1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 #include <linux/reservation.h> 10 #include <drm/drmP.h> 11 #include <drm/drm_encoder.h> 12 #include <drm/drm_gem_cma_helper.h> 13 #include <drm/drm_atomic.h> 14 #include <drm/drm_syncobj.h> 15 16 #include "uapi/drm/vc4_drm.h" 17 18 /* Don't forget to update vc4_bo.c: bo_type_names[] when adding to 19 * this. 20 */ 21 enum vc4_kernel_bo_type { 22 /* Any kernel allocation (gem_create_object hook) before it 23 * gets another type set. 24 */ 25 VC4_BO_TYPE_KERNEL, 26 VC4_BO_TYPE_V3D, 27 VC4_BO_TYPE_V3D_SHADER, 28 VC4_BO_TYPE_DUMB, 29 VC4_BO_TYPE_BIN, 30 VC4_BO_TYPE_RCL, 31 VC4_BO_TYPE_BCL, 32 VC4_BO_TYPE_KERNEL_CACHE, 33 VC4_BO_TYPE_COUNT 34 }; 35 36 /* Performance monitor object. The perform lifetime is controlled by userspace 37 * using perfmon related ioctls. A perfmon can be attached to a submit_cl 38 * request, and when this is the case, HW perf counters will be activated just 39 * before the submit_cl is submitted to the GPU and disabled when the job is 40 * done. This way, only events related to a specific job will be counted. 41 */ 42 struct vc4_perfmon { 43 /* Tracks the number of users of the perfmon, when this counter reaches 44 * zero the perfmon is destroyed. 45 */ 46 refcount_t refcnt; 47 48 /* Number of counters activated in this perfmon instance 49 * (should be less than DRM_VC4_MAX_PERF_COUNTERS). 50 */ 51 u8 ncounters; 52 53 /* Events counted by the HW perf counters. */ 54 u8 events[DRM_VC4_MAX_PERF_COUNTERS]; 55 56 /* Storage for counter values. Counters are incremented by the HW 57 * perf counter values every time the perfmon is attached to a GPU job. 58 * This way, perfmon users don't have to retrieve the results after 59 * each job if they want to track events covering several submissions. 60 * Note that counter values can't be reset, but you can fake a reset by 61 * destroying the perfmon and creating a new one. 62 */ 63 u64 counters[0]; 64 }; 65 66 struct vc4_dev { 67 struct drm_device *dev; 68 69 struct vc4_hdmi *hdmi; 70 struct vc4_hvs *hvs; 71 struct vc4_v3d *v3d; 72 struct vc4_dpi *dpi; 73 struct vc4_dsi *dsi1; 74 struct vc4_vec *vec; 75 76 struct vc4_hang_state *hang_state; 77 78 /* The kernel-space BO cache. Tracks buffers that have been 79 * unreferenced by all other users (refcounts of 0!) but not 80 * yet freed, so we can do cheap allocations. 81 */ 82 struct vc4_bo_cache { 83 /* Array of list heads for entries in the BO cache, 84 * based on number of pages, so we can do O(1) lookups 85 * in the cache when allocating. 86 */ 87 struct list_head *size_list; 88 uint32_t size_list_size; 89 90 /* List of all BOs in the cache, ordered by age, so we 91 * can do O(1) lookups when trying to free old 92 * buffers. 93 */ 94 struct list_head time_list; 95 struct work_struct time_work; 96 struct timer_list time_timer; 97 } bo_cache; 98 99 u32 num_labels; 100 struct vc4_label { 101 const char *name; 102 u32 num_allocated; 103 u32 size_allocated; 104 } *bo_labels; 105 106 /* Protects bo_cache and bo_labels. */ 107 struct mutex bo_lock; 108 109 /* Purgeable BO pool. All BOs in this pool can have their memory 110 * reclaimed if the driver is unable to allocate new BOs. We also 111 * keep stats related to the purge mechanism here. 112 */ 113 struct { 114 struct list_head list; 115 unsigned int num; 116 size_t size; 117 unsigned int purged_num; 118 size_t purged_size; 119 struct mutex lock; 120 } purgeable; 121 122 uint64_t dma_fence_context; 123 124 /* Sequence number for the last job queued in bin_job_list. 125 * Starts at 0 (no jobs emitted). 