xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_dsi.c (revision 260ea95c)
1 /*
2  * Copyright (C) 2016 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 as published by
6  * the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16 
17 /**
18  * DOC: VC4 DSI0/DSI1 module
19  *
20  * BCM2835 contains two DSI modules, DSI0 and DSI1.  DSI0 is a
21  * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
22  * controller.
23  *
24  * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25  * while the compute module brings both DSI0 and DSI1 out.
26  *
27  * This driver has been tested for DSI1 video-mode display only
28  * currently, with most of the information necessary for DSI0
29  * hopefully present.
30  */
31 
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_panel.h>
37 #include <linux/clk.h>
38 #include <linux/clk-provider.h>
39 #include <linux/completion.h>
40 #include <linux/component.h>
41 #include <linux/dmaengine.h>
42 #include <linux/i2c.h>
43 #include <linux/of_address.h>
44 #include <linux/of_platform.h>
45 #include <linux/pm_runtime.h>
46 #include "vc4_drv.h"
47 #include "vc4_regs.h"
48 
49 #define DSI_CMD_FIFO_DEPTH  16
50 #define DSI_PIX_FIFO_DEPTH 256
51 #define DSI_PIX_FIFO_WIDTH   4
52 
53 #define DSI0_CTRL		0x00
54 
55 /* Command packet control. */
56 #define DSI0_TXPKT1C		0x04 /* AKA PKTC */
57 #define DSI1_TXPKT1C		0x04
58 # define DSI_TXPKT1C_TRIG_CMD_MASK	VC4_MASK(31, 24)
59 # define DSI_TXPKT1C_TRIG_CMD_SHIFT	24
60 # define DSI_TXPKT1C_CMD_REPEAT_MASK	VC4_MASK(23, 10)
61 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT	10
62 
63 # define DSI_TXPKT1C_DISPLAY_NO_MASK	VC4_MASK(9, 8)
64 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT	8
65 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
66 # define DSI_TXPKT1C_DISPLAY_NO_SHORT		0
67 /* Primary display where cmdfifo provides part of the payload and
68  * pixelvalve the rest.
69  */
70 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY		1
71 /* Secondary display where cmdfifo provides part of the payload and
72  * pixfifo the rest.
73  */
74 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY	2
75 
76 # define DSI_TXPKT1C_CMD_TX_TIME_MASK	VC4_MASK(7, 6)
77 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT	6
78 
79 # define DSI_TXPKT1C_CMD_CTRL_MASK	VC4_MASK(5, 4)
80 # define DSI_TXPKT1C_CMD_CTRL_SHIFT	4
81 /* Command only.  Uses TXPKT1H and DISPLAY_NO */
82 # define DSI_TXPKT1C_CMD_CTRL_TX	0
83 /* Command with BTA for either ack or read data. */
84 # define DSI_TXPKT1C_CMD_CTRL_RX	1
85 /* Trigger according to TRIG_CMD */
86 # define DSI_TXPKT1C_CMD_CTRL_TRIG	2
87 /* BTA alone for getting error status after a command, or a TE trigger
88  * without a previous command.
89  */
90 # define DSI_TXPKT1C_CMD_CTRL_BTA	3
91 
92 # define DSI_TXPKT1C_CMD_MODE_LP	BIT(3)
93 # define DSI_TXPKT1C_CMD_TYPE_LONG	BIT(2)
94 # define DSI_TXPKT1C_CMD_TE_EN		BIT(1)
95 # define DSI_TXPKT1C_CMD_EN		BIT(0)
96 
97 /* Command packet header. */
98 #define DSI0_TXPKT1H		0x08 /* AKA PKTH */
99 #define DSI1_TXPKT1H		0x08
100 # define DSI_TXPKT1H_BC_CMDFIFO_MASK	VC4_MASK(31, 24)
101 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT	24
102 # define DSI_TXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
103 # define DSI_TXPKT1H_BC_PARAM_SHIFT	8
104 # define DSI_TXPKT1H_BC_DT_MASK		VC4_MASK(7, 0)
105 # define DSI_TXPKT1H_BC_DT_SHIFT	0
106 
107 #define DSI0_RXPKT1H		0x0c /* AKA RX1_PKTH */
108 #define DSI1_RXPKT1H		0x14
109 # define DSI_RXPKT1H_CRC_ERR		BIT(31)
110 # define DSI_RXPKT1H_DET_ERR		BIT(30)
111 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
112 # define DSI_RXPKT1H_COR_ERR		BIT(28)
113 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
114 # define DSI_RXPKT1H_PKT_TYPE_LONG	BIT(24)
115 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
116 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
117 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
118 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
119 # define DSI_RXPKT1H_SHORT_1_MASK	VC4_MASK(23, 16)
120 # define DSI_RXPKT1H_SHORT_1_SHIFT	16
121 # define DSI_RXPKT1H_SHORT_0_MASK	VC4_MASK(15, 8)
122 # define DSI_RXPKT1H_SHORT_0_SHIFT	8
123 # define DSI_RXPKT1H_DT_LP_CMD_MASK	VC4_MASK(7, 0)
124 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT	0
125 
126 #define DSI0_RXPKT2H		0x10 /* AKA RX2_PKTH */
127 #define DSI1_RXPKT2H		0x18
128 # define DSI_RXPKT1H_DET_ERR		BIT(30)
129 # define DSI_RXPKT1H_ECC_ERR		BIT(29)
130 # define DSI_RXPKT1H_COR_ERR		BIT(28)
131 # define DSI_RXPKT1H_INCOMP_PKT		BIT(25)
132 # define DSI_RXPKT1H_BC_PARAM_MASK	VC4_MASK(23, 8)
133 # define DSI_RXPKT1H_BC_PARAM_SHIFT	8
134 # define DSI_RXPKT1H_DT_MASK		VC4_MASK(7, 0)
135 # define DSI_RXPKT1H_DT_SHIFT		0
136 
137 #define DSI0_TXPKT_CMD_FIFO	0x14 /* AKA CMD_DATAF */
138 #define DSI1_TXPKT_CMD_FIFO	0x1c
139 
140 #define DSI0_DISP0_CTRL		0x18
141 # define DSI_DISP0_PIX_CLK_DIV_MASK	VC4_MASK(21, 13)
142 # define DSI_DISP0_PIX_CLK_DIV_SHIFT	13
143 # define DSI_DISP0_LP_STOP_CTRL_MASK	VC4_MASK(12, 11)
144 # define DSI_DISP0_LP_STOP_CTRL_SHIFT	11
145 # define DSI_DISP0_LP_STOP_DISABLE	0
146 # define DSI_DISP0_LP_STOP_PERLINE	1
147 # define DSI_DISP0_LP_STOP_PERFRAME	2
148 
149 /* Transmit RGB pixels and null packets only during HACTIVE, instead
150  * of going to LP-STOP.
