1 /* 2 * Copyright (C) 2016 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 as published by 6 * the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program. If not, see <http://www.gnu.org/licenses/>. 15 */ 16 17 /** 18 * DOC: VC4 DSI0/DSI1 module 19 * 20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a 21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI 22 * controller. 23 * 24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector, 25 * while the compute module brings both DSI0 and DSI1 out. 26 * 27 * This driver has been tested for DSI1 video-mode display only 28 * currently, with most of the information necessary for DSI0 29 * hopefully present. 30 */ 31 32 #include <drm/drm_atomic_helper.h> 33 #include <drm/drm_edid.h> 34 #include <drm/drm_mipi_dsi.h> 35 #include <drm/drm_of.h> 36 #include <drm/drm_panel.h> 37 #include <drm/drm_probe_helper.h> 38 #include <linux/clk.h> 39 #include <linux/clk-provider.h> 40 #include <linux/completion.h> 41 #include <linux/component.h> 42 #include <linux/dmaengine.h> 43 #include <linux/i2c.h> 44 #include <linux/of_address.h> 45 #include <linux/of_platform.h> 46 #include <linux/pm_runtime.h> 47 #include "vc4_drv.h" 48 #include "vc4_regs.h" 49 50 #define DSI_CMD_FIFO_DEPTH 16 51 #define DSI_PIX_FIFO_DEPTH 256 52 #define DSI_PIX_FIFO_WIDTH 4 53 54 #define DSI0_CTRL 0x00 55 56 /* Command packet control. */ 57 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */ 58 #define DSI1_TXPKT1C 0x04 59 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24) 60 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24 61 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10) 62 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10 63 64 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8) 65 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8 66 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */ 67 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0 68 /* Primary display where cmdfifo provides part of the payload and 69 * pixelvalve the rest. 70 */ 71 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1 72 /* Secondary display where cmdfifo provides part of the payload and 73 * pixfifo the rest. 74 */ 75 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2 76 77 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6) 78 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6 79 80 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4) 81 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4 82 /* Command only. Uses TXPKT1H and DISPLAY_NO */ 83 # define DSI_TXPKT1C_CMD_CTRL_TX 0 84 /* Command with BTA for either ack or read data. */ 85 # define DSI_TXPKT1C_CMD_CTRL_RX 1 86 /* Trigger according to TRIG_CMD */ 87 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2 88 /* BTA alone for getting error status after a command, or a TE trigger 89 * without a previous command. 90 */ 91 # define DSI_TXPKT1C_CMD_CTRL_BTA 3 92 93 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3) 94 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2) 95 # define DSI_TXPKT1C_CMD_TE_EN BIT(1) 96 # define DSI_TXPKT1C_CMD_EN BIT(0) 97 98 /* Command packet header. */ 99 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */ 100 #define DSI1_TXPKT1H 0x08 101 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24) 102 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24 103 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 104 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8 105 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0) 106 # define DSI_TXPKT1H_BC_DT_SHIFT 0 107 108 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */ 109 #define DSI1_RXPKT1H 0x14 110 # define DSI_RXPKT1H_CRC_ERR BIT(31) 111 # define DSI_RXPKT1H_DET_ERR BIT(30) 112 # define DSI_RXPKT1H_ECC_ERR BIT(29) 113 # define DSI_RXPKT1H_COR_ERR BIT(28) 114 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 115 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24) 116 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */ 117 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 118 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 119 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */ 120 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16) 121 # define DSI_RXPKT1H_SHORT_1_SHIFT 16 122 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8) 123 # define DSI_RXPKT1H_SHORT_0_SHIFT 8 124 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0) 125 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0 126 127 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */ 128 #define DSI1_RXPKT2H 0x18 129 # define DSI_RXPKT1H_DET_ERR BIT(30) 130 # define DSI_RXPKT1H_ECC_ERR BIT(29) 131 # define DSI_RXPKT1H_COR_ERR BIT(28) 132 # define DSI_RXPKT1H_INCOMP_PKT BIT(25) 133 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8) 134 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8 135 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0) 136 # define DSI_RXPKT1H_DT_SHIFT 0 137 138 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */ 139 #define DSI1_TXPKT_CMD_FIFO 0x1c 140 141 #define DSI0_DISP0_CTRL 0x18 142 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13) 143 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13 144 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11) 145 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11 146 # define DSI_DISP0_LP_STOP_DISABLE 0 147 # define DSI_DISP0_LP_STOP_PERLINE 1 148 # define DSI_DISP0_LP_STOP_PERFRAME 2 149 150 /* Transmit RGB pixels and null packets only during HACTIVE, instead 151 * of going to LP-STOP. 152 */ 153 # define DSI_DISP_HACTIVE_NULL BIT(10) 154 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */ 155 # define DSI_DISP_VBLP_CTRL BIT(9) 156 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */ 157 # define DSI_DISP_HFP_CTRL BIT(8) 158 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */ 159 # define DSI_DISP_HBP_CTRL BIT(7) 160 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5) 161 # define DSI_DISP0_CHANNEL_SHIFT 5 162 /* Enables end events for HSYNC/VSYNC, not just start events. */ 163 # define DSI_DISP0_ST_END BIT(4) 164 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2) 165 # define DSI_DISP0_PFORMAT_SHIFT 2 166 # define DSI_PFORMAT_RGB565 0 167 # define DSI_PFORMAT_RGB666_PACKED 1 168 # define DSI_PFORMAT_RGB666 2 169 # define DSI_PFORMAT_RGB888 3 170 /* Default is VIDEO mode. */ 171 # define DSI_DISP0_COMMAND_MODE BIT(1) 172 # define DSI_DISP0_ENABLE BIT(0) 173 174 #define DSI0_DISP1_CTRL 0x1c 175 #define DSI1_DISP1_CTRL 0x2c 176 /* Format of the data written to TXPKT_PIX_FIFO. */ 177 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1) 178 # define DSI_DISP1_PFORMAT_SHIFT 1 179 # define DSI_DISP1_PFORMAT_16BIT 0 180 # define DSI_DISP1_PFORMAT_24BIT 1 181 # define DSI_DISP1_PFORMAT_32BIT_LE 2 182 # define DSI_DISP1_PFORMAT_32BIT_BE 3 183 184 /* DISP1 is always command mode. */ 185 # define DSI_DISP1_ENABLE BIT(0) 186 187 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */ 188 189 #define DSI0_INT_STAT 0x24 190 #define DSI0_INT_EN 0x28 191 # define DSI1_INT_PHY_D3_ULPS BIT(30) 