126 */ 127 uint64_t emit_seqno; 128 129 /* Sequence number for the last completed job on the GPU. 130 * Starts at 0 (no jobs completed). 131 */ 132 uint64_t finished_seqno; 133 134 /* List of all struct vc4_exec_info for jobs to be executed in 135 * the binner. The first job in the list is the one currently 136 * programmed into ct0ca for execution. 137 */ 138 struct list_head bin_job_list; 139 140 /* List of all struct vc4_exec_info for jobs that have 141 * completed binning and are ready for rendering. The first 142 * job in the list is the one currently programmed into ct1ca 143 * for execution. 144 */ 145 struct list_head render_job_list; 146 147 /* List of the finished vc4_exec_infos waiting to be freed by 148 * job_done_work. 149 */ 150 struct list_head job_done_list; 151 /* Spinlock used to synchronize the job_list and seqno 152 * accesses between the IRQ handler and GEM ioctls. 153 */ 154 spinlock_t job_lock; 155 wait_queue_head_t job_wait_queue; 156 struct work_struct job_done_work; 157 158 /* Used to track the active perfmon if any. Access to this field is 159 * protected by job_lock. 160 */ 161 struct vc4_perfmon *active_perfmon; 162 163 /* List of struct vc4_seqno_cb for callbacks to be made from a 164 * workqueue when the given seqno is passed. 165 */ 166 struct list_head seqno_cb_list; 167 168 /* The memory used for storing binner tile alloc, tile state, 169 * and overflow memory allocations. This is freed when V3D 170 * powers down. 171 */ 172 struct vc4_bo *bin_bo; 173 174 /* Size of blocks allocated within bin_bo. */ 175 uint32_t bin_alloc_size; 176 177 /* Bitmask of the bin_alloc_size chunks in bin_bo that are 178 * used. 179 */ 180 uint32_t bin_alloc_used; 181 182 /* Bitmask of the current bin_alloc used for overflow memory. */ 183 uint32_t bin_alloc_overflow; 184 185 struct work_struct overflow_mem_work; 186 187 int power_refcount; 188 189 /* Mutex controlling the power refcount. */ 190 struct mutex power_lock; 191 192 struct { 193 struct timer_list timer; 194 struct work_struct reset_work; 195 } hangcheck; 196 197 struct semaphore async_modeset; 198 199 struct drm_modeset_lock ctm_state_lock; 200 struct drm_private_obj ctm_manager; 201 }; 202 203 static inline struct vc4_dev * 204 to_vc4_dev(struct drm_device *dev) 205 { 206 return (struct vc4_dev *)dev->dev_private; 207 } 208 209 struct vc4_bo { 210 struct drm_gem_cma_object base; 211 212 /* seqno of the last job to render using this BO. */ 213 uint64_t seqno; 214 215 /* seqno of the last job to use the RCL to write to this BO. 216 * 217 * Note that this doesn't include binner overflow memory 218 * writes. 219 */ 220 uint64_t write_seqno; 221 222 bool t_format; 223 224 /* List entry for the BO's position in either 225 * vc4_exec_info->unref_list or vc4_dev->bo_cache.time_list 226 */ 227 struct list_head unref_head; 228 229 /* Time in jiffies when the BO was put in vc4->bo_cache. */ 230 unsigned long free_time; 231 232 /* List entry for the BO's position in vc4_dev->bo_cache.size_list */ 233 struct list_head size_head; 234 235 /* Struct for shader validation state, if created by 236 * DRM_IOCTL_VC4_CREATE_SHADER_BO. 237 */ 238 struct vc4_validated_shader_info *validated_shader; 239 240 /* normally (resv == &_resv) except for imported bo's */ 241 struct reservation_object *resv; 242 struct reservation_object _resv; 243 244 /* One of enum vc4_kernel_bo_type, or VC4_BO_TYPE_COUNT + i 245 * for user-allocated labels. 