151  */
152 # define DSI_DISP_HACTIVE_NULL		BIT(10)
153 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
154 # define DSI_DISP_VBLP_CTRL		BIT(9)
155 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
156 # define DSI_DISP_HFP_CTRL		BIT(8)
157 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
158 # define DSI_DISP_HBP_CTRL		BIT(7)
159 # define DSI_DISP0_CHANNEL_MASK		VC4_MASK(6, 5)
160 # define DSI_DISP0_CHANNEL_SHIFT	5
161 /* Enables end events for HSYNC/VSYNC, not just start events. */
162 # define DSI_DISP0_ST_END		BIT(4)
163 # define DSI_DISP0_PFORMAT_MASK		VC4_MASK(3, 2)
164 # define DSI_DISP0_PFORMAT_SHIFT	2
165 # define DSI_PFORMAT_RGB565		0
166 # define DSI_PFORMAT_RGB666_PACKED	1
167 # define DSI_PFORMAT_RGB666		2
168 # define DSI_PFORMAT_RGB888		3
169 /* Default is VIDEO mode. */
170 # define DSI_DISP0_COMMAND_MODE		BIT(1)
171 # define DSI_DISP0_ENABLE		BIT(0)
172 
173 #define DSI0_DISP1_CTRL		0x1c
174 #define DSI1_DISP1_CTRL		0x2c
175 /* Format of the data written to TXPKT_PIX_FIFO. */
176 # define DSI_DISP1_PFORMAT_MASK		VC4_MASK(2, 1)
177 # define DSI_DISP1_PFORMAT_SHIFT	1
178 # define DSI_DISP1_PFORMAT_16BIT	0
179 # define DSI_DISP1_PFORMAT_24BIT	1
180 # define DSI_DISP1_PFORMAT_32BIT_LE	2
181 # define DSI_DISP1_PFORMAT_32BIT_BE	3
182 
183 /* DISP1 is always command mode. */
184 # define DSI_DISP1_ENABLE		BIT(0)
185 
186 #define DSI0_TXPKT_PIX_FIFO		0x20 /* AKA PIX_FIFO */
187 
188 #define DSI0_INT_STAT		0x24
189 #define DSI0_INT_EN		0x28
190 # define DSI1_INT_PHY_D3_ULPS		BIT(30)
191 # define DSI1_INT_PHY_D3_STOP		BIT(29)
192 # define DSI1_INT_PHY_D2_ULPS		BIT(28)
193 # define DSI1_INT_PHY_D2_STOP		BIT(27)
194 # define DSI1_INT_PHY_D1_ULPS		BIT(26)
195 # define DSI1_INT_PHY_D1_STOP		BIT(25)
196 # define DSI1_INT_PHY_D0_ULPS		BIT(24)
197 # define DSI1_INT_PHY_D0_STOP		BIT(23)
198 # define DSI1_INT_FIFO_ERR		BIT(22)
199 # define DSI1_INT_PHY_DIR_RTF		BIT(21)
200 # define DSI1_INT_PHY_RXLPDT		BIT(20)
201 # define DSI1_INT_PHY_RXTRIG		BIT(19)
202 # define DSI1_INT_PHY_D0_LPDT		BIT(18)
203 # define DSI1_INT_PHY_DIR_FTR		BIT(17)
204 
205 /* Signaled when the clock lane enters the given state. */
206 # define DSI1_INT_PHY_CLOCK_ULPS	BIT(16)
207 # define DSI1_INT_PHY_CLOCK_HS		BIT(15)
208 # define DSI1_INT_PHY_CLOCK_STOP	BIT(14)
209 
210 /* Signaled on timeouts */
211 # define DSI1_INT_PR_TO			BIT(13)
212 # define DSI1_INT_TA_TO			BIT(12)
213 # define DSI1_INT_LPRX_TO		BIT(11)
214 # define DSI1_INT_HSTX_TO		BIT(10)
215 
216 /* Contention on a line when trying to drive the line low */
217 # define DSI1_INT_ERR_CONT_LP1		BIT(9)
218 # define DSI1_INT_ERR_CONT_LP0		BIT(8)
219 
220 /* Control error: incorrect line state sequence on data lane 0. */
221 # define DSI1_INT_ERR_CONTROL		BIT(7)
222 /* LPDT synchronization error (bits received not a multiple of 8. */
223 
224 # define DSI1_INT_ERR_SYNC_ESC		BIT(6)
225 /* Signaled after receiving an error packet from the display in
226  * response to a read.
227  */
228 # define DSI1_INT_RXPKT2		BIT(5)
229 /* Signaled after receiving a packet.  The header and optional short
230  * response will be in RXPKT1H, and a long response will be in the
231  * RXPKT_FIFO.
232  */
233 # define DSI1_INT_RXPKT1		BIT(4)
234 # define DSI1_INT_TXPKT2_DONE		BIT(3)
235 # define DSI1_INT_TXPKT2_END		BIT(2)
236 /* Signaled after all repeats of TXPKT1 are transferred. */
237 # define DSI1_INT_TXPKT1_DONE		BIT(1)
238 /* Signaled after each TXPKT1 repeat is scheduled. */
239 # define DSI1_INT_TXPKT1_END		BIT(0)
240 
241 #define DSI1_INTERRUPTS_ALWAYS_ENABLED	(DSI1_INT_ERR_SYNC_ESC | \
242 					 DSI1_INT_ERR_CONTROL |	 \
243 					 DSI1_INT_ERR_CONT_LP0 | \
244 					 DSI1_INT_ERR_CONT_LP1 | \
245 					 DSI1_INT_HSTX_TO |	 \
246 					 DSI1_INT_LPRX_TO |	 \
247 					 DSI1_INT_TA_TO |	 \
248 					 DSI1_INT_PR_TO)
249 
250 #define DSI0_STAT		0x2c
251 #define DSI0_HSTX_TO_CNT	0x30
252 #define DSI0_LPRX_TO_CNT	0x34
253 #define DSI0_TA_TO_CNT		0x38
254 #define DSI0_PR_TO_CNT		0x3c
255 #define DSI0_PHYC		0x40
256 # define DSI1_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(25, 20)
257 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT	20
258 # define DSI1_PHYC_HS_CLK_CONTINUOUS	BIT(18)
259 # define DSI0_PHYC_ESC_CLK_LPDT_MASK	VC4_MASK(17, 12)
260 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT	12
261 # define DSI1_PHYC_CLANE_ULPS		BIT(17)
262 # define DSI1_PHYC_CLANE_ENABLE		BIT(16)
263 # define DSI_PHYC_DLANE3_ULPS		BIT(13)
264 # define DSI_PHYC_DLANE3_ENABLE		BIT(12)
265 # define DSI0_PHYC_HS_CLK_CONTINUOUS	BIT(10)
266 # define DSI0_PHYC_CLANE_ULPS		BIT(9)
267 # define DSI_PHYC_DLANE2_ULPS		BIT(9)
268 # define DSI0_PHYC_CLANE_ENABLE		BIT(8)
269 # define DSI_PHYC_DLANE2_ENABLE		BIT(8)
270 # define DSI_PHYC_DLANE1_ULPS		BIT(5)
271 # define DSI_PHYC_DLANE1_ENABLE		BIT(4)
272 # define DSI_PHYC_DLANE0_FORCE_STOP	BIT(2)
273 # define DSI_PHYC_DLANE0_ULPS		BIT(1)
274 # define DSI_PHYC_DLANE0_ENABLE		BIT(0)
275 
276 #define DSI0_HS_CLT0		0x44
277 #define DSI0_HS_CLT1		0x48
278 #define DSI0_HS_CLT2		0x4c
279 #define DSI0_HS_DLT3		0x50
280 #define DSI0_HS_DLT4		0x54
281 #define DSI0_HS_DLT5		0x58
282 #define DSI0_HS_DLT6		0x5c
283 #define DSI0_HS_DLT7		0x60
284 
285 #define DSI0_PHY_AFEC0		0x64
286 # define DSI0_PHY_AFEC0_DDR2CLK_EN		BIT(26)
287 # define DSI0_PHY_AFEC0_DDRCLK_EN		BIT(25)
288 # define DSI0_PHY_AFEC0_LATCH_ULPS		BIT(24)
289 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK		VC4_MASK(31, 29)
290 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT	29
291 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK		VC4_MASK(28, 26)
292 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT	26
293 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK		VC4_MASK(27, 23)
294 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT	23
295 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK		VC4_MASK(22, 20)
296 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT	20
297 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK		VC4_MASK(19, 17)
298 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT		17
299 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK	VC4_MASK(23, 20)
300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT	20
301 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK	VC4_MASK(19, 16)
302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT	16
303 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK	VC4_MASK(15, 12)
304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT	12
305 # define DSI1_PHY_AFEC0_DDR2CLK_EN		BIT(16)
306 # define DSI1_PHY_AFEC0_DDRCLK_EN		BIT(15)
307 # define DSI1_PHY_AFEC0_LATCH_ULPS		BIT(14)
308 # define DSI1_PHY_AFEC0_RESET			BIT(13)
309 # define DSI1_PHY_AFEC0_PD			BIT(12)
310 # define DSI0_PHY_AFEC0_RESET			BIT(11)
311 # define DSI1_PHY_AFEC0_PD_BG			BIT(11)
312 # define DSI0_PHY_AFEC0_PD			BIT(10)
313 # define DSI1_PHY_AFEC0_PD_DLANE3		BIT(10)
314 # define DSI0_PHY_AFEC0_PD_BG			BIT(9)
315 # define DSI1_PHY_AFEC0_PD_DLANE2		BIT(9)
316 # define DSI0_PHY_AFEC0_PD_DLANE1		BIT(8)
317 # define DSI1_PHY_AFEC0_PD_DLANE1		BIT(8)