192 # define DSI1_INT_PHY_D3_STOP BIT(29) 193 # define DSI1_INT_PHY_D2_ULPS BIT(28) 194 # define DSI1_INT_PHY_D2_STOP BIT(27) 195 # define DSI1_INT_PHY_D1_ULPS BIT(26) 196 # define DSI1_INT_PHY_D1_STOP BIT(25) 197 # define DSI1_INT_PHY_D0_ULPS BIT(24) 198 # define DSI1_INT_PHY_D0_STOP BIT(23) 199 # define DSI1_INT_FIFO_ERR BIT(22) 200 # define DSI1_INT_PHY_DIR_RTF BIT(21) 201 # define DSI1_INT_PHY_RXLPDT BIT(20) 202 # define DSI1_INT_PHY_RXTRIG BIT(19) 203 # define DSI1_INT_PHY_D0_LPDT BIT(18) 204 # define DSI1_INT_PHY_DIR_FTR BIT(17) 205 206 /* Signaled when the clock lane enters the given state. */ 207 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16) 208 # define DSI1_INT_PHY_CLOCK_HS BIT(15) 209 # define DSI1_INT_PHY_CLOCK_STOP BIT(14) 210 211 /* Signaled on timeouts */ 212 # define DSI1_INT_PR_TO BIT(13) 213 # define DSI1_INT_TA_TO BIT(12) 214 # define DSI1_INT_LPRX_TO BIT(11) 215 # define DSI1_INT_HSTX_TO BIT(10) 216 217 /* Contention on a line when trying to drive the line low */ 218 # define DSI1_INT_ERR_CONT_LP1 BIT(9) 219 # define DSI1_INT_ERR_CONT_LP0 BIT(8) 220 221 /* Control error: incorrect line state sequence on data lane 0. */ 222 # define DSI1_INT_ERR_CONTROL BIT(7) 223 /* LPDT synchronization error (bits received not a multiple of 8. */ 224 225 # define DSI1_INT_ERR_SYNC_ESC BIT(6) 226 /* Signaled after receiving an error packet from the display in 227 * response to a read. 228 */ 229 # define DSI1_INT_RXPKT2 BIT(5) 230 /* Signaled after receiving a packet. The header and optional short 231 * response will be in RXPKT1H, and a long response will be in the 232 * RXPKT_FIFO. 233 */ 234 # define DSI1_INT_RXPKT1 BIT(4) 235 # define DSI1_INT_TXPKT2_DONE BIT(3) 236 # define DSI1_INT_TXPKT2_END BIT(2) 237 /* Signaled after all repeats of TXPKT1 are transferred. */ 238 # define DSI1_INT_TXPKT1_DONE BIT(1) 239 /* Signaled after each TXPKT1 repeat is scheduled. */ 240 # define DSI1_INT_TXPKT1_END BIT(0) 241 242 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \ 243 DSI1_INT_ERR_CONTROL | \ 244 DSI1_INT_ERR_CONT_LP0 | \ 245 DSI1_INT_ERR_CONT_LP1 | \ 246 DSI1_INT_HSTX_TO | \ 247 DSI1_INT_LPRX_TO | \ 248 DSI1_INT_TA_TO | \ 249 DSI1_INT_PR_TO) 250 251 #define DSI0_STAT 0x2c 252 #define DSI0_HSTX_TO_CNT 0x30 253 #define DSI0_LPRX_TO_CNT 0x34 254 #define DSI0_TA_TO_CNT 0x38 255 #define DSI0_PR_TO_CNT 0x3c 256 #define DSI0_PHYC 0x40 257 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20) 258 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20 259 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18) 260 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12) 261 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12 262 # define DSI1_PHYC_CLANE_ULPS BIT(17) 263 # define DSI1_PHYC_CLANE_ENABLE BIT(16) 264 # define DSI_PHYC_DLANE3_ULPS BIT(13) 265 # define DSI_PHYC_DLANE3_ENABLE BIT(12) 266 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10) 267 # define DSI0_PHYC_CLANE_ULPS BIT(9) 268 # define DSI_PHYC_DLANE2_ULPS BIT(9) 269 # define DSI0_PHYC_CLANE_ENABLE BIT(8) 270 # define DSI_PHYC_DLANE2_ENABLE BIT(8) 271 # define DSI_PHYC_DLANE1_ULPS BIT(5) 272 # define DSI_PHYC_DLANE1_ENABLE BIT(4) 273 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2) 274 # define DSI_PHYC_DLANE0_ULPS BIT(1) 275 # define DSI_PHYC_DLANE0_ENABLE BIT(0) 276 277 #define DSI0_HS_CLT0 0x44 278 #define DSI0_HS_CLT1 0x48 279 #define DSI0_HS_CLT2 0x4c 280 #define DSI0_HS_DLT3 0x50 281 #define DSI0_HS_DLT4 0x54 282 #define DSI0_HS_DLT5 0x58 283 #define DSI0_HS_DLT6 0x5c 284 #define DSI0_HS_DLT7 0x60 285 286 #define DSI0_PHY_AFEC0 0x64 287 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26) 288 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25) 289 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24) 290 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29) 291 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29 292 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26) 293 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26 294 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23) 295 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23 296 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20) 297 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20 298 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17) 299 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17 300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20) 301 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20 302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16) 303 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16 304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12) 305 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12 306 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16) 307 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15) 308 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14) 309 # define DSI1_PHY_AFEC0_RESET BIT(13) 310 # define DSI1_PHY_AFEC0_PD BIT(12) 311 # define DSI0_PHY_AFEC0_RESET BIT(11) 312 # define DSI1_PHY_AFEC0_PD_BG BIT(11) 313 # define DSI0_PHY_AFEC0_PD BIT(10) 314 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10) 315 # define DSI0_PHY_AFEC0_PD_BG BIT(9) 316 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9) 317 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8) 318 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8) 319 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4) 320 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4 321 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0) 322 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0 323 324 #define DSI0_PHY_AFEC1 0x68 325 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8) 326 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8 327 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4) 328 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4 329 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0) 330 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0 331 332 #define DSI0_TST_SEL 0x6c 333 #define DSI0_TST_MON 0x70 334 #define DSI0_ID 0x74 335 # define DSI_ID_VALUE 0x00647369 336 337 #define DSI1_CTRL 0x00 338 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14) 339 # define DSI_CTRL_HS_CLKC_SHIFT 14 340 # define DSI_CTRL_HS_CLKC_BYTE 0 341 # define DSI_CTRL_HS_CLKC_DDR2 1 342 # define DSI_CTRL_HS_CLKC_DDR 2 343 344 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13) 345 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12) 346 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11) 347 # define DSI_CTRL_SOFT_RESET_CFG BIT(10) 348 # define DSI_CTRL_CAL_BYTE BIT(9) 349 # define DSI_CTRL_INV_BYTE BIT(8) 350 # define DSI_CTRL_CLR_LDF BIT(7) 351 # define DSI0_CTRL_CLR_PBCF BIT(6) 352 # define DSI1_CTRL_CLR_RXF BIT(6) 353 # define DSI0_CTRL_CLR_CPBCF BIT(5) 354 # define DSI1_CTRL_CLR_PDF BIT(5) 355 # define DSI0_CTRL_CLR_PDF BIT(4) 356 # define DSI1_CTRL_CLR_CDF BIT(4) 357 # define DSI0_CTRL_CLR_CDF BIT(3) 358 # define DSI0_CTRL_CTRL2 BIT(2) 359 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2) 360 # define DSI0_CTRL_CTRL1 