246 */ 247 int label; 248 249 /* Count the number of active users. This is needed to determine 250 * whether we can move the BO to the purgeable list or not (when the BO 251 * is used by the GPU or the display engine we can't purge it). 252 */ 253 refcount_t usecnt; 254 255 /* Store purgeable/purged state here */ 256 u32 madv; 257 struct mutex madv_lock; 258 }; 259 260 static inline struct vc4_bo * 261 to_vc4_bo(struct drm_gem_object *bo) 262 { 263 return (struct vc4_bo *)bo; 264 } 265 266 struct vc4_fence { 267 struct dma_fence base; 268 struct drm_device *dev; 269 /* vc4 seqno for signaled() test */ 270 uint64_t seqno; 271 }; 272 273 static inline struct vc4_fence * 274 to_vc4_fence(struct dma_fence *fence) 275 { 276 return (struct vc4_fence *)fence; 277 } 278 279 struct vc4_seqno_cb { 280 struct work_struct work; 281 uint64_t seqno; 282 void (*func)(struct vc4_seqno_cb *cb); 283 }; 284 285 struct vc4_v3d { 286 struct vc4_dev *vc4; 287 struct platform_device *pdev; 288 void __iomem *regs; 289 struct clk *clk; 290 }; 291 292 struct vc4_hvs { 293 struct platform_device *pdev; 294 void __iomem *regs; 295 u32 __iomem *dlist; 296 297 /* Memory manager for CRTCs to allocate space in the display 298 * list. Units are dwords. 299 */ 300 struct drm_mm dlist_mm; 301 /* Memory manager for the LBM memory used by HVS scaling. */ 302 struct drm_mm lbm_mm; 303 spinlock_t mm_lock; 304 305 struct drm_mm_node mitchell_netravali_filter; 306 }; 307 308 struct vc4_plane { 309 struct drm_plane base; 310 }; 311 312 static inline struct vc4_plane * 313 to_vc4_plane(struct drm_plane *plane) 314 { 315 return (struct vc4_plane *)plane; 316 } 317 318 enum vc4_scaling_mode { 319 VC4_SCALING_NONE, 320 VC4_SCALING_TPZ, 321 VC4_SCALING_PPF, 322 }; 323 324 struct vc4_plane_state { 325 struct drm_plane_state base; 326 /* System memory copy of the display list for this element, computed 327 * at atomic_check time. 328 */ 329 u32 *dlist; 330 u32 dlist_size; /* Number of dwords allocated for the display list */ 331 u32 dlist_count; /* Number of used dwords in the display list. */ 332 333 /* Offset in the dlist to various words, for pageflip or 334 * cursor updates. 335 */ 336 u32 pos0_offset; 337 u32 pos2_offset; 338 u32 ptr0_offset; 339 340 /* Offset where the plane's dlist was last stored in the 341 * hardware at vc4_crtc_atomic_flush() time. 342 */ 343 u32 __iomem *hw_dlist; 344 345 /* Clipped coordinates of the plane on the display. */ 346 int crtc_x, crtc_y, crtc_w, crtc_h; 347 /* Clipped area being scanned from in the FB. */ 348 u32 src_x, src_y; 349 350 u32 src_w[2], src_h[2]; 351 352 /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */ 353 enum vc4_scaling_mode x_scaling[2], y_scaling[2]; 354 bool is_unity; 355 bool is_yuv; 356 357 /* Offset to start scanning out from the start of the plane's 358 * BO. 359 */ 360 u32 offsets[3]; 361 362 /* Our allocation in LBM for temporary storage during scaling. */ 363 struct drm_mm_node lbm; 364 365 /* Set when the plane has per-pixel alpha content or does not cover 366 * the entire screen. This