318 # define DSI_PHY_AFEC0_PTATADJ_MASK		VC4_MASK(7, 4)
319 # define DSI_PHY_AFEC0_PTATADJ_SHIFT		4
320 # define DSI_PHY_AFEC0_CTATADJ_MASK		VC4_MASK(3, 0)
321 # define DSI_PHY_AFEC0_CTATADJ_SHIFT		0
322 
323 #define DSI0_PHY_AFEC1		0x68
324 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK		VC4_MASK(10, 8)
325 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT	8
326 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK		VC4_MASK(6, 4)
327 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT	4
328 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK		VC4_MASK(2, 0)
329 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT		0
330 
331 #define DSI0_TST_SEL		0x6c
332 #define DSI0_TST_MON		0x70
333 #define DSI0_ID			0x74
334 # define DSI_ID_VALUE		0x00647369
335 
336 #define DSI1_CTRL		0x00
337 # define DSI_CTRL_HS_CLKC_MASK		VC4_MASK(15, 14)
338 # define DSI_CTRL_HS_CLKC_SHIFT		14
339 # define DSI_CTRL_HS_CLKC_BYTE		0
340 # define DSI_CTRL_HS_CLKC_DDR2		1
341 # define DSI_CTRL_HS_CLKC_DDR		2
342 
343 # define DSI_CTRL_RX_LPDT_EOT_DISABLE	BIT(13)
344 # define DSI_CTRL_LPDT_EOT_DISABLE	BIT(12)
345 # define DSI_CTRL_HSDT_EOT_DISABLE	BIT(11)
346 # define DSI_CTRL_SOFT_RESET_CFG	BIT(10)
347 # define DSI_CTRL_CAL_BYTE		BIT(9)
348 # define DSI_CTRL_INV_BYTE		BIT(8)
349 # define DSI_CTRL_CLR_LDF		BIT(7)
350 # define DSI0_CTRL_CLR_PBCF		BIT(6)
351 # define DSI1_CTRL_CLR_RXF		BIT(6)
352 # define DSI0_CTRL_CLR_CPBCF		BIT(5)
353 # define DSI1_CTRL_CLR_PDF		BIT(5)
354 # define DSI0_CTRL_CLR_PDF		BIT(4)
355 # define DSI1_CTRL_CLR_CDF		BIT(4)
356 # define DSI0_CTRL_CLR_CDF		BIT(3)
357 # define DSI0_CTRL_CTRL2		BIT(2)
358 # define DSI1_CTRL_DISABLE_DISP_CRCC	BIT(2)
359 # define DSI0_CTRL_CTRL1		BIT(1)
360 # define DSI1_CTRL_DISABLE_DISP_ECCC	BIT(1)
361 # define DSI0_CTRL_CTRL0		BIT(0)
362 # define DSI1_CTRL_EN			BIT(0)
363 # define DSI0_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
364 					 DSI0_CTRL_CLR_PBCF | \
365 					 DSI0_CTRL_CLR_CPBCF |	\
366 					 DSI0_CTRL_CLR_PDF | \
367 					 DSI0_CTRL_CLR_CDF)
368 # define DSI1_CTRL_RESET_FIFOS		(DSI_CTRL_CLR_LDF | \
369 					 DSI1_CTRL_CLR_RXF | \
370 					 DSI1_CTRL_CLR_PDF | \
371 					 DSI1_CTRL_CLR_CDF)
372 
373 #define DSI1_TXPKT2C		0x0c
374 #define DSI1_TXPKT2H		0x10
375 #define DSI1_TXPKT_PIX_FIFO	0x20
376 #define DSI1_RXPKT_FIFO		0x24
377 #define DSI1_DISP0_CTRL		0x28
378 #define DSI1_INT_STAT		0x30
379 #define DSI1_INT_EN		0x34
380 /* State reporting bits.  These mostly behave like INT_STAT, where
381  * writing a 1 clears the bit.
382  */
383 #define DSI1_STAT		0x38
384 # define DSI1_STAT_PHY_D3_ULPS		BIT(31)
385 # define DSI1_STAT_PHY_D3_STOP		BIT(30)
386 # define DSI1_STAT_PHY_D2_ULPS		BIT(29)
387 # define DSI1_STAT_PHY_D2_STOP		BIT(28)
388 # define DSI1_STAT_PHY_D1_ULPS		BIT(27)
389 # define DSI1_STAT_PHY_D1_STOP		BIT(26)
390 # define DSI1_STAT_PHY_D0_ULPS		BIT(25)
391 # define DSI1_STAT_PHY_D0_STOP		BIT(24)
392 # define DSI1_STAT_FIFO_ERR		BIT(23)
393 # define DSI1_STAT_PHY_RXLPDT		BIT(22)
394 # define DSI1_STAT_PHY_RXTRIG		BIT(21)
395 # define DSI1_STAT_PHY_D0_LPDT		BIT(20)
396 /* Set when in forward direction */
397 # define DSI1_STAT_PHY_DIR		BIT(19)
398 # define DSI1_STAT_PHY_CLOCK_ULPS	BIT(18)
399 # define DSI1_STAT_PHY_CLOCK_HS		BIT(17)
400 # define DSI1_STAT_PHY_CLOCK_STOP	BIT(16)
401 # define DSI1_STAT_PR_TO		BIT(15)
402 # define DSI1_STAT_TA_TO		BIT(14)
403 # define DSI1_STAT_LPRX_TO		BIT(13)
404 # define DSI1_STAT_HSTX_TO		BIT(12)
405 # define DSI1_STAT_ERR_CONT_LP1		BIT(11)
406 # define DSI1_STAT_ERR_CONT_LP0		BIT(10)
407 # define DSI1_STAT_ERR_CONTROL		BIT(9)
408 # define DSI1_STAT_ERR_SYNC_ESC		BIT(8)
409 # define DSI1_STAT_RXPKT2		BIT(7)
410 # define DSI1_STAT_RXPKT1		BIT(6)
411 # define DSI1_STAT_TXPKT2_BUSY		BIT(5)
412 # define DSI1_STAT_TXPKT2_DONE		BIT(4)
413 # define DSI1_STAT_TXPKT2_END		BIT(3)
414 # define DSI1_STAT_TXPKT1_BUSY		BIT(2)
415 # define DSI1_STAT_TXPKT1_DONE		BIT(1)
416 # define DSI1_STAT_TXPKT1_END		BIT(0)
417 
418 #define DSI1_HSTX_TO_CNT	0x3c
419 #define DSI1_LPRX_TO_CNT	0x40
420 #define DSI1_TA_TO_CNT		0x44
421 #define DSI1_PR_TO_CNT		0x48
422 #define DSI1_PHYC		0x4c
423 
424 #define DSI1_HS_CLT0		0x50
425 # define DSI_HS_CLT0_CZERO_MASK		VC4_MASK(26, 18)
426 # define DSI_HS_CLT0_CZERO_SHIFT	18
427 # define DSI_HS_CLT0_CPRE_MASK		VC4_MASK(17, 9)
428 # define DSI_HS_CLT0_CPRE_SHIFT		9
429 # define DSI_HS_CLT0_CPREP_MASK		VC4_MASK(8, 0)
430 # define DSI_HS_CLT0_CPREP_SHIFT	0
431 
432 #define DSI1_HS_CLT1		0x54
433 # define DSI_HS_CLT1_CTRAIL_MASK	VC4_MASK(17, 9)
434 # define DSI_HS_CLT1_CTRAIL_SHIFT	9
435 # define DSI_HS_CLT1_CPOST_MASK		VC4_MASK(8, 0)
436 # define DSI_HS_CLT1_CPOST_SHIFT	0
437 
438 #define DSI1_HS_CLT2		0x58
439 # define DSI_HS_CLT2_WUP_MASK		VC4_MASK(23, 0)
440 # define DSI_HS_CLT2_WUP_SHIFT		0
441 
442 #define DSI1_HS_DLT3		0x5c
443 # define DSI_HS_DLT3_EXIT_MASK		VC4_MASK(26, 18)
444 # define DSI_HS_DLT3_EXIT_SHIFT		18
445 # define DSI_HS_DLT3_ZERO_MASK		VC4_MASK(17, 9)
446 # define DSI_HS_DLT3_ZERO_SHIFT		9
447 # define DSI_HS_DLT3_PRE_MASK		VC4_MASK(8, 0)
448 # define DSI_HS_DLT3_PRE_SHIFT		0
449 
450 #define DSI1_HS_DLT4		0x60
451 # define DSI_HS_DLT4_ANLAT_MASK		VC4_MASK(22, 18)
452 # define DSI_HS_DLT4_ANLAT_SHIFT	18
453 # define DSI_HS_DLT4_TRAIL_MASK		VC4_MASK(17, 9)
454 # define DSI_HS_DLT4_TRAIL_SHIFT	9
455 # define DSI_HS_DLT4_LPX_MASK		VC4_MASK(8, 0)
456 # define DSI_HS_DLT4_LPX_SHIFT		0
457 
458 #define DSI1_HS_DLT5		0x64
459 # define DSI_HS_DLT5_INIT_MASK		VC4_MASK(23, 0)
460 # define DSI_HS_DLT5_INIT_SHIFT		0
461 
462 #define DSI1_HS_DLT6		0x68
463 # define DSI_HS_DLT6_TA_GET_MASK	VC4_MASK(31, 24)
464 # define DSI_HS_DLT6_TA_GET_SHIFT	24
465 # define DSI_HS_DLT6_TA_SURE_MASK	VC4_MASK(23, 16)
466 # define DSI_HS_DLT6_TA_SURE_SHIFT	16
467 # define DSI_HS_DLT6_TA_GO_MASK		VC4_MASK(15, 8)
468 # define DSI_HS_DLT6_TA_GO_SHIFT	8
469 # define DSI_HS_DLT6_LP_LPX_MASK	VC4_MASK(7, 0)
470 # define DSI_HS_DLT6_LP_LPX_SHIFT	0
471 
472 #define DSI1_HS_DLT7		0x6c
473 # define DSI_HS_DLT7_LP_WUP_MASK	VC4_MASK(23, 0)
474 # define DSI_HS_DLT7_LP_WUP_SHIFT	0
475 
476 #define DSI1_PHY_AFEC0		0x70
477 
478 #define DSI1_PHY_AFEC1		0x74
479 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK	VC4_MASK(19, 16)
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT	16
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK	VC4_MASK(15, 12)
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT	12
483 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK	VC4_MASK(11, 8)
484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT	8
485 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK	VC4_MASK(7, 4)
486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT	4
487 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK	VC4_MASK(3, 0)
488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT	0
489 
490 #define DSI1_TST_SEL		0x78
491 #define DSI1_TST_MON		0x7c
492 #define DSI1_PHY_TST1		0x80
493 #define DSI1_PHY_TST2		0x84
494 #define DSI1_PHY_FIFO_STAT	0x88
495 /* Actually, all registers in the range that aren't otherwise claimed
496  * will return the ID.