BIT(1) 361 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1) 362 # define DSI0_CTRL_CTRL0 BIT(0) 363 # define DSI1_CTRL_EN BIT(0) 364 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 365 DSI0_CTRL_CLR_PBCF | \ 366 DSI0_CTRL_CLR_CPBCF | \ 367 DSI0_CTRL_CLR_PDF | \ 368 DSI0_CTRL_CLR_CDF) 369 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \ 370 DSI1_CTRL_CLR_RXF | \ 371 DSI1_CTRL_CLR_PDF | \ 372 DSI1_CTRL_CLR_CDF) 373 374 #define DSI1_TXPKT2C 0x0c 375 #define DSI1_TXPKT2H 0x10 376 #define DSI1_TXPKT_PIX_FIFO 0x20 377 #define DSI1_RXPKT_FIFO 0x24 378 #define DSI1_DISP0_CTRL 0x28 379 #define DSI1_INT_STAT 0x30 380 #define DSI1_INT_EN 0x34 381 /* State reporting bits. These mostly behave like INT_STAT, where 382 * writing a 1 clears the bit. 383 */ 384 #define DSI1_STAT 0x38 385 # define DSI1_STAT_PHY_D3_ULPS BIT(31) 386 # define DSI1_STAT_PHY_D3_STOP BIT(30) 387 # define DSI1_STAT_PHY_D2_ULPS BIT(29) 388 # define DSI1_STAT_PHY_D2_STOP BIT(28) 389 # define DSI1_STAT_PHY_D1_ULPS BIT(27) 390 # define DSI1_STAT_PHY_D1_STOP BIT(26) 391 # define DSI1_STAT_PHY_D0_ULPS BIT(25) 392 # define DSI1_STAT_PHY_D0_STOP BIT(24) 393 # define DSI1_STAT_FIFO_ERR BIT(23) 394 # define DSI1_STAT_PHY_RXLPDT BIT(22) 395 # define DSI1_STAT_PHY_RXTRIG BIT(21) 396 # define DSI1_STAT_PHY_D0_LPDT BIT(20) 397 /* Set when in forward direction */ 398 # define DSI1_STAT_PHY_DIR BIT(19) 399 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18) 400 # define DSI1_STAT_PHY_CLOCK_HS BIT(17) 401 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16) 402 # define DSI1_STAT_PR_TO BIT(15) 403 # define DSI1_STAT_TA_TO BIT(14) 404 # define DSI1_STAT_LPRX_TO BIT(13) 405 # define DSI1_STAT_HSTX_TO BIT(12) 406 # define DSI1_STAT_ERR_CONT_LP1 BIT(11) 407 # define DSI1_STAT_ERR_CONT_LP0 BIT(10) 408 # define DSI1_STAT_ERR_CONTROL BIT(9) 409 # define DSI1_STAT_ERR_SYNC_ESC BIT(8) 410 # define DSI1_STAT_RXPKT2 BIT(7) 411 # define DSI1_STAT_RXPKT1 BIT(6) 412 # define DSI1_STAT_TXPKT2_BUSY BIT(5) 413 # define DSI1_STAT_TXPKT2_DONE BIT(4) 414 # define DSI1_STAT_TXPKT2_END BIT(3) 415 # define DSI1_STAT_TXPKT1_BUSY BIT(2) 416 # define DSI1_STAT_TXPKT1_DONE BIT(1) 417 # define DSI1_STAT_TXPKT1_END BIT(0) 418 419 #define DSI1_HSTX_TO_CNT 0x3c 420 #define DSI1_LPRX_TO_CNT 0x40 421 #define DSI1_TA_TO_CNT 0x44 422 #define DSI1_PR_TO_CNT 0x48 423 #define DSI1_PHYC 0x4c 424 425 #define DSI1_HS_CLT0 0x50 426 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18) 427 # define DSI_HS_CLT0_CZERO_SHIFT 18 428 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9) 429 # define DSI_HS_CLT0_CPRE_SHIFT 9 430 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0) 431 # define DSI_HS_CLT0_CPREP_SHIFT 0 432 433 #define DSI1_HS_CLT1 0x54 434 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9) 435 # define DSI_HS_CLT1_CTRAIL_SHIFT 9 436 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0) 437 # define DSI_HS_CLT1_CPOST_SHIFT 0 438 439 #define DSI1_HS_CLT2 0x58 440 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0) 441 # define DSI_HS_CLT2_WUP_SHIFT 0 442 443 #define DSI1_HS_DLT3 0x5c 444 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18) 445 # define DSI_HS_DLT3_EXIT_SHIFT 18 446 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9) 447 # define DSI_HS_DLT3_ZERO_SHIFT 9 448 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0) 449 # define DSI_HS_DLT3_PRE_SHIFT 0 450 451 #define DSI1_HS_DLT4 0x60 452 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18) 453 # define DSI_HS_DLT4_ANLAT_SHIFT 18 454 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9) 455 # define DSI_HS_DLT4_TRAIL_SHIFT 9 456 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0) 457 # define DSI_HS_DLT4_LPX_SHIFT 0 458 459 #define DSI1_HS_DLT5 0x64 460 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0) 461 # define DSI_HS_DLT5_INIT_SHIFT 0 462 463 #define DSI1_HS_DLT6 0x68 464 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24) 465 # define DSI_HS_DLT6_TA_GET_SHIFT 24 466 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16) 467 # define DSI_HS_DLT6_TA_SURE_SHIFT 16 468 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8) 469 # define DSI_HS_DLT6_TA_GO_SHIFT 8 470 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0) 471 # define DSI_HS_DLT6_LP_LPX_SHIFT 0 472 473 #define DSI1_HS_DLT7 0x6c 474 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0) 475 # define DSI_HS_DLT7_LP_WUP_SHIFT 0 476 477 #define DSI1_PHY_AFEC0 0x70 478 479 #define DSI1_PHY_AFEC1 0x74 480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16) 481 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16 482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12) 483 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12 484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8) 485 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8 486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4) 487 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4 488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0) 489 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0 490 491 #define DSI1_TST_SEL 0x78 492 #define DSI1_TST_MON 0x7c 493 #define DSI1_PHY_TST1 0x80 494 #define DSI1_PHY_TST2 0x84 495 #define DSI1_PHY_FIFO_STAT 0x88 496 /* Actually, all registers in the range that aren't otherwise claimed 497 * will return the ID. 498 */ 499 #define DSI1_ID 0x8c 500 501 /* General DSI hardware state. */ 502 struct vc4_dsi { 503 struct platform_device *pdev; 504 505 struct mipi_dsi_host dsi_host; 506 struct drm_encoder *encoder; 507 struct drm_bridge *bridge; 508 509 void __iomem *regs; 510 511 struct dma_chan *reg_dma_chan; 512 dma_addr_t reg_dma_paddr; 513 u32 *reg_dma_mem; 514 dma_addr_t reg_paddr; 515 516 /* Whether we're on bcm2835's DSI0 or DSI1. */ 517 int port; 518 519 /* DSI channel for the panel we're connected to. */ 520 u32 channel; 521 u32 lanes; 522 u32 format; 523 u32 divider; 524 u32 mode_flags; 525 526 /* Input clock from CPRMAN to the digital PHY, for the DSI 527 * escape clock. 528 */ 529 struct clk *escape_clock; 530 531 /* Input clock to the analog PHY, used to generate the DSI bit 532 * clock. 533 */ 534 struct clk *pll_phy_clock; 535 536 /* HS Clocks generated within the DSI analog PHY. */ 537 struct clk_fixed_factor phy_clocks[3]; 538 539 struct clk_hw_onecell_data *clk_onecell; 540 541 /* Pixel clock output to the pixelvalve, generated from the HS 542 * clock. 