit,
1305 			     const char *type)
1306 {
1307 	if (!(stat & bit))
1308 		return;
1309 
1310 	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1311 	*ret = IRQ_HANDLED;
1312 }
1313 
1314 /*
1315  * Initial handler for port 1 where we need the reg_dma workaround.
1316  * The register DMA writes sleep, so we can't do it in the top half.
1317  * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1318  * parent interrupt contrller until our interrupt thread is done.
1319  */
1320 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
1321 {
1322 	struct vc4_dsi *dsi = data;
1323 	u32 stat = DSI_PORT_READ(INT_STAT);
1324 
1325 	if (!stat)
1326 		return IRQ_NONE;
1327 
1328 	return IRQ_WAKE_THREAD;
1329 }
1330 
1331 /*
1332  * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1333  * 1 where we need the reg_dma workaround.
1334  */
1335 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1336 {
1337 	struct vc4_dsi *dsi = data;
1338 	u32 stat = DSI_PORT_READ(INT_STAT);
1339 	irqreturn_t ret = IRQ_NONE;
1340 
1341 	DSI_PORT_WRITE(INT_STAT, stat);
1342 
1343 	dsi_handle_error(dsi, &ret, stat,
1344 			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1345 	dsi_handle_error(dsi, &ret, stat,
1346 			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1347 	dsi_handle_error(dsi, &ret, stat,
1348 			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1349 	dsi_handle_error(dsi, &ret, stat,
1350 			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1351 	dsi_handle_error(dsi, &ret, stat,
1352 			 DSI1_INT_HSTX_TO, "HSTX timeout");
1353 	dsi_handle_error(dsi, &ret, stat,
1354 			 DSI1_INT_LPRX_TO, "LPRX timeout");
1355 	dsi_handle_error(dsi, &ret, stat,
1356 			 DSI1_INT_TA_TO, "turnaround timeout");
1357 	dsi_handle_error(dsi, &ret, stat,
1358 			 DSI1_INT_PR_TO, "peripheral reset timeout");
1359 
1360 	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1361 		complete(&dsi->xfer_completion);
1362 		ret = IRQ_HANDLED;
1363 	} else if (stat & DSI1_INT_HSTX_TO) {
1364 		complete(&dsi->xfer_completion);
1365 		dsi->xfer_result = -ETIMEDOUT;
1366 		ret = IRQ_HANDLED;
1367 	}
1368 
1369 	return ret;
1370 }
1371 
1372 /**
1373  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1374  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1375  * @dsi: DSI encoder
1376  */
1377 static int
1378 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1379 {
1380 	struct device *dev = &dsi->pdev->dev;
1381 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1382 	static const struct {
1383 		const char *dsi0_name, *dsi1_name;
1384 		int div;
1385 	} phy_clocks[] = {
1386 		{ "dsi0_byte", "dsi1_byte", 8 },
1387 		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1388 		{ "dsi0_ddr", "dsi1_ddr", 2 },
1389 	};
1390 	int i;
1391 
1392 	dsi->clk_onecell = devm_kzalloc(dev,
1393 					sizeof(*dsi->clk_onecell) +
1394 					ARRAY_SIZE(phy_clocks) *
1395 					sizeof(struct clk_hw *),
1396 					GFP_KERNEL);
1397 	if (!dsi->clk_onecell)
1398 		return -ENOMEM;
1399 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1400 
1401 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1402 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1403 		struct clk_init_data init;
1404 		int ret;
1405 
1406 		/* We just use core fixed factor clock ops for the PHY
1407 		 * clocks.  The clocks are actually gated by the
1408 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1409 		 * setting if we use the DDR/DDR2 clocks.  However,
1410 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1411 		 * setting both our parent DSI PLL's rate and this
1412 		 * clock's rate, so it knows if DDR/DDR2 are going to
1413 		 * be used and could enable the gates itself.