497  */
498 #define DSI1_ID			0x8c
499 
500 /* General DSI hardware state. */
501 struct vc4_dsi {
502 	struct platform_device *pdev;
503 
504 	struct mipi_dsi_host dsi_host;
505 	struct drm_encoder *encoder;
506 	struct drm_bridge *bridge;
507 	bool is_panel_bridge;
508 
509 	void __iomem *regs;
510 
511 	struct dma_chan *reg_dma_chan;
512 	dma_addr_t reg_dma_paddr;
513 	u32 *reg_dma_mem;
514 	dma_addr_t reg_paddr;
515 
516 	/* Whether we're on bcm2835's DSI0 or DSI1. */
517 	int port;
518 
519 	/* DSI channel for the panel we're connected to. */
520 	u32 channel;
521 	u32 lanes;
522 	u32 format;
523 	u32 divider;
524 	u32 mode_flags;
525 
526 	/* Input clock from CPRMAN to the digital PHY, for the DSI
527 	 * escape clock.
528 	 */
529 	struct clk *escape_clock;
530 
531 	/* Input clock to the analog PHY, used to generate the DSI bit
532 	 * clock.
533 	 */
534 	struct clk *pll_phy_clock;
535 
536 	/* HS Clocks generated within the DSI analog PHY. */
537 	struct clk_fixed_factor phy_clocks[3];
538 
539 	struct clk_hw_onecell_data *clk_onecell;
540 
541 	/* Pixel clock output to the pixelvalve, generated from the HS
542 	 * clock.
543 	 */
544 	struct clk *pixel_clock;
545 
546 	struct completion xfer_completion;
547 	int xfer_result;
548 };
549 
550 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
551 
552 static inline void
553 dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
554 {
555 	struct dma_chan *chan = dsi->reg_dma_chan;
556 	struct dma_async_tx_descriptor *tx;
557 	dma_cookie_t cookie;
558 	int ret;
559 
560 	/* DSI0 should be able to write normally. */
561 	if (!chan) {
562 		writel(val, dsi->regs + offset);
563 		return;
564 	}
565 
566 	*dsi->reg_dma_mem = val;
567 
568 	tx = chan->device->device_prep_dma_memcpy(chan,
569 						  dsi->reg_paddr + offset,
570 						  dsi->reg_dma_paddr,
571 						  4, 0);
572 	if (!tx) {
573 		DRM_ERROR("Failed to set up DMA register write\n");
574 		return;
575 	}
576 
577 	cookie = tx->tx_submit(tx);
578 	ret = dma_submit_error(cookie);
579 	if (ret) {
580 		DRM_ERROR("Failed to submit DMA: %d\n", ret);
581 		return;
582 	}
583 	ret = dma_sync_wait(chan, cookie);
584 	if (ret)
585 		DRM_ERROR("Failed to wait for DMA: %d\n", ret);
586 }
587 
588 #define DSI_READ(offset) readl(dsi->regs + (offset))
589 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
590 #define DSI_PORT_READ(offset) \
591 	DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
592 #define DSI_PORT_WRITE(offset, val) \
593 	DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
594 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
595 
596 /* VC4 DSI encoder KMS struct */
597 struct vc4_dsi_encoder {
598 	struct vc4_encoder base;
599 	struct vc4_dsi *dsi;
600 };
601 
602 static inline struct vc4_dsi_encoder *
603 to_vc4_dsi_encoder(struct drm_encoder *encoder)
604 {
605 	return container_of(encoder, struct vc4_dsi_encoder, base.base);
606 }
607 
608 #define DSI_REG(reg) { reg, #reg }
609 static const struct {
610 	u32 reg;
611 	const char *name;
612 } dsi0_regs[] = {
613 	DSI_REG(DSI0_CTRL),
614 	DSI_REG(DSI0_STAT),
615 	DSI_REG(DSI0_HSTX_TO_CNT),
616 	DSI_REG(DSI0_LPRX_TO_CNT),
617 	DSI_REG(DSI0_TA_TO_CNT),
618 	DSI_REG(DSI0_PR_TO_CNT),
619 	DSI_REG(DSI0_DISP0_CTRL),
620 	DSI_REG(DSI0_DISP1_CTRL),
621 	DSI_REG(DSI0_INT_STAT),
622 	DSI_REG(DSI0_INT_EN),
623 	DSI_REG(DSI0_PHYC),
624 	DSI_REG(DSI0_HS_CLT0),
625 	DSI_REG(DSI0_HS_CLT1),
626 	DSI_REG(DSI0_HS_CLT2),
627 	DSI_REG(DSI0_HS_DLT3),
628 	DSI_REG(DSI0_HS_DLT4),
629 	DSI_REG(DSI0_HS_DLT5),
630 	DSI_REG(DSI0_HS_DLT6),
631 	DSI_REG(DSI0_HS_DLT7),
632 	DSI_REG(DSI0_PHY_AFEC0),
633 	DSI_REG(DSI0_PHY_AFEC1),
634 	DSI_REG(DSI0_ID),
635 };
636 
637 static const struct {
638 	u32 reg;
639 	const char *name;
640 } dsi1_regs[] = {
641 	DSI_REG(DSI1_CTRL),
642 	DSI_REG(DSI1_STAT),
643 	DSI_REG(DSI1_HSTX_TO_CNT),
644 	DSI_REG(DSI1_LPRX_TO_CNT),
645 	DSI_REG(DSI1_TA_TO_CNT),
646 	DSI_REG(DSI1_PR_TO_CNT),
647 	DSI_REG(DSI1_DISP0_CTRL),
648 	DSI_REG(DSI1_DISP1_CTRL),
649 	DSI_REG(DSI1_INT_STAT),
650 	DSI_REG(DSI1_INT_EN),
651 	DSI_REG(DSI1_PHYC),
652 	DSI_REG(DSI1_HS_CLT0),
653 	DSI_REG(DSI1_HS_CLT1),
654 	DSI_REG(DSI1_HS_CLT2),
655 	DSI_REG(DSI1_HS_DLT3),
656 	DSI_REG(DSI1_HS_DLT4),
657 	DSI_REG(DSI1_HS_DLT5),
658 	DSI_REG(DSI1_HS_DLT6),
659 	DSI_REG(DSI1_HS_DLT7),
660 	DSI_REG(DSI1_PHY_AFEC0),
661 	DSI_REG(DSI1_PHY_AFEC1),
662 	DSI_REG(DSI1_ID),
663 };
664 
665 static void vc4_dsi_dump_regs(struct vc4_dsi *dsi)
666 {
667 	int i;
668 
669 	if (dsi->port == 0) {
670 		for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
671 			DRM_INFO("0x%04x (%s): 0x%08x\n",
672 				 dsi0_regs[i].reg, dsi0_regs[i].name,
673 				 DSI_READ(dsi0_regs[i].reg));
674 		}
675 	} else {
676 		for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
677 			DRM_INFO("0x%04x (%s): 0x%08x\n",
678 				 dsi1_regs[i].reg, dsi1_regs[i].name,
679 				 DSI_READ(dsi1_regs[i].reg));
680 		}
681 	}
682 }
683 
684 #ifdef CONFIG_DEBUG_FS
685 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused)
686 {
687 	struct drm_info_node *node = (struct drm_info_node *)m->private;
688 	struct drm_device *drm = node->minor->dev;
689 	struct vc4_dev *vc4 = to_vc4_dev(drm);
690 	int dsi_index = (uintptr_t)node->info_ent->data;
691 	struct vc4_dsi *dsi = (dsi_index == 1 ? vc4->dsi1 : NULL);
692 	int i;
693 
694 	if (!dsi)
695 		return 0;
696 
697 	if (dsi->port == 0) {
698 		for (i = 0; i < ARRAY_SIZE(dsi0_regs); i++) {
699 			seq_printf(m, "0x%04x (%s): 0x%08x\n",
700 				   dsi0_regs[i].reg, dsi0_regs[i].name,
701 				   DSI_READ(dsi0_regs[i].reg));
702 		}
703 	} else {
704 		for (i = 0; i < ARRAY_SIZE(dsi1_regs); i++) {
705 			seq_printf(m, "0x%04x (%s): 0x%08x\n",
706 				   dsi1_regs[i].reg, dsi1_regs[i].name,
707 				   DSI_READ(dsi1_regs[i].reg));
708 		}
709 	}
710 
711 	return 0;
712 }
713 #endif
714 
715 static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
716 {
717 	drm_encoder_cleanup(encoder);
718 }
719 
720 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
721 	.destroy = vc4_dsi_encoder_destroy,
722 };
723 
724 static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
725 {
726 	u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
727 
728 	if (latch)
729 		afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
730 	else
731 		afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
732 
733 	DSI_PORT_WRITE(PHY_AFEC0, afec0);
734 }
735 
736 /* Enters or exits Ultra Low Power State. */
737 static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
738 {
739 	bool continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
740 	u32 phyc_ulps = ((continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
741 			 DSI_PHYC_DLANE0_ULPS |
742 			 (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
743 			 (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
744 			 (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
745 	u32 stat_ulps = ((continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
746 			 DSI1_STAT_PHY_D0_ULPS |
747 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
748 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
749 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
750 	u32 stat_stop = ((continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
751 			 DSI1_STAT_PHY_D0_STOP |
752 			 (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
753 			 (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
754 			 (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
755 	int ret;
756 
757 	DSI_PORT_WRITE(STAT, stat_ulps);
758 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
759 	ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
760 	if (ret) {
761 		dev_warn(&dsi->pdev->dev,