543 */ 544 struct clk *pixel_clock; 545 546 struct completion xfer_completion; 547 int xfer_result; 548 549 struct debugfs_regset32 regset; 550 }; 551 552 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host) 553 554 static inline void 555 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val) 556 { 557 struct dma_chan *chan = dsi->reg_dma_chan; 558 struct dma_async_tx_descriptor *tx; 559 dma_cookie_t cookie; 560 int ret; 561 562 /* DSI0 should be able to write normally. */ 563 if (!chan) { 564 writel(val, dsi->regs + offset); 565 return; 566 } 567 568 *dsi->reg_dma_mem = val; 569 570 tx = chan->device->device_prep_dma_memcpy(chan, 571 dsi->reg_paddr + offset, 572 dsi->reg_dma_paddr, 573 4, 0); 574 if (!tx) { 575 DRM_ERROR("Failed to set up DMA register write\n"); 576 return; 577 } 578 579 cookie = tx->tx_submit(tx); 580 ret = dma_submit_error(cookie); 581 if (ret) { 582 DRM_ERROR("Failed to submit DMA: %d\n", ret); 583 return; 584 } 585 ret = dma_sync_wait(chan, cookie); 586 if (ret) 587 DRM_ERROR("Failed to wait for DMA: %d\n", ret); 588 } 589 590 #define DSI_READ(offset) readl(dsi->regs + (offset)) 591 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val) 592 #define DSI_PORT_READ(offset) \ 593 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset) 594 #define DSI_PORT_WRITE(offset, val) \ 595 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val) 596 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit) 597 598 /* VC4 DSI encoder KMS struct */ 599 struct vc4_dsi_encoder { 600 struct vc4_encoder base; 601 struct vc4_dsi *dsi; 602 }; 603 604 static inline struct vc4_dsi_encoder * 605 to_vc4_dsi_encoder(struct drm_encoder *encoder) 606 { 607 return container_of(encoder, struct vc4_dsi_encoder, base.base); 608 } 609 610 static const struct debugfs_reg32 dsi0_regs[] = { 611 VC4_REG32(DSI0_CTRL), 612 VC4_REG32(DSI0_STAT), 613 VC4_REG32(DSI0_HSTX_TO_CNT), 614 VC4_REG32(DSI0_LPRX_TO_CNT), 615 VC4_REG32(DSI0_TA_TO_CNT), 616 VC4_REG32(DSI0_PR_TO_CNT), 617 VC4_REG32(DSI0_DISP0_CTRL), 618 VC4_REG32(DSI0_DISP1_CTRL), 619 VC4_REG32(DSI0_INT_STAT), 620 VC4_REG32(DSI0_INT_EN), 621 VC4_REG32(DSI0_PHYC), 622 VC4_REG32(DSI0_HS_CLT0), 623 VC4_REG32(DSI0_HS_CLT1), 624 VC4_REG32(DSI0_HS_CLT2), 625 VC4_REG32(DSI0_HS_DLT3), 626 VC4_REG32(DSI0_HS_DLT4), 627 VC4_REG32(DSI0_HS_DLT5), 628 VC4_REG32(DSI0_HS_DLT6), 629 VC4_REG32(DSI0_HS_DLT7), 630 VC4_REG32(DSI0_PHY_AFEC0), 631 VC4_REG32(DSI0_PHY_AFEC1), 632 VC4_REG32(DSI0_ID), 633 }; 634 635 static const struct debugfs_reg32 dsi1_regs[] = { 636 VC4_REG32(DSI1_CTRL), 637 VC4_REG32(DSI1_STAT), 638 VC4_REG32(DSI1_HSTX_TO_CNT), 639 VC4_REG32(DSI1_LPRX_TO_CNT), 640 VC4_REG32(DSI1_TA_TO_CNT), 641 VC4_REG32(DSI1_PR_TO_CNT), 642 VC4_REG32(DSI1_DISP0_CTRL), 643 VC4_REG32(DSI1_DISP1_CTRL), 644 VC4_REG32(DSI1_INT_STAT), 645 VC4_REG32(DSI1_INT_EN), 646 VC4_REG32(DSI1_PHYC), 647 VC4_REG32(DSI1_HS_CLT0), 648 VC4_REG32(DSI1_HS_CLT1), 649 VC4_REG32(DSI1_HS_CLT2), 650 VC4_REG32(DSI1_HS_DLT3), 651 VC4_REG32(DSI1_HS_DLT4), 652 VC4_REG32(DSI1_HS_DLT5), 653 VC4_REG32(DSI1_HS_DLT6), 654 VC4_REG32(DSI1_HS_DLT7), 655 VC4_REG32(DSI1_PHY_AFEC0), 656 VC4_REG32(DSI1_PHY_AFEC1), 657 VC4_REG32(DSI1_ID), 658 }; 659 660 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder) 661 { 662 drm_encoder_cleanup(encoder); 663 } 664 665 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = { 666 .destroy = vc4_dsi_encoder_destroy, 667 }; 668 669 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch) 670 { 671 u32 afec0 = DSI_PORT_READ(PHY_AFEC0); 672 673 if (latch) 674 afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 675 else 676 afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS); 677 678 DSI_PORT_WRITE(PHY_AFEC0, afec0); 679 } 680 681 /* Enters or exits Ultra Low Power State. */ 682 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps) 683 { 684 bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS; 685 u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) | 686 DSI_PHYC_DLANE0_ULPS | 687 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) | 688 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) | 689 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0)); 690 u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) | 691 DSI1_STAT_PHY_D0_ULPS | 692 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) | 693 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) | 694 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0)); 695 u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) | 696 DSI1_STAT_PHY_D0_STOP | 697 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) | 698 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) | 699 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0)); 700 int ret; 701 bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) & 702 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS)); 703 704 if (ulps == ulps_currently_enabled) 705 return; 706 707 DSI_PORT_WRITE(STAT, stat_ulps); 708 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps); 709 ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200); 710 if (ret) { 711 dev_warn(&dsi->pdev->dev, 712 "Timeout waiting for DSI ULPS entry: STAT 0x%08x", 713 DSI_PORT_READ(STAT)); 714 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 715 vc4_dsi_latch_ulps(dsi, false); 716 return; 717 } 718 719 /* The DSI module can't be disabled while the module is 720 * generating ULPS state. So, to be able to disable the 721 * module, we have the AFE latch the ULPS state and continue 722 * on to having the module enter STOP. 723 */ 724 vc4_dsi_latch_ulps(dsi, ulps); 725 726 DSI_PORT_WRITE(STAT, stat_stop); 727 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 728 ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200); 729 if (ret) { 730 dev_warn(&dsi->pdev->dev, 731 "Timeout waiting for DSI STOP entry: STAT 0x%08x", 732 DSI_PORT_READ(STAT)); 733 DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps); 734 return; 735 } 736 } 737 738 static u32 739 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui) 740 { 741 /* The HS timings have to be rounded up to a multiple of 8 742 * because we're using the byte clock. 743 */ 744 return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8); 745 } 746 747 /* ESC always runs at 100Mhz. */ 748 #define ESC_TIME_NS 10 749 750 static u32 751 dsi_esc_timing(u32 ns) 752 { 753 return DIV_ROUND_UP(ns, ESC_TIME_NS); 754 } 755 756 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder) 757 { 758 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 759 struct vc4_dsi *dsi = vc4_encoder->dsi; 760 struct device *dev = &dsi->pdev->dev; 761 762 drm_bridge_disable(dsi->bridge); 763 vc4_dsi_ulps(dsi, true); 764 drm_bridge_post_disable(dsi->bridge); 765 766 clk_disable_unprepare(dsi->pll_phy_clock); 767 clk_disable_unprepare(dsi->escape_clock); 768 clk_disable_unprepare(dsi->pixel_clock); 769 770 pm_runtime_put(dev); 771 } 772 773 /* Extends the mode's blank intervals to handle BCM2835's integer-only 774 * DSI PLL divider. 775 * 776 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display 777 * driver since most peripherals are hanging off of the PLLD_PER 778 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore 779 * the pixel clock), only has an integer divider off of DSI. 780 * 781 * To get our panel mode to refresh at the expected 60Hz, we need to 782 * extend the horizontal blank time. This means we drive a 783 * higher-than-expected clock rate to the panel, but that's what the 784 * firmware does too. 785 */ 786 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder, 787 const struct drm_display_mode *mode, 788 struct drm_display_mode *adjusted_mode) 789 { 790 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 791 struct vc4_dsi *dsi = vc4_encoder->dsi; 792 struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock); 793 unsigned long parent_rate = clk_get_rate(phy_parent); 794 unsigned long pixel_clock_hz = mode->clock * 1000; 795 unsigned long pll_clock = pixel_clock_hz * dsi->divider; 796 int divider; 797 798 /* Find what divider gets us a faster clock than the requested 799 * pixel clock. 