1414 		 */
1415 		fix->mult = 1;
1416 		fix->div = phy_clocks[i].div;
1417 		fix->hw.init = &init;
1418 
1419 		memset(&init, 0, sizeof(init));
1420 		init.parent_names = &parent_name;
1421 		init.num_parents = 1;
1422 		if (dsi->port == 1)
1423 			init.name = phy_clocks[i].dsi1_name;
1424 		else
1425 			init.name = phy_clocks[i].dsi0_name;
1426 		init.ops = &clk_fixed_factor_ops;
1427 
1428 		ret = devm_clk_hw_register(dev, &fix->hw);
1429 		if (ret)
1430 			return ret;
1431 
1432 		dsi->clk_onecell->hws[i] = &fix->hw;
1433 	}
1434 
1435 	return of_clk_add_hw_provider(dev->of_node,
1436 				      of_clk_hw_onecell_get,
1437 				      dsi->clk_onecell);
1438 }
1439 
1440 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1441 {
1442 	struct platform_device *pdev = to_platform_device(dev);
1443 	struct drm_device *drm = dev_get_drvdata(master);
1444 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1445 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1446 	struct vc4_dsi_encoder *vc4_dsi_encoder;
1447 	struct drm_panel *panel;
1448 	const struct of_device_id *match;
1449 	dma_cap_mask_t dma_mask;
1450 	int ret;
1451 
1452 	match = of_match_device(vc4_dsi_dt_match, dev);
1453 	if (!match)
1454 		return -ENODEV;
1455 
1456 	dsi->port = (uintptr_t)match->data;
1457 
1458 	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1459 				       GFP_KERNEL);
1460 	if (!vc4_dsi_encoder)
1461 		return -ENOMEM;
1462 	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1463 	vc4_dsi_encoder->dsi = dsi;
1464 	dsi->encoder = &vc4_dsi_encoder->base.base;
1465 
1466 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1467 	if (IS_ERR(dsi->regs))
1468 		return PTR_ERR(dsi->regs);
1469 
1470 	dsi->regset.base = dsi->regs;
1471 	if (dsi->port == 0) {
1472 		dsi->regset.regs = dsi0_regs;
1473 		dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
1474 	} else {
1475 		dsi->regset.regs = dsi1_regs;
1476 		dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
1477 	}
1478 
1479 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1480 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1481 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1482 		return -ENODEV;
1483 	}
1484 
1485 	/* DSI1 has a broken AXI slave that doesn't respond to writes
1486 	 * from the ARM.  It does handle writes from the DMA engine,
1487 	 * so set up a channel for talking to it.
1488 	 */
1489 	if (dsi->port == 1) {
1490 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1491 						      &dsi->reg_dma_paddr,
1492 						      GFP_KERNEL);
1493 		if (!dsi->reg_dma_mem) {
1494 			DRM_ERROR("Failed to get DMA memory\n");
1495 			return -ENOMEM;
1496 		}
1497 
1498 		dma_cap_zero(dma_mask);
1499 		dma_cap_set(DMA_MEMCPY, dma_mask);
1500 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1501 		if (IS_ERR(dsi->reg_dma_chan)) {
1502 			ret = PTR_ERR(dsi->reg_dma_chan);
1503 			if (ret != -EPROBE_DEFER)
1504 				DRM_ERROR("Failed to get DMA channel: %d\n",
1505 					  ret);
1506 			return ret;
1507 		}
1508 
1509 		/* Get the physical address of the device's registers.  The
1510 		 * struct resource for the regs gives us the bus address
1511 		 * instead.
1512 		 */
1513 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1514 							     0, NULL, NULL));
1515 	}
1516 
1517 	init_completion(&dsi->xfer_completion);
1518 	/* At startup enable error-reporting interrupts and nothing else. */
1519 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1520 	/* Clear any existing interrupt state. */
1521 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1522 
1523 	if (dsi->reg_dma_mem)
1524 		ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
1525 						vc4_dsi_irq_defer_to_thread_handler,
1526 						vc4_dsi_irq_handler,
1527 						IRQF_ONESHOT,
1528 						"vc4 dsi", dsi);
1529 	else
1530 		ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1531 				       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1532 	if (ret) {
1533 		if (ret != -EPROBE_DEFER)
1534 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1535 		return ret;
1536 	}
1537 
1538 	dsi->escape_clock = devm_clk_get(dev, "escape");
1539 	if (IS_ERR(dsi->escape_clock)) {
1540 		ret = PTR_ERR(dsi->escape_clock);
1541 		if (ret != -EPROBE_DEFER)
1542 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1543 		return ret;
1544 	}
1545 
1546 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1547 	if (IS_ERR(dsi->pll_phy_clock)) {
1548 		ret = PTR_ERR(dsi->pll_phy_clock);
1549 		if (ret != -EPROBE_DEFER)
1550 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1551 		return ret;
1552 	}
1553 
1554 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1555 	if (IS_ERR(dsi->pixel_clock)) {
1556 		ret = PTR_ERR(dsi->pixel_clock);
1557 		if (ret != -EPROBE_DEFER)
1558 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1559 		return ret;
1560 	}
1561 
1562 	ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
1563 					  &panel, &dsi->bridge);
1564 	if (ret) {
1565 		/* If the bridge or panel pointed by dev->of_node is not
1566 		 * enabled, just return 0 here so that we don't prevent the DRM
1567 		 * dev from being registered. Of course that means the DSI
1568 		 * encoder won't be exposed, but that's not a problem since
1569 		 * nothing is connected to it.