762 			 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
763 			 DSI_PORT_READ(STAT));
764 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
765 		vc4_dsi_latch_ulps(dsi, false);
766 		return;
767 	}
768 
769 	/* The DSI module can't be disabled while the module is
770 	 * generating ULPS state.  So, to be able to disable the
771 	 * module, we have the AFE latch the ULPS state and continue
772 	 * on to having the module enter STOP.
773 	 */
774 	vc4_dsi_latch_ulps(dsi, ulps);
775 
776 	DSI_PORT_WRITE(STAT, stat_stop);
777 	DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
778 	ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
779 	if (ret) {
780 		dev_warn(&dsi->pdev->dev,
781 			 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
782 			 DSI_PORT_READ(STAT));
783 		DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
784 		return;
785 	}
786 }
787 
788 static u32
789 dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
790 {
791 	/* The HS timings have to be rounded up to a multiple of 8
792 	 * because we're using the byte clock.
793 	 */
794 	return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
795 }
796 
797 /* ESC always runs at 100Mhz. */
798 #define ESC_TIME_NS 10
799 
800 static u32
801 dsi_esc_timing(u32 ns)
802 {
803 	return DIV_ROUND_UP(ns, ESC_TIME_NS);
804 }
805 
806 static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
807 {
808 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
809 	struct vc4_dsi *dsi = vc4_encoder->dsi;
810 	struct device *dev = &dsi->pdev->dev;
811 
812 	vc4_dsi_ulps(dsi, true);
813 
814 	clk_disable_unprepare(dsi->pll_phy_clock);
815 	clk_disable_unprepare(dsi->escape_clock);
816 	clk_disable_unprepare(dsi->pixel_clock);
817 
818 	pm_runtime_put(dev);
819 }
820 
821 /* Extends the mode's blank intervals to handle BCM2835's integer-only
822  * DSI PLL divider.
823  *
824  * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
825  * driver since most peripherals are hanging off of the PLLD_PER
826  * divider.  PLLD_DSI1, which drives our DSI bit clock (and therefore
827  * the pixel clock), only has an integer divider off of DSI.
828  *
829  * To get our panel mode to refresh at the expected 60Hz, we need to
830  * extend the horizontal blank time.  This means we drive a
831  * higher-than-expected clock rate to the panel, but that's what the
832  * firmware does too.
833  */
834 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
835 				       const struct drm_display_mode *mode,
836 				       struct drm_display_mode *adjusted_mode)
837 {
838 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
839 	struct vc4_dsi *dsi = vc4_encoder->dsi;
840 	struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
841 	unsigned long parent_rate = clk_get_rate(phy_parent);
842 	unsigned long pixel_clock_hz = mode->clock * 1000;
843 	unsigned long pll_clock = pixel_clock_hz * dsi->divider;
844 	int divider;
845 
846 	/* Find what divider gets us a faster clock than the requested
847 	 * pixel clock.
848 	 */
849 	for (divider = 1; divider < 8; divider++) {
850 		if (parent_rate / divider < pll_clock) {
851 			divider--;
852 			break;
853 		}
854 	}
855 
856 	/* Now that we've picked a PLL divider, calculate back to its
857 	 * pixel clock.
858 	 */
859 	pll_clock = parent_rate / divider;
860 	pixel_clock_hz = pll_clock / dsi->divider;
861 
862 	/* Round up the clk_set_rate() request slightly, since
863 	 * PLLD_DSI1 is an integer divider and its rate selection will
864 	 * never round up.
865 	 */
866 	adjusted_mode->clock = pixel_clock_hz / 1000 + 1;
867 
868 	/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
869 	adjusted_mode->htotal = pixel_clock_hz / (mode->vrefresh * mode->vtotal);
870 	adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
871 	adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
872 
873 	return true;
874 }
875 
876 static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
877 {
878 	struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
879 	struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
880 	struct vc4_dsi *dsi = vc4_encoder->dsi;
881 	struct device *dev = &dsi->pdev->dev;
882 	bool debug_dump_regs = false;
883 	unsigned long hs_clock;
884 	u32 ui_ns;
885 	/* Minimum LP state duration in escape clock cycles. */
886 	u32 lpx = dsi_esc_timing(60);
887 	unsigned long pixel_clock_hz = mode->clock * 1000;
888 	unsigned long dsip_clock;
889 	unsigned long phy_clock;
890 	int ret;
891 
892 	ret = pm_runtime_get_sync(dev);
893 	if (ret) {
894 		DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
895 		return;
896 	}
897 
898 	if (debug_dump_regs) {
899 		DRM_INFO("DSI regs before:\n");
900 		vc4_dsi_dump_regs(dsi);
901 	}
902 
903 	phy_clock = pixel_clock_hz * dsi->divider;
904 	ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
905 	if (ret) {
906 		dev_err(&dsi->pdev->dev,
907 			"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
908 	}
909 
910 	/* Reset the DSI and all its fifos. */
911 	DSI_PORT_WRITE(CTRL,
912 		       DSI_CTRL_SOFT_RESET_CFG |
913 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
914 
915 	DSI_PORT_WRITE(CTRL,
916 		       DSI_CTRL_HSDT_EOT_DISABLE |
917 		       DSI_CTRL_RX_LPDT_EOT_DISABLE);
918 
919 	/* Clear all stat bits so we see what has happened during enable. */
920 	DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
921 
922 	/* Set AFE CTR00/CTR1 to release powerdown of analog. */
923 	if (dsi->port == 0) {
924 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
925 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
926 
927 		if (dsi->lanes < 2)
928 			afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
929 
930 		if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
931 			afec0 |= DSI0_PHY_AFEC0_RESET;
932 
933 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
934 
935 		DSI_PORT_WRITE(PHY_AFEC1,
936 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE1) |
937 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_DLANE0) |
938 			       VC4_SET_FIELD(6,  DSI0_PHY_AFEC1_IDR_CLANE));
939 	} else {
940 		u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
941 			     VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
942 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
943 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
944 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
945 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
946 			     VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
947 
948 		if (dsi->lanes < 4)
949 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
950 		if (dsi->lanes < 3)
951 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
952 		if (dsi->lanes < 2)
953 			afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
954 
955 		afec0 |= DSI1_PHY_AFEC0_RESET;
956 
957 		DSI_PORT_WRITE(PHY_AFEC0, afec0);
958 
959 		DSI_PORT_WRITE(PHY_AFEC1, 0);
960 
961 		/* AFEC reset hold time */
962 		mdelay(1);
963 	}
964 
965 	ret = clk_prepare_enable(dsi->escape_clock);
966 	if (ret) {
967 		DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
968 		return;
969 	}
970 
971 	ret = clk_prepare_enable(dsi->pll_phy_clock);
972 	if (ret) {
973 		DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
974 		return;
975 	}
976 
977 	hs_clock = clk_get_rate(dsi->pll_phy_clock);
978 
979 	/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
980 	 * not the pixel clock rate.  DSIxP take from the APHY's byte,
981 	 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
982 	 * that rate.  Separately, a value derived from PIX_CLK_DIV
983 	 * and HS_CLKC is fed into the PV to divide down to the actual
984 	 * pixel clock for pushing pixels into DSI.