800 */ 801 for (divider = 1; divider < 8; divider++) { 802 if (parent_rate / divider < pll_clock) { 803 divider--; 804 break; 805 } 806 } 807 808 /* Now that we've picked a PLL divider, calculate back to its 809 * pixel clock. 810 */ 811 pll_clock = parent_rate / divider; 812 pixel_clock_hz = pll_clock / dsi->divider; 813 814 adjusted_mode->clock = pixel_clock_hz / 1000; 815 816 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */ 817 adjusted_mode->htotal = adjusted_mode->clock * mode->htotal / 818 mode->clock; 819 adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal; 820 adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal; 821 822 return true; 823 } 824 825 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder) 826 { 827 struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; 828 struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder); 829 struct vc4_dsi *dsi = vc4_encoder->dsi; 830 struct device *dev = &dsi->pdev->dev; 831 bool debug_dump_regs = false; 832 unsigned long hs_clock; 833 u32 ui_ns; 834 /* Minimum LP state duration in escape clock cycles. */ 835 u32 lpx = dsi_esc_timing(60); 836 unsigned long pixel_clock_hz = mode->clock * 1000; 837 unsigned long dsip_clock; 838 unsigned long phy_clock; 839 int ret; 840 841 ret = pm_runtime_get_sync(dev); 842 if (ret) { 843 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port); 844 return; 845 } 846 847 if (debug_dump_regs) { 848 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 849 dev_info(&dsi->pdev->dev, "DSI regs before:\n"); 850 drm_print_regset32(&p, &dsi->regset); 851 } 852 853 /* Round up the clk_set_rate() request slightly, since 854 * PLLD_DSI1 is an integer divider and its rate selection will 855 * never round up. 856 */ 857 phy_clock = (pixel_clock_hz + 1000) * dsi->divider; 858 ret = clk_set_rate(dsi->pll_phy_clock, phy_clock); 859 if (ret) { 860 dev_err(&dsi->pdev->dev, 861 "Failed to set phy clock to %ld: %d\n", phy_clock, ret); 862 } 863 864 /* Reset the DSI and all its fifos. */ 865 DSI_PORT_WRITE(CTRL, 866 DSI_CTRL_SOFT_RESET_CFG | 867 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 868 869 DSI_PORT_WRITE(CTRL, 870 DSI_CTRL_HSDT_EOT_DISABLE | 871 DSI_CTRL_RX_LPDT_EOT_DISABLE); 872 873 /* Clear all stat bits so we see what has happened during enable. */ 874 DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT)); 875 876 /* Set AFE CTR00/CTR1 to release powerdown of analog. */ 877 if (dsi->port == 0) { 878 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 879 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ)); 880 881 if (dsi->lanes < 2) 882 afec0 |= DSI0_PHY_AFEC0_PD_DLANE1; 883 884 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) 885 afec0 |= DSI0_PHY_AFEC0_RESET; 886 887 DSI_PORT_WRITE(PHY_AFEC0, afec0); 888 889 DSI_PORT_WRITE(PHY_AFEC1, 890 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) | 891 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) | 892 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE)); 893 } else { 894 u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) | 895 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) | 896 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) | 897 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) | 898 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) | 899 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) | 900 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3)); 901 902 if (dsi->lanes < 4) 903 afec0 |= DSI1_PHY_AFEC0_PD_DLANE3; 904 if (dsi->lanes < 3) 905 afec0 |= DSI1_PHY_AFEC0_PD_DLANE2; 906 if (dsi->lanes < 2) 907 afec0 |= DSI1_PHY_AFEC0_PD_DLANE1; 908 909 afec0 |= DSI1_PHY_AFEC0_RESET; 910 911 DSI_PORT_WRITE(PHY_AFEC0, afec0); 912 913 DSI_PORT_WRITE(PHY_AFEC1, 0); 914 915 /* AFEC reset hold time */ 916 mdelay(1); 917 } 918 919 ret = clk_prepare_enable(dsi->escape_clock); 920 if (ret) { 921 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret); 922 return; 923 } 924 925 ret = clk_prepare_enable(dsi->pll_phy_clock); 926 if (ret) { 927 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret); 928 return; 929 } 930 931 hs_clock = clk_get_rate(dsi->pll_phy_clock); 932 933 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate, 934 * not the pixel clock rate. DSIxP take from the APHY's byte, 935 * DDR2, or DDR4 clock (we use byte) and feed into the PV at 936 * that rate. Separately, a value derived from PIX_CLK_DIV 937 * and HS_CLKC is fed into the PV to divide down to the actual 938 * pixel clock for pushing pixels into DSI. 939 */ 940 dsip_clock = phy_clock / 8; 941 ret = clk_set_rate(dsi->pixel_clock, dsip_clock); 942 if (ret) { 943 dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n", 944 dsip_clock, ret); 945 } 946 947 ret = clk_prepare_enable(dsi->pixel_clock); 948 if (ret) { 949 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret); 950 return; 951 } 952 953 /* How many ns one DSI unit interval is. Note that the clock 954 * is DDR, so there's an extra divide by 2. 955 */ 956 ui_ns = DIV_ROUND_UP(500000000, hs_clock); 957 958 DSI_PORT_WRITE(HS_CLT0, 959 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0), 960 DSI_HS_CLT0_CZERO) | 961 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8), 962 DSI_HS_CLT0_CPRE) | 963 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0), 964 DSI_HS_CLT0_CPREP)); 965 966 DSI_PORT_WRITE(HS_CLT1, 967 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0), 968 DSI_HS_CLT1_CTRAIL) | 969 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52), 970 DSI_HS_CLT1_CPOST)); 971 972 DSI_PORT_WRITE(HS_CLT2, 973 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0), 974 DSI_HS_CLT2_WUP)); 975 976 DSI_PORT_WRITE(HS_DLT3, 977 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0), 978 DSI_HS_DLT3_EXIT) | 979 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6), 980 DSI_HS_DLT3_ZERO) | 981 VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4), 982 DSI_HS_DLT3_PRE)); 983 984 DSI_PORT_WRITE(HS_DLT4, 985 VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0), 986 DSI_HS_DLT4_LPX) | 987 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8), 988 dsi_hs_timing(ui_ns, 60, 4)), 989 DSI_HS_DLT4_TRAIL) | 990 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT)); 991 992 /* T_INIT is how long STOP is driven after power-up to 993 * indicate to the slave (also coming out of power-up) that 994 * master init is complete, and should be greater than the 995 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The 996 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and 997 * T_INIT,SLAVE, while allowing protocols on top of it to give 998 * greater minimums. The vc4 firmware uses an extremely 999 * conservative 5ms, and we maintain that here. 1000 */ 1001 DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1002 5 * 1000 * 1000, 0), 1003 DSI_HS_DLT5_INIT)); 1004 1005 DSI_PORT_WRITE(HS_DLT6, 1006 VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) | 1007 VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) | 1008 VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) | 1009 VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX)); 1010 1011 DSI_PORT_WRITE(HS_DLT7, 1012 VC4_SET_FIELD(dsi_esc_timing(1000000), 1013 DSI_HS_DLT7_LP_WUP)); 1014 1015 DSI_PORT_WRITE(PHYC, 1016 DSI_PHYC_DLANE0_ENABLE | 1017 (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) | 1018 (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) | 1019 (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) | 1020 DSI_PORT_BIT(PHYC_CLANE_ENABLE) | 1021 ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ? 