1570 		 */
1571 		if (ret == -ENODEV)
1572 			return 0;
1573 
1574 		return ret;
1575 	}
1576 
1577 	if (panel) {
1578 		dsi->bridge = devm_drm_panel_bridge_add(dev, panel,
1579 							DRM_MODE_CONNECTOR_DSI);
1580 		if (IS_ERR(dsi->bridge))
1581 			return PTR_ERR(dsi->bridge);
1582 	}
1583 
1584 	/* The esc clock rate is supposed to always be 100Mhz. */
1585 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1586 	if (ret) {
1587 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1588 		return ret;
1589 	}
1590 
1591 	ret = vc4_dsi_init_phy_clocks(dsi);
1592 	if (ret)
1593 		return ret;
1594 
1595 	if (dsi->port == 1)
1596 		vc4->dsi1 = dsi;
1597 
1598 	drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1599 			 DRM_MODE_ENCODER_DSI, NULL);
1600 	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1601 
1602 	ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1603 	if (ret) {
1604 		dev_err(dev, "bridge attach failed: %d\n", ret);
1605 		return ret;
1606 	}
1607 	/* Disable the atomic helper calls into the bridge.  We
1608 	 * manually call the bridge pre_enable / enable / etc. calls
1609 	 * from our driver, since we need to sequence them within the
1610 	 * encoder's enable/disable paths.
1611 	 */
1612 	dsi->encoder->bridge = NULL;
1613 
1614 	if (dsi->port == 0)
1615 		vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
1616 	else
1617 		vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
1618 
1619 	pm_runtime_enable(dev);
1620 
1621 	return 0;
1622 }
1623 
1624 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1625 			   void *data)
1626 {
1627 	struct drm_device *drm = dev_get_drvdata(master);
1628 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1629 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1630 
1631 	if (dsi->bridge)
1632 		pm_runtime_disable(dev);
1633 
1634 	vc4_dsi_encoder_destroy(dsi->encoder);
1635 
1636 	if (dsi->port == 1)
1637 		vc4->dsi1 = NULL;
1638 }
1639 
1640 static const struct component_ops vc4_dsi_ops = {
1641 	.bind   = vc4_dsi_bind,
1642 	.unbind = vc4_dsi_unbind,
1643 };
1644 
1645 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1646 {
1647 	struct device *dev = &pdev->dev;
1648 	struct vc4_dsi *dsi;
1649 	int ret;
1650 
1651 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1652 	if (!dsi)
1653 		return -ENOMEM;
1654 	dev_set_drvdata(dev, dsi);
1655 
1656 	dsi->pdev = pdev;
1657 
1658 	/* Note, the initialization sequence for DSI and panels is
1659 	 * tricky.  The component bind above won't get past its
1660 	 * -EPROBE_DEFER until the panel/bridge probes.  The
1661 	 * panel/bridge will return -EPROBE_DEFER until it has a
1662 	 * mipi_dsi_host to register its device to.  So, we register
1663 	 * the host during pdev probe time, so vc4 as a whole can then
1664 	 * -EPROBE_DEFER its component bind process until the panel
1665 	 * successfully attaches.
1666 	 */
1667 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1668 	dsi->dsi_host.dev = dev;
1669 	mipi_dsi_host_register(&dsi->dsi_host);
1670 
1671 	ret = component_add(&pdev->dev, &vc4_dsi_ops);
1672 	if (ret) {
1673 		mipi_dsi_host_unregister(&dsi->dsi_host);
1674 		return ret;
1675 	}
1676 
1677 	return 0;
1678 }
1679 
1680 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1681 {
1682 	struct device *dev = &pdev->dev;
1683 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1684 
1685 	component_del(&pdev->dev, &vc4_dsi_ops);
1686 	mipi_dsi_host_unregister(&dsi->dsi_host);
1687 
1688 	return 0;
1689 }
1690 
1691 struct platform_driver vc4_dsi_driver = {
1692 	.probe = vc4_dsi_dev_probe,
1693 	.remove = vc4_dsi_dev_remove,
1694 	.driver = {
1695 		.name = "vc4_dsi",
1696 		.of_match_table = vc4_dsi_dt_match,
1697 	},
1698 };
1699