985 	 */
986 	dsip_clock = phy_clock / 8;
987 	ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
988 	if (ret) {
989 		dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
990 			dsip_clock, ret);
991 	}
992 
993 	ret = clk_prepare_enable(dsi->pixel_clock);
994 	if (ret) {
995 		DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
996 		return;
997 	}
998 
999 	/* How many ns one DSI unit interval is.  Note that the clock
1000 	 * is DDR, so there's an extra divide by 2.
1001 	 */
1002 	ui_ns = DIV_ROUND_UP(500000000, hs_clock);
1003 
1004 	DSI_PORT_WRITE(HS_CLT0,
1005 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
1006 				     DSI_HS_CLT0_CZERO) |
1007 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
1008 				     DSI_HS_CLT0_CPRE) |
1009 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
1010 				     DSI_HS_CLT0_CPREP));
1011 
1012 	DSI_PORT_WRITE(HS_CLT1,
1013 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
1014 				     DSI_HS_CLT1_CTRAIL) |
1015 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
1016 				     DSI_HS_CLT1_CPOST));
1017 
1018 	DSI_PORT_WRITE(HS_CLT2,
1019 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
1020 				     DSI_HS_CLT2_WUP));
1021 
1022 	DSI_PORT_WRITE(HS_DLT3,
1023 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
1024 				     DSI_HS_DLT3_EXIT) |
1025 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
1026 				     DSI_HS_DLT3_ZERO) |
1027 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
1028 				     DSI_HS_DLT3_PRE));
1029 
1030 	DSI_PORT_WRITE(HS_DLT4,
1031 		       VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
1032 				     DSI_HS_DLT4_LPX) |
1033 		       VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
1034 					 dsi_hs_timing(ui_ns, 60, 4)),
1035 				     DSI_HS_DLT4_TRAIL) |
1036 		       VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
1037 
1038 	DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000, 5000),
1039 					      DSI_HS_DLT5_INIT));
1040 
1041 	DSI_PORT_WRITE(HS_DLT6,
1042 		       VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
1043 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
1044 		       VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
1045 		       VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
1046 
1047 	DSI_PORT_WRITE(HS_DLT7,
1048 		       VC4_SET_FIELD(dsi_esc_timing(1000000),
1049 				     DSI_HS_DLT7_LP_WUP));
1050 
1051 	DSI_PORT_WRITE(PHYC,
1052 		       DSI_PHYC_DLANE0_ENABLE |
1053 		       (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
1054 		       (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
1055 		       (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
1056 		       DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
1057 		       ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
1058 			0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
1059 		       (dsi->port == 0 ?
1060 			VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
1061 			VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
1062 
1063 	DSI_PORT_WRITE(CTRL,
1064 		       DSI_PORT_READ(CTRL) |
1065 		       DSI_CTRL_CAL_BYTE);
1066 
1067 	/* HS timeout in HS clock cycles: disabled. */
1068 	DSI_PORT_WRITE(HSTX_TO_CNT, 0);
1069 	/* LP receive timeout in HS clocks. */
1070 	DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
1071 	/* Bus turnaround timeout */
1072 	DSI_PORT_WRITE(TA_TO_CNT, 100000);
1073 	/* Display reset sequence timeout */
1074 	DSI_PORT_WRITE(PR_TO_CNT, 100000);
1075 
1076 	if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
1077 		DSI_PORT_WRITE(DISP0_CTRL,
1078 			       VC4_SET_FIELD(dsi->divider,
1079 					     DSI_DISP0_PIX_CLK_DIV) |
1080 			       VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
1081 			       VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
1082 					     DSI_DISP0_LP_STOP_CTRL) |
1083 			       DSI_DISP0_ST_END |
1084 			       DSI_DISP0_ENABLE);
1085 	} else {
1086 		DSI_PORT_WRITE(DISP0_CTRL,
1087 			       DSI_DISP0_COMMAND_MODE |
1088 			       DSI_DISP0_ENABLE);
1089 	}
1090 
1091 	/* Set up DISP1 for transferring long command payloads through
1092 	 * the pixfifo.
1093 	 */
1094 	DSI_PORT_WRITE(DISP1_CTRL,
1095 		       VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
1096 				     DSI_DISP1_PFORMAT) |
1097 		       DSI_DISP1_ENABLE);
1098 
1099 	/* Ungate the block. */
1100 	if (dsi->port == 0)
1101 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
1102 	else
1103 		DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
1104 
1105 	/* Bring AFE out of reset. */
1106 	if (dsi->port == 0) {
1107 	} else {
1108 		DSI_PORT_WRITE(PHY_AFEC0,
1109 			       DSI_PORT_READ(PHY_AFEC0) &
1110 			       ~DSI1_PHY_AFEC0_RESET);
1111 	}
1112 
1113 	vc4_dsi_ulps(dsi, false);
1114 
1115 	if (debug_dump_regs) {
1116 		DRM_INFO("DSI regs after:\n");
1117 		vc4_dsi_dump_regs(dsi);
1118 	}
1119 }
1120 
1121 static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
1122 				     const struct mipi_dsi_msg *msg)
1123 {
1124 	struct vc4_dsi *dsi = host_to_dsi(host);
1125 	struct mipi_dsi_packet packet;
1126 	u32 pkth = 0, pktc = 0;
1127 	int i, ret;
1128 	bool is_long = mipi_dsi_packet_format_is_long(msg->type);
1129 	u32 cmd_fifo_len = 0, pix_fifo_len = 0;
1130 
1131 	mipi_dsi_create_packet(&packet, msg);
1132 
1133 	pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
1134 	pkth |= VC4_SET_FIELD(packet.header[1] |
1135 			      (packet.header[2] << 8),
1136 			      DSI_TXPKT1H_BC_PARAM);
1137 	if (is_long) {
1138 		/* Divide data across the various FIFOs we have available.
1139 		 * The command FIFO takes byte-oriented data, but is of
1140 		 * limited size. The pixel FIFO (never actually used for
1141 		 * pixel data in reality) is word oriented, and substantially
1142 		 * larger. So, we use the pixel FIFO for most of the data,
1143 		 * sending the residual bytes in the command FIFO at the start.
1144 		 *
1145 		 * With this arrangement, the command FIFO will never get full.
1146 		 */
1147 		if (packet.payload_length <= 16) {
1148 			cmd_fifo_len = packet.payload_length;
1149 			pix_fifo_len = 0;
1150 		} else {
1151 			cmd_fifo_len = (packet.payload_length %
1152 					DSI_PIX_FIFO_WIDTH);
1153 			pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
1154 					DSI_PIX_FIFO_WIDTH);
1155 		}
1156 
1157 		WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
1158 
1159 		pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
1160 	}
1161 
1162 	if (msg->rx_len) {
1163 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
1164 				      DSI_TXPKT1C_CMD_CTRL);
1165 	} else {
1166 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
1167 				      DSI_TXPKT1C_CMD_CTRL);
1168 	}
1169 
1170 	for (i = 0; i < cmd_fifo_len; i++)
1171 		DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
1172 	for (i = 0; i < pix_fifo_len; i++) {
1173 		const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
1174 
1175 		DSI_PORT_WRITE(TXPKT_PIX_FIFO,
1176 			       pix[0] |
1177 			       pix[1] << 8 |
1178 			       pix[2] << 16 |
1179 			       pix[3] << 24);
1180 	}
1181 
1182 	if (msg->flags & MIPI_DSI_MSG_USE_LPM)
1183 		pktc |= DSI_TXPKT1C_CMD_MODE_LP;
1184 	if (is_long)
1185 		pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
1186 
1187 	/* Send one copy of the packet.  Larger repeats are used for pixel
1188 	 * data in command mode.