1022 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) | 1023 (dsi->port == 0 ? 1024 VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) : 1025 VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT))); 1026 1027 DSI_PORT_WRITE(CTRL, 1028 DSI_PORT_READ(CTRL) | 1029 DSI_CTRL_CAL_BYTE); 1030 1031 /* HS timeout in HS clock cycles: disabled. */ 1032 DSI_PORT_WRITE(HSTX_TO_CNT, 0); 1033 /* LP receive timeout in HS clocks. */ 1034 DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff); 1035 /* Bus turnaround timeout */ 1036 DSI_PORT_WRITE(TA_TO_CNT, 100000); 1037 /* Display reset sequence timeout */ 1038 DSI_PORT_WRITE(PR_TO_CNT, 100000); 1039 1040 /* Set up DISP1 for transferring long command payloads through 1041 * the pixfifo. 1042 */ 1043 DSI_PORT_WRITE(DISP1_CTRL, 1044 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE, 1045 DSI_DISP1_PFORMAT) | 1046 DSI_DISP1_ENABLE); 1047 1048 /* Ungate the block. */ 1049 if (dsi->port == 0) 1050 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0); 1051 else 1052 DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN); 1053 1054 /* Bring AFE out of reset. */ 1055 if (dsi->port == 0) { 1056 } else { 1057 DSI_PORT_WRITE(PHY_AFEC0, 1058 DSI_PORT_READ(PHY_AFEC0) & 1059 ~DSI1_PHY_AFEC0_RESET); 1060 } 1061 1062 vc4_dsi_ulps(dsi, false); 1063 1064 drm_bridge_pre_enable(dsi->bridge); 1065 1066 if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) { 1067 DSI_PORT_WRITE(DISP0_CTRL, 1068 VC4_SET_FIELD(dsi->divider, 1069 DSI_DISP0_PIX_CLK_DIV) | 1070 VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) | 1071 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME, 1072 DSI_DISP0_LP_STOP_CTRL) | 1073 DSI_DISP0_ST_END | 1074 DSI_DISP0_ENABLE); 1075 } else { 1076 DSI_PORT_WRITE(DISP0_CTRL, 1077 DSI_DISP0_COMMAND_MODE | 1078 DSI_DISP0_ENABLE); 1079 } 1080 1081 drm_bridge_enable(dsi->bridge); 1082 1083 if (debug_dump_regs) { 1084 struct drm_printer p = drm_info_printer(&dsi->pdev->dev); 1085 dev_info(&dsi->pdev->dev, "DSI regs after:\n"); 1086 drm_print_regset32(&p, &dsi->regset); 1087 } 1088 } 1089 1090 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host, 1091 const struct mipi_dsi_msg *msg) 1092 { 1093 struct vc4_dsi *dsi = host_to_dsi(host); 1094 struct mipi_dsi_packet packet; 1095 u32 pkth = 0, pktc = 0; 1096 int i, ret; 1097 bool is_long = mipi_dsi_packet_format_is_long(msg->type); 1098 u32 cmd_fifo_len = 0, pix_fifo_len = 0; 1099 1100 mipi_dsi_create_packet(&packet, msg); 1101 1102 pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT); 1103 pkth |= VC4_SET_FIELD(packet.header[1] | 1104 (packet.header[2] << 8), 1105 DSI_TXPKT1H_BC_PARAM); 1106 if (is_long) { 1107 /* Divide data across the various FIFOs we have available. 1108 * The command FIFO takes byte-oriented data, but is of 1109 * limited size. The pixel FIFO (never actually used for 1110 * pixel data in reality) is word oriented, and substantially 1111 * larger. So, we use the pixel FIFO for most of the data, 1112 * sending the residual bytes in the command FIFO at the start. 1113 * 1114 * With this arrangement, the command FIFO will never get full. 1115 */ 1116 if (packet.payload_length <= 16) { 1117 cmd_fifo_len = packet.payload_length; 1118 pix_fifo_len = 0; 1119 } else { 1120 cmd_fifo_len = (packet.payload_length % 1121 DSI_PIX_FIFO_WIDTH); 1122 pix_fifo_len = ((packet.payload_length - cmd_fifo_len) / 1123 DSI_PIX_FIFO_WIDTH); 1124 } 1125 1126 WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH); 1127 1128 pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO); 1129 } 1130 1131 if (msg->rx_len) { 1132 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX, 1133 DSI_TXPKT1C_CMD_CTRL); 1134 } else { 1135 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX, 1136 DSI_TXPKT1C_CMD_CTRL); 1137 } 1138 1139 for (i = 0; i < cmd_fifo_len; i++) 1140 DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]); 1141 for (i = 0; i < pix_fifo_len; i++) { 1142 const u8 *pix = packet.payload + cmd_fifo_len + i * 4; 1143 1144 DSI_PORT_WRITE(TXPKT_PIX_FIFO, 1145 pix[0] | 1146 pix[1] << 8 | 1147 pix[2] << 16 | 1148 pix[3] << 24); 1149 } 1150 1151 if (msg->flags & MIPI_DSI_MSG_USE_LPM) 1152 pktc |= DSI_TXPKT1C_CMD_MODE_LP; 1153 if (is_long) 1154 pktc |= DSI_TXPKT1C_CMD_TYPE_LONG; 1155 1156 /* Send one copy of the packet. Larger repeats are used for pixel 1157 * data in command mode. 1158 */ 1159 pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT); 1160 1161 pktc |= DSI_TXPKT1C_CMD_EN; 1162 if (pix_fifo_len) { 1163 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY, 1164 DSI_TXPKT1C_DISPLAY_NO); 1165 } else { 1166 pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT, 1167 DSI_TXPKT1C_DISPLAY_NO); 1168 } 1169 1170 /* Enable the appropriate interrupt for the transfer completion. */ 1171 dsi->xfer_result = 0; 1172 reinit_completion(&dsi->xfer_completion); 1173 DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF); 1174 if (msg->rx_len) { 1175 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1176 DSI1_INT_PHY_DIR_RTF)); 1177 } else { 1178 DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED | 1179 DSI1_INT_TXPKT1_DONE)); 1180 } 1181 1182 /* Send the packet. */ 1183 DSI_PORT_WRITE(TXPKT1H, pkth); 1184 DSI_PORT_WRITE(TXPKT1C, pktc); 1185 1186 if (!wait_for_completion_timeout(&dsi->xfer_completion, 1187 msecs_to_jiffies(1000))) { 1188 dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout"); 1189 dev_err(&dsi->pdev->dev, "instat: 0x%08x\n", 1190 DSI_PORT_READ(INT_STAT)); 1191 ret = -ETIMEDOUT; 1192 } else { 1193 ret = dsi->xfer_result; 1194 } 1195 1196 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1197 1198 if (ret) 1199 goto reset_fifo_and_return; 1200 1201 if (ret == 0 && msg->rx_len) { 1202 u32 rxpkt1h = DSI_PORT_READ(RXPKT1H); 1203 u8 *msg_rx = msg->rx_buf; 1204 1205 if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) { 1206 u32 rxlen = VC4_GET_FIELD(rxpkt1h, 1207 DSI_RXPKT1H_BC_PARAM); 1208 1209 if (rxlen != msg->rx_len) { 1210 DRM_ERROR("DSI returned %db, expecting %db\n", 1211 rxlen, (int)msg->rx_len); 1212 ret = -ENXIO; 1213 goto reset_fifo_and_return; 1214 } 1215 1216 for (i = 0; i < msg->rx_len; i++) 1217 msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO); 1218 } else { 1219 /* FINISHME: Handle AWER */ 1220 1221 msg_rx[0] = VC4_GET_FIELD(rxpkt1h, 1222 DSI_RXPKT1H_SHORT_0); 1223 if (msg->rx_len > 1) { 1224 msg_rx[1] = VC4_GET_FIELD(rxpkt1h, 1225 DSI_RXPKT1H_SHORT_1); 1226 } 1227 } 1228 } 1229 1230 return ret; 1231 1232 reset_fifo_and_return: 1233 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret); 1234 1235 DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN); 1236 udelay(1); 1237 DSI_PORT_WRITE(CTRL, 1238 DSI_PORT_READ(CTRL) | 1239 DSI_PORT_BIT(CTRL_RESET_FIFOS)); 1240 1241 DSI_PORT_WRITE(TXPKT1C, 0); 1242 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1243 return ret; 1244 } 1245 1246 static int vc4_dsi_host_attach(struct mipi_dsi_host *host, 1247 struct mipi_dsi_device *device) 1248 { 1249 struct vc4_dsi *dsi = host_to_dsi(host); 1250 1251 dsi->lanes = device->lanes; 1252 dsi->channel = device->channel; 1253 dsi->mode_flags = device->mode_flags; 1254 1255 switch (device->format) { 1256 case MIPI_DSI_FMT_RGB888: 1257 dsi->format = DSI_PFORMAT_RGB888; 1258 dsi->divider = 24 / dsi->lanes; 1259 break; 1260 case MIPI_DSI_FMT_RGB666: 1261 dsi->format = DSI_PFORMAT_RGB666; 1262 dsi->divider = 24 / dsi->lanes; 1263 break; 1264 case MIPI_DSI_FMT_RGB666_PACKED: 1265 dsi->format = DSI_PFORMAT_RGB666_PACKED; 1266 dsi->divider = 18 / dsi->lanes; 1267 break; 1268 case MIPI_DSI_FMT_RGB565: 1269 dsi->format = DSI_PFORMAT_RGB565; 1270 dsi->divider = 16 / dsi->lanes; 1271 break; 1272 default: 1273 dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n", 1274 dsi->format); 1275 return 0; 1276 } 1277 1278 if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) { 1279 dev_err(&dsi->pdev->dev, 1280 "Only VIDEO mode panels supported currently.\n"); 1281 return 0; 1282 } 1283 1284 return 0; 1285 } 1286 1287 static int vc4_dsi_host_detach(struct mipi_dsi_host *host, 1288 struct mipi_dsi_device *device) 1289 { 1290 return 0; 1291 } 1292 1293 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = { 1294 .attach = vc4_dsi_host_attach, 1295 .detach = vc4_dsi_host_detach, 1296 .transfer = vc4_dsi_host_transfer, 1297 }; 1298 1299 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = { 1300 .disable = vc4_dsi_encoder_disable, 1301 .enable = vc4_dsi_encoder_enable, 1302 .mode_fixup = vc4_dsi_encoder_mode_fixup, 1303 }; 1304 1305 static const struct of_device_id vc4_dsi_dt_match[] = { 1306 { .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 }, 1307 {} 1308 }; 1309 1310 static void dsi_handle_error(struct vc4_dsi *dsi, 1311 irqreturn_t *ret, u32 stat, u32 bit, 1312 const char *type) 1313 { 1314 if (!(stat & bit)) 1315 return; 1316 1317 DRM_ERROR("DSI%d: %s error\n", dsi->port, type); 1318 *ret = IRQ_HANDLED; 1319 } 1320 1321 /* 1322 * Initial handler for port 1 where we need the reg_dma workaround. 1323 * The register DMA writes sleep, so we can't do it in the top half. 1324 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the 1325 * parent interrupt contrller until our interrupt thread is done. 1326 */ 1327 static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data) 1328 { 1329 struct vc4_dsi *dsi = data; 1330 u32 stat = DSI_PORT_READ(INT_STAT); 1331 1332 if (!stat) 1333 return IRQ_NONE; 1334 1335 return IRQ_WAKE_THREAD; 1336 } 1337 1338 /* 1339 * Normal IRQ handler for port 0, or the threaded IRQ handler for port 1340 * 1 where we need the reg_dma workaround. 1341 */ 1342 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data) 1343 { 1344 struct vc4_dsi *dsi = data; 1345 u32 stat = DSI_PORT_READ(INT_STAT); 1346 irqreturn_t ret = IRQ_NONE; 1347 1348 DSI_PORT_WRITE(INT_STAT, stat); 1349 1350 dsi_handle_error(dsi, &ret, stat, 1351 DSI1_INT_ERR_SYNC_ESC, "LPDT sync"); 1352 dsi_handle_error(dsi, &ret, stat, 1353 DSI1_INT_ERR_CONTROL, "data lane 0 sequence"); 1354 dsi_handle_error(dsi, &ret, stat, 1355 DSI1_INT_ERR_CONT_LP0, "LP0 contention"); 1356 dsi_handle_error(dsi, &ret, stat, 1357 DSI1_INT_ERR_CONT_LP1, "LP1 contention"); 1358 dsi_handle_error(dsi, &ret, stat, 1359 DSI1_INT_HSTX_TO, "HSTX timeout"); 1360 dsi_handle_error(dsi, &ret, stat, 1361 DSI1_INT_LPRX_TO, "LPRX timeout"); 1362 dsi_handle_error(dsi, &ret, stat, 1363 DSI1_INT_TA_TO, "turnaround timeout"); 1364 dsi_handle_error(dsi, &ret, stat, 1365 DSI1_INT_PR_TO, "peripheral reset timeout"); 1366 1367 if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) { 1368 complete(&dsi->xfer_completion); 1369 ret = IRQ_HANDLED; 1370 } else if (stat & DSI1_INT_HSTX_TO) { 1371 complete(&dsi->xfer_completion); 1372 dsi->xfer_result = -ETIMEDOUT; 1373 ret = IRQ_HANDLED; 1374 } 1375 1376 return ret; 1377 } 1378 1379 /** 1380 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog 1381 * PHY that are consumed by CPRMAN (clk-bcm2835.c). 1382 * @dsi: DSI encoder 1383 */ 1384 static int 1385 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi) 1386 { 1387 struct device *dev = &dsi->pdev->dev; 1388 const char *parent_name = __clk_get_name(dsi->pll_phy_clock); 1389 static const struct { 1390 const char *dsi0_name, *dsi1_name; 1391 int div; 1392 } phy_clocks[] = { 1393 { "dsi0_byte", "dsi1_byte", 8 }, 1394 { "dsi0_ddr2", "dsi1_ddr2", 4 }, 1395 { "dsi0_ddr", "dsi1_ddr", 2 }, 1396 }; 1397 int i; 1398 1399 dsi->clk_onecell = devm_kzalloc(dev, 1400 sizeof(*dsi->clk_onecell) + 1401 ARRAY_SIZE(phy_clocks) * 1402 sizeof(struct clk_hw *), 1403 GFP_KERNEL); 1404 if (!dsi->clk_onecell) 1405 return -ENOMEM; 1406 dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks); 1407 1408 for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) { 1409 struct clk_fixed_factor *fix = &dsi->phy_clocks[i]; 1410 struct clk_init_data init; 1411 int ret; 1412 1413 /* We just use core fixed factor clock ops for the PHY 1414 * clocks. The clocks are actually gated by the 1415 * PHY_AFEC0_DDRCLK_EN bits, which we should be 1416 * setting if we use the DDR/DDR2 clocks. However, 1417 * vc4_dsi_encoder_enable() is setting up both AFEC0, 1418 * setting both our parent DSI PLL's rate and this 1419 * clock's rate, so it knows if DDR/DDR2 are going to 1420 * be used and could enable the gates itself. 1421 */ 1422 fix->mult = 1; 1423 fix->div = phy_clocks[i].div; 1424 fix->hw.init = &init; 1425 1426 memset(&init, 0, sizeof(init)); 1427 init.parent_names = &parent_name; 1428 init.num_parents = 1; 1429 if (dsi->port == 1) 1430 init.name = phy_clocks[i].dsi1_name; 1431 else 1432 init.name = phy_clocks[i].dsi0_name; 1433 init.ops = &clk_fixed_factor_ops; 1434 1435 ret = devm_clk_hw_register(dev, &fix->hw); 1436 if (ret) 1437 return ret; 1438 1439 dsi->clk_onecell->hws[i] = &fix->hw; 1440 } 1441 1442 return of_clk_add_hw_provider(dev->of_node, 1443 of_clk_hw_onecell_get, 1444 dsi->clk_onecell); 1445 } 1446 1447 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data) 1448 { 1449 struct platform_device *pdev = to_platform_device(dev); 1450 struct drm_device *drm = dev_get_drvdata(master); 1451 struct vc4_dev *vc4 = to_vc4_dev(drm); 1452 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1453 struct vc4_dsi_encoder *vc4_dsi_encoder; 1454 struct drm_panel *panel; 1455 const struct of_device_id *match; 1456 dma_cap_mask_t dma_mask; 1457 int ret; 1458 1459 match = of_match_device(vc4_dsi_dt_match, dev); 1460 if (!match) 1461 return -ENODEV; 1462 1463 dsi->port = (uintptr_t)match->data; 1464 1465 vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder), 1466 GFP_KERNEL); 1467 if (!vc4_dsi_encoder) 1468 return -ENOMEM; 1469 vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1; 1470 vc4_dsi_encoder->dsi = dsi; 1471 dsi->encoder = &vc4_dsi_encoder->base.base; 1472 1473 dsi->regs = vc4_ioremap_regs(pdev, 0); 1474 if (IS_ERR(dsi->regs)) 1475 return PTR_ERR(dsi->regs); 1476 1477 dsi->regset.base = dsi->regs; 1478 if (dsi->port == 0) { 1479 dsi->regset.regs = dsi0_regs; 1480 dsi->regset.nregs = ARRAY_SIZE(dsi0_regs); 1481 } else { 1482 dsi->regset.regs = dsi1_regs; 1483 dsi->regset.nregs = ARRAY_SIZE(dsi1_regs); 1484 } 1485 1486 if (DSI_PORT_READ(ID) != DSI_ID_VALUE) { 1487 dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n", 1488 DSI_PORT_READ(ID), DSI_ID_VALUE); 1489 return -ENODEV; 1490 } 1491 1492 /* DSI1 has a broken AXI slave that doesn't respond to writes 1493 * from the ARM. It does handle writes from the DMA engine, 1494 * so set up a channel for talking to it. 1495 */ 1496 if (dsi->port == 1) { 1497 dsi->reg_dma_mem = dma_alloc_coherent(dev, 4, 1498 &dsi->reg_dma_paddr, 1499 GFP_KERNEL); 1500 if (!dsi->reg_dma_mem) { 1501 DRM_ERROR("Failed to get DMA memory\n"); 1502 return -ENOMEM; 1503 } 1504 1505 dma_cap_zero(dma_mask); 1506 dma_cap_set(DMA_MEMCPY, dma_mask); 1507 dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask); 1508 if (IS_ERR(dsi->reg_dma_chan)) { 1509 ret = PTR_ERR(dsi->reg_dma_chan); 1510 if (ret != -EPROBE_DEFER) 1511 DRM_ERROR("Failed to get DMA channel: %d\n", 1512 ret); 1513 return ret; 1514 } 1515 1516 /* Get the physical address of the device's registers. The 1517 * struct resource for the regs gives us the bus address 1518 * instead. 1519 */ 1520 dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node, 1521 0, NULL, NULL)); 1522 } 1523 1524 init_completion(&dsi->xfer_completion); 1525 /* At startup enable error-reporting interrupts and nothing else. */ 1526 DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED); 1527 /* Clear any existing interrupt state. */ 1528 DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT)); 1529 1530 if (dsi->reg_dma_mem) 1531 ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), 1532 vc4_dsi_irq_defer_to_thread_handler, 1533 vc4_dsi_irq_handler, 1534 IRQF_ONESHOT, 1535 "vc4 dsi", dsi); 1536 else 1537 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1538 vc4_dsi_irq_handler, 0, "vc4 dsi", dsi); 1539 if (ret) { 1540 if (ret != -EPROBE_DEFER) 1541 dev_err(dev, "Failed to get interrupt: %d\n", ret); 1542 return ret; 1543 } 1544 1545 dsi->escape_clock = devm_clk_get(dev, "escape"); 1546 if (IS_ERR(dsi->escape_clock)) { 1547 ret = PTR_ERR(dsi->escape_clock); 1548 if (ret != -EPROBE_DEFER) 1549 dev_err(dev, "Failed to get escape clock: %d\n", ret); 1550 return ret; 1551 } 1552 1553 dsi->pll_phy_clock = devm_clk_get(dev, "phy"); 1554 if (IS_ERR(dsi->pll_phy_clock)) { 1555 ret = PTR_ERR(dsi->pll_phy_clock); 1556 if (ret != -EPROBE_DEFER) 1557 dev_err(dev, "Failed to get phy clock: %d\n", ret); 1558 return ret; 1559 } 1560 1561 dsi->pixel_clock = devm_clk_get(dev, "pixel"); 1562 if (IS_ERR(dsi->pixel_clock)) { 1563 ret = PTR_ERR(dsi->pixel_clock); 1564 if (ret != -EPROBE_DEFER) 1565 dev_err(dev, "Failed to get pixel clock: %d\n", ret); 1566 return ret; 1567 } 1568 1569 ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0, 1570 &panel, &dsi->bridge); 1571 if (ret) { 1572 /* If the bridge or panel pointed by dev->of_node is not 1573 * enabled, just return 0 here so that we don't prevent the DRM 1574 * dev from being registered. Of course that means the DSI 1575 * encoder won't be exposed, but that's not a problem since 1576 * nothing is connected to it. 1577 */ 1578 if (ret == -ENODEV) 1579 return 0; 1580 1581 return ret; 1582 } 1583 1584 if (panel) { 1585 dsi->bridge = devm_drm_panel_bridge_add(dev, panel, 1586 DRM_MODE_CONNECTOR_DSI); 1587 if (IS_ERR(dsi->bridge)) 1588 return PTR_ERR(dsi->bridge); 1589 } 1590 1591 /* The esc clock rate is supposed to always be 100Mhz. */ 1592 ret = clk_set_rate(dsi->escape_clock, 100 * 1000000); 1593 if (ret) { 1594 dev_err(dev, "Failed to set esc clock: %d\n", ret); 1595 return ret; 1596 } 1597 1598 ret = vc4_dsi_init_phy_clocks(dsi); 1599 if (ret) 1600 return ret; 1601 1602 if (dsi->port == 1) 1603 vc4->dsi1 = dsi; 1604 1605 drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs, 1606 DRM_MODE_ENCODER_DSI, NULL); 1607 drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs); 1608 1609 ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL); 1610 if (ret) { 1611 dev_err(dev, "bridge attach failed: %d\n", ret); 1612 return ret; 1613 } 1614 /* Disable the atomic helper calls into the bridge. We 1615 * manually call the bridge pre_enable / enable / etc. calls 1616 * from our driver, since we need to sequence them within the 1617 * encoder's enable/disable paths. 1618 */ 1619 dsi->encoder->bridge = NULL; 1620 1621 if (dsi->port == 0) 1622 vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset); 1623 else 1624 vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset); 1625 1626 pm_runtime_enable(dev); 1627 1628 return 0; 1629 } 1630 1631 static void vc4_dsi_unbind(struct device *dev, struct device *master, 1632 void *data) 1633 { 1634 struct drm_device *drm = dev_get_drvdata(master); 1635 struct vc4_dev *vc4 = to_vc4_dev(drm); 1636 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1637 1638 if (dsi->bridge) 1639 pm_runtime_disable(dev); 1640 1641 vc4_dsi_encoder_destroy(dsi->encoder); 1642 1643 if (dsi->port == 1) 1644 vc4->dsi1 = NULL; 1645 } 1646 1647 static const struct component_ops vc4_dsi_ops = { 1648 .bind = vc4_dsi_bind, 1649 .unbind = vc4_dsi_unbind, 1650 }; 1651 1652 static int vc4_dsi_dev_probe(struct platform_device *pdev) 1653 { 1654 struct device *dev = &pdev->dev; 1655 struct vc4_dsi *dsi; 1656 int ret; 1657 1658 dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL); 1659 if (!dsi) 1660 return -ENOMEM; 1661 dev_set_drvdata(dev, dsi); 1662 1663 dsi->pdev = pdev; 1664 1665 /* Note, the initialization sequence for DSI and panels is 1666 * tricky. The component bind above won't get past its 1667 * -EPROBE_DEFER until the panel/bridge probes. The 1668 * panel/bridge will return -EPROBE_DEFER until it has a 1669 * mipi_dsi_host to register its device to. So, we register 1670 * the host during pdev probe time, so vc4 as a whole can then 1671 * -EPROBE_DEFER its component bind process until the panel 1672 * successfully attaches. 1673 */ 1674 dsi->dsi_host.ops = &vc4_dsi_host_ops; 1675 dsi->dsi_host.dev = dev; 1676 mipi_dsi_host_register(&dsi->dsi_host); 1677 1678 ret = component_add(&pdev->dev, &vc4_dsi_ops); 1679 if (ret) { 1680 mipi_dsi_host_unregister(&dsi->dsi_host); 1681 return ret; 1682 } 1683 1684 return 0; 1685 } 1686 1687 static int vc4_dsi_dev_remove(struct platform_device *pdev) 1688 { 1689 struct device *dev = &pdev->dev; 1690 struct vc4_dsi *dsi = dev_get_drvdata(dev); 1691 1692 component_del(&pdev->dev, &vc4_dsi_ops); 1693 mipi_dsi_host_unregister(&dsi->dsi_host); 1694 1695 return 0; 1696 } 1697 1698 struct platform_driver vc4_dsi_driver = { 1699 .probe = vc4_dsi_dev_probe, 1700 .remove = vc4_dsi_dev_remove, 1701 .driver = { 1702 .name = "vc4_dsi", 1703 .of_match_table = vc4_dsi_dt_match, 1704 }, 1705 }; 1706