1189 	 */
1190 	pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
1191 
1192 	pktc |= DSI_TXPKT1C_CMD_EN;
1193 	if (pix_fifo_len) {
1194 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
1195 				      DSI_TXPKT1C_DISPLAY_NO);
1196 	} else {
1197 		pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
1198 				      DSI_TXPKT1C_DISPLAY_NO);
1199 	}
1200 
1201 	/* Enable the appropriate interrupt for the transfer completion. */
1202 	dsi->xfer_result = 0;
1203 	reinit_completion(&dsi->xfer_completion);
1204 	DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
1205 	if (msg->rx_len) {
1206 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1207 					DSI1_INT_PHY_DIR_RTF));
1208 	} else {
1209 		DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
1210 					DSI1_INT_TXPKT1_DONE));
1211 	}
1212 
1213 	/* Send the packet. */
1214 	DSI_PORT_WRITE(TXPKT1H, pkth);
1215 	DSI_PORT_WRITE(TXPKT1C, pktc);
1216 
1217 	if (!wait_for_completion_timeout(&dsi->xfer_completion,
1218 					 msecs_to_jiffies(1000))) {
1219 		dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
1220 		dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
1221 			DSI_PORT_READ(INT_STAT));
1222 		ret = -ETIMEDOUT;
1223 	} else {
1224 		ret = dsi->xfer_result;
1225 	}
1226 
1227 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1228 
1229 	if (ret)
1230 		goto reset_fifo_and_return;
1231 
1232 	if (ret == 0 && msg->rx_len) {
1233 		u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
1234 		u8 *msg_rx = msg->rx_buf;
1235 
1236 		if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
1237 			u32 rxlen = VC4_GET_FIELD(rxpkt1h,
1238 						  DSI_RXPKT1H_BC_PARAM);
1239 
1240 			if (rxlen != msg->rx_len) {
1241 				DRM_ERROR("DSI returned %db, expecting %db\n",
1242 					  rxlen, (int)msg->rx_len);
1243 				ret = -ENXIO;
1244 				goto reset_fifo_and_return;
1245 			}
1246 
1247 			for (i = 0; i < msg->rx_len; i++)
1248 				msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
1249 		} else {
1250 			/* FINISHME: Handle AWER */
1251 
1252 			msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
1253 						  DSI_RXPKT1H_SHORT_0);
1254 			if (msg->rx_len > 1) {
1255 				msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
1256 							  DSI_RXPKT1H_SHORT_1);
1257 			}
1258 		}
1259 	}
1260 
1261 	return ret;
1262 
1263 reset_fifo_and_return:
1264 	DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
1265 
1266 	DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
1267 	udelay(1);
1268 	DSI_PORT_WRITE(CTRL,
1269 		       DSI_PORT_READ(CTRL) |
1270 		       DSI_PORT_BIT(CTRL_RESET_FIFOS));
1271 
1272 	DSI_PORT_WRITE(TXPKT1C, 0);
1273 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1274 	return ret;
1275 }
1276 
1277 static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
1278 			       struct mipi_dsi_device *device)
1279 {
1280 	struct vc4_dsi *dsi = host_to_dsi(host);
1281 	int ret = 0;
1282 
1283 	dsi->lanes = device->lanes;
1284 	dsi->channel = device->channel;
1285 	dsi->mode_flags = device->mode_flags;
1286 
1287 	switch (device->format) {
1288 	case MIPI_DSI_FMT_RGB888:
1289 		dsi->format = DSI_PFORMAT_RGB888;
1290 		dsi->divider = 24 / dsi->lanes;
1291 		break;
1292 	case MIPI_DSI_FMT_RGB666:
1293 		dsi->format = DSI_PFORMAT_RGB666;
1294 		dsi->divider = 24 / dsi->lanes;
1295 		break;
1296 	case MIPI_DSI_FMT_RGB666_PACKED:
1297 		dsi->format = DSI_PFORMAT_RGB666_PACKED;
1298 		dsi->divider = 18 / dsi->lanes;
1299 		break;
1300 	case MIPI_DSI_FMT_RGB565:
1301 		dsi->format = DSI_PFORMAT_RGB565;
1302 		dsi->divider = 16 / dsi->lanes;
1303 		break;
1304 	default:
1305 		dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
1306 			dsi->format);
1307 		return 0;
1308 	}
1309 
1310 	if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
1311 		dev_err(&dsi->pdev->dev,
1312 			"Only VIDEO mode panels supported currently.\n");
1313 		return 0;
1314 	}
1315 
1316 	dsi->bridge = of_drm_find_bridge(device->dev.of_node);
1317 	if (!dsi->bridge) {
1318 		struct drm_panel *panel =
1319 			of_drm_find_panel(device->dev.of_node);
1320 
1321 		dsi->bridge = drm_panel_bridge_add(panel,
1322 						   DRM_MODE_CONNECTOR_DSI);
1323 		if (IS_ERR(dsi->bridge)) {
1324 			ret = PTR_ERR(dsi->bridge);
1325 			dsi->bridge = NULL;
1326 			return ret;
1327 		}
1328 		dsi->is_panel_bridge = true;
1329 	}
1330 
1331 	return drm_bridge_attach(dsi->encoder, dsi->bridge, NULL);
1332 }
1333 
1334 static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
1335 			       struct mipi_dsi_device *device)
1336 {
1337 	struct vc4_dsi *dsi = host_to_dsi(host);
1338 
1339 	if (dsi->is_panel_bridge) {
1340 		drm_panel_bridge_remove(dsi->bridge);
1341 		dsi->bridge = NULL;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
1348 	.attach = vc4_dsi_host_attach,
1349 	.detach = vc4_dsi_host_detach,
1350 	.transfer = vc4_dsi_host_transfer,
1351 };
1352 
1353 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
1354 	.disable = vc4_dsi_encoder_disable,
1355 	.enable = vc4_dsi_encoder_enable,
1356 	.mode_fixup = vc4_dsi_encoder_mode_fixup,
1357 };
1358 
1359 static const struct of_device_id vc4_dsi_dt_match[] = {
1360 	{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1361 	{}
1362 };
1363 
1364 static void dsi_handle_error(struct vc4_dsi *dsi,
1365 			     irqreturn_t *ret, u32 stat, u32 bit,
1366 			     const char *type)
1367 {
1368 	if (!(stat & bit))
1369 		return;
1370 
1371 	DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
1372 	*ret = IRQ_HANDLED;
1373 }
1374 
1375 static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
1376 {
1377 	struct vc4_dsi *dsi = data;
1378 	u32 stat = DSI_PORT_READ(INT_STAT);
1379 	irqreturn_t ret = IRQ_NONE;
1380 
1381 	DSI_PORT_WRITE(INT_STAT, stat);
1382 
1383 	dsi_handle_error(dsi, &ret, stat,
1384 			 DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
1385 	dsi_handle_error(dsi, &ret, stat,
1386 			 DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
1387 	dsi_handle_error(dsi, &ret, stat,
1388 			 DSI1_INT_ERR_CONT_LP0, "LP0 contention");
1389 	dsi_handle_error(dsi, &ret, stat,
1390 			 DSI1_INT_ERR_CONT_LP1, "LP1 contention");
1391 	dsi_handle_error(dsi, &ret, stat,
1392 			 DSI1_INT_HSTX_TO, "HSTX timeout");
1393 	dsi_handle_error(dsi, &ret, stat,
1394 			 DSI1_INT_LPRX_TO, "LPRX timeout");
1395 	dsi_handle_error(dsi, &ret, stat,
1396 			 DSI1_INT_TA_TO, "turnaround timeout");
1397 	dsi_handle_error(dsi, &ret, stat,
1398 			 DSI1_INT_PR_TO, "peripheral reset timeout");
1399 
1400 	if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
1401 		complete(&dsi->xfer_completion);
1402 		ret = IRQ_HANDLED;
1403 	} else if (stat & DSI1_INT_HSTX_TO) {
1404 		complete(&dsi->xfer_completion);
1405 		dsi->xfer_result = -ETIMEDOUT;
1406 		ret = IRQ_HANDLED;
1407 	}
1408 
1409 	return ret;
1410 }
1411 
1412 /**
1413  * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1414  * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1415  * @dsi: DSI encoder
1416  */
1417 static int
1418 vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
1419 {
1420 	struct device *dev = &dsi->pdev->dev;
1421 	const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
1422 	static const struct {
1423 		const char *dsi0_name, *dsi1_name;
1424 		int div;
1425 	} phy_clocks[] = {
1426 		{ "dsi0_byte", "dsi1_byte", 8 },
1427 		{ "dsi0_ddr2", "dsi1_ddr2", 4 },
1428 		{ "dsi0_ddr", "dsi1_ddr", 2 },
1429 	};
1430 	int i;
1431 
1432 	dsi->clk_onecell = devm_kzalloc(dev,
1433 					sizeof(*dsi->clk_onecell) +
1434 					ARRAY_SIZE(phy_clocks) *
1435 					sizeof(struct clk_hw *),
1436 					GFP_KERNEL);
1437 	if (!dsi->clk_onecell)
1438 		return -ENOMEM;
1439 	dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
1440 
1441 	for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
1442 		struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
1443 		struct clk_init_data init;
1444 		int ret;
1445 
1446 		/* We just use core fixed factor clock ops for the PHY
1447 		 * clocks.  The clocks are actually gated by the
1448 		 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1449 		 * setting if we use the DDR/DDR2 clocks.  However,
1450 		 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1451 		 * setting both our parent DSI PLL's rate and this
1452 		 * clock's rate, so it knows if DDR/DDR2 are going to
1453 		 * be used and could enable the gates itself.
1454 		 */
1455 		fix->mult = 1;
1456 		fix->div = phy_clocks[i].div;
1457 		fix->hw.init = &init;
1458 
1459 		memset(&init, 0, sizeof(init));
1460 		init.parent_names = &parent_name;
1461 		init.num_parents = 1;
1462 		if (dsi->port == 1)
1463 			init.name = phy_clocks[i].dsi1_name;
1464 		else
1465 			init.name = phy_clocks[i].dsi0_name;
1466 		init.ops = &clk_fixed_factor_ops;
1467 
1468 		ret = devm_clk_hw_register(dev, &fix->hw);
1469 		if (ret)
1470 			return ret;
1471 
1472 		dsi->clk_onecell->hws[i] = &fix->hw;
1473 	}
1474 
1475 	return of_clk_add_hw_provider(dev->of_node,
1476 				      of_clk_hw_onecell_get,
1477 				      dsi->clk_onecell);
1478 }
1479 
1480 static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
1481 {
1482 	struct platform_device *pdev = to_platform_device(dev);
1483 	struct drm_device *drm = dev_get_drvdata(master);
1484 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1485 	struct vc4_dsi *dsi;
1486 	struct vc4_dsi_encoder *vc4_dsi_encoder;
1487 	const struct of_device_id *match;
1488 	dma_cap_mask_t dma_mask;
1489 	int ret;
1490 
1491 	dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
1492 	if (!dsi)
1493 		return -ENOMEM;
1494 
1495 	match = of_match_device(vc4_dsi_dt_match, dev);
1496 	if (!match)
1497 		return -ENODEV;
1498 
1499 	dsi->port = (uintptr_t)match->data;
1500 
1501 	vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
1502 				       GFP_KERNEL);
1503 	if (!vc4_dsi_encoder)
1504 		return -ENOMEM;
1505 	vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
1506 	vc4_dsi_encoder->dsi = dsi;
1507 	dsi->encoder = &vc4_dsi_encoder->base.base;
1508 
1509 	dsi->pdev = pdev;
1510 	dsi->regs = vc4_ioremap_regs(pdev, 0);
1511 	if (IS_ERR(dsi->regs))
1512 		return PTR_ERR(dsi->regs);
1513 
1514 	if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
1515 		dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
1516 			DSI_PORT_READ(ID), DSI_ID_VALUE);
1517 		return -ENODEV;
1518 	}
1519 
1520 	/* DSI1 has a broken AXI slave that doesn't respond to writes
1521 	 * from the ARM.  It does handle writes from the DMA engine,
1522 	 * so set up a channel for talking to it.
1523 	 */
1524 	if (dsi->port == 1) {
1525 		dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
1526 						      &dsi->reg_dma_paddr,
1527 						      GFP_KERNEL);
1528 		if (!dsi->reg_dma_mem) {
1529 			DRM_ERROR("Failed to get DMA memory\n");
1530 			return -ENOMEM;
1531 		}
1532 
1533 		dma_cap_zero(dma_mask);
1534 		dma_cap_set(DMA_MEMCPY, dma_mask);
1535 		dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
1536 		if (IS_ERR(dsi->reg_dma_chan)) {
1537 			ret = PTR_ERR(dsi->reg_dma_chan);
1538 			if (ret != -EPROBE_DEFER)
1539 				DRM_ERROR("Failed to get DMA channel: %d\n",
1540 					  ret);
1541 			return ret;
1542 		}
1543 
1544 		/* Get the physical address of the device's registers.  The
1545 		 * struct resource for the regs gives us the bus address
1546 		 * instead.
1547 		 */
1548 		dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
1549 							     0, NULL, NULL));
1550 	}
1551 
1552 	init_completion(&dsi->xfer_completion);
1553 	/* At startup enable error-reporting interrupts and nothing else. */
1554 	DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
1555 	/* Clear any existing interrupt state. */
1556 	DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
1557 
1558 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1559 			       vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
1560 	if (ret) {
1561 		if (ret != -EPROBE_DEFER)
1562 			dev_err(dev, "Failed to get interrupt: %d\n", ret);
1563 		return ret;
1564 	}
1565 
1566 	dsi->escape_clock = devm_clk_get(dev, "escape");
1567 	if (IS_ERR(dsi->escape_clock)) {
1568 		ret = PTR_ERR(dsi->escape_clock);
1569 		if (ret != -EPROBE_DEFER)
1570 			dev_err(dev, "Failed to get escape clock: %d\n", ret);
1571 		return ret;
1572 	}
1573 
1574 	dsi->pll_phy_clock = devm_clk_get(dev, "phy");
1575 	if (IS_ERR(dsi->pll_phy_clock)) {
1576 		ret = PTR_ERR(dsi->pll_phy_clock);
1577 		if (ret != -EPROBE_DEFER)
1578 			dev_err(dev, "Failed to get phy clock: %d\n", ret);
1579 		return ret;
1580 	}
1581 
1582 	dsi->pixel_clock = devm_clk_get(dev, "pixel");
1583 	if (IS_ERR(dsi->pixel_clock)) {
1584 		ret = PTR_ERR(dsi->pixel_clock);
1585 		if (ret != -EPROBE_DEFER)
1586 			dev_err(dev, "Failed to get pixel clock: %d\n", ret);
1587 		return ret;
1588 	}
1589 
1590 	/* The esc clock rate is supposed to always be 100Mhz. */
1591 	ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
1592 	if (ret) {
1593 		dev_err(dev, "Failed to set esc clock: %d\n", ret);
1594 		return ret;
1595 	}
1596 
1597 	ret = vc4_dsi_init_phy_clocks(dsi);
1598 	if (ret)
1599 		return ret;
1600 
1601 	if (dsi->port == 1)
1602 		vc4->dsi1 = dsi;
1603 
1604 	drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
1605 			 DRM_MODE_ENCODER_DSI, NULL);
1606 	drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
1607 
1608 	dsi->dsi_host.ops = &vc4_dsi_host_ops;
1609 	dsi->dsi_host.dev = dev;
1610 
1611 	mipi_dsi_host_register(&dsi->dsi_host);
1612 
1613 	dev_set_drvdata(dev, dsi);
1614 
1615 	pm_runtime_enable(dev);
1616 
1617 	return 0;
1618 }
1619 
1620 static void vc4_dsi_unbind(struct device *dev, struct device *master,
1621 			   void *data)
1622 {
1623 	struct drm_device *drm = dev_get_drvdata(master);
1624 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1625 	struct vc4_dsi *dsi = dev_get_drvdata(dev);
1626 
1627 	pm_runtime_disable(dev);
1628 
1629 	drm_bridge_remove(dsi->bridge);
1630 	vc4_dsi_encoder_destroy(dsi->encoder);
1631 
1632 	mipi_dsi_host_unregister(&dsi->dsi_host);
1633 
1634 	clk_disable_unprepare(dsi->pll_phy_clock);
1635 	clk_disable_unprepare(dsi->escape_clock);
1636 
1637 	if (dsi->port == 1)
1638 		vc4->dsi1 = NULL;
1639 }
1640 
1641 static const struct component_ops vc4_dsi_ops = {
1642 	.bind   = vc4_dsi_bind,
1643 	.unbind = vc4_dsi_unbind,
1644 };
1645 
1646 static int vc4_dsi_dev_probe(struct platform_device *pdev)
1647 {
1648 	return component_add(&pdev->dev, &vc4_dsi_ops);
1649 }
1650 
1651 static int vc4_dsi_dev_remove(struct platform_device *pdev)
1652 {
1653 	component_del(&pdev->dev, &vc4_dsi_ops);
1654 	return 0;
1655 }
1656 
1657 struct platform_driver vc4_dsi_driver = {
1658 	.probe = vc4_dsi_dev_probe,
1659 	.remove = vc4_dsi_dev_remove,
1660 	.driver = {
1661 		.name = "vc4_dsi",
1662 		.of_match_table = vc4_dsi_dt_match,
1663 	},
1664 };
1665