is a hint to the CRTC that it might need 367 * to enable background color fill. 368 */ 369 bool needs_bg_fill; 370 }; 371 372 static inline struct vc4_plane_state * 373 to_vc4_plane_state(struct drm_plane_state *state) 374 { 375 return (struct vc4_plane_state *)state; 376 } 377 378 enum vc4_encoder_type { 379 VC4_ENCODER_TYPE_NONE, 380 VC4_ENCODER_TYPE_HDMI, 381 VC4_ENCODER_TYPE_VEC, 382 VC4_ENCODER_TYPE_DSI0, 383 VC4_ENCODER_TYPE_DSI1, 384 VC4_ENCODER_TYPE_SMI, 385 VC4_ENCODER_TYPE_DPI, 386 }; 387 388 struct vc4_encoder { 389 struct drm_encoder base; 390 enum vc4_encoder_type type; 391 u32 clock_select; 392 }; 393 394 static inline struct vc4_encoder * 395 to_vc4_encoder(struct drm_encoder *encoder) 396 { 397 return container_of(encoder, struct vc4_encoder, base); 398 } 399 400 struct vc4_crtc_data { 401 /* Which channel of the HVS this pixelvalve sources from. */ 402 int hvs_channel; 403 404 enum vc4_encoder_type encoder_types[4]; 405 }; 406 407 struct vc4_crtc { 408 struct drm_crtc base; 409 const struct vc4_crtc_data *data; 410 void __iomem *regs; 411 412 /* Timestamp at start of vblank irq - unaffected by lock delays. */ 413 ktime_t t_vblank; 414 415 /* Which HVS channel we're using for our CRTC. */ 416 int channel; 417 418 u8 lut_r[256]; 419 u8 lut_g[256]; 420 u8 lut_b[256]; 421 /* Size in pixels of the COB memory allocated to this CRTC. */ 422 u32 cob_size; 423 424 struct drm_pending_vblank_event *event; 425 }; 426 427 static inline struct vc4_crtc * 428 to_vc4_crtc(struct drm_crtc *crtc) 429 { 430 return (struct vc4_crtc *)crtc; 431 } 432 433 #define V3D_READ(offset) readl(vc4->v3d->regs + offset) 434 #define V3D_WRITE(offset, val) writel(val, vc4->v3d->regs + offset) 435 #define HVS_READ(offset) readl(vc4->hvs->regs + offset) 436 #define HVS_WRITE(offset, val) writel(val, vc4->hvs->regs + offset) 437 438 struct vc4_exec_info { 439 /* Sequence number for this bin/render job. */ 440 uint64_t seqno; 441 442 /* Latest write_seqno of any BO that binning depends on. */ 443 uint64_t bin_dep_seqno; 444 445 struct dma_fence *fence; 446 447 /* Last current addresses the hardware was processing when the 448 * hangcheck timer checked on us. 449 */ 450 uint32_t last_ct0ca, last_ct1ca; 451 452 /* Kernel-space copy of the ioctl arguments */ 453 struct drm_vc4_submit_cl *args; 454 455 /* This is the array of BOs that were looked up at the start of exec. 456 * Command validation will use indices into this array. 457 */ 458 struct drm_gem_cma_object **bo; 459 uint32_t bo_count; 460 461 /* List of BOs that are being written by the RCL. Other than 462 * the binner temporary storage, this is all the BOs written 463 * by the job. 464 */ 465 struct drm_gem_cma_object *rcl_write_bo[4]; 466 uint32_t rcl_write_bo_count; 467 468 /* Pointers for our position in vc4->job_list */ 469 struct list_head head; 470 471 /* List of other BOs used in the job that need to be released 472 * once the job is complete. 473 */ 474 struct list_head unref_list; 475 476 /* Current unvalidated indices into @bo loaded by the non-hardware 477 * VC4_PACKET_GEM_HANDLES. 478 */ 479 uint32_t bo_index[2]; 480 481 /* This is the BO where we store the validated command lists, shader 482 * records, and uniforms. 483 */ 484 struct drm_gem_cma_object *exec_bo; 485 486 /** 487 * This tracks the per-shader-record state (packet 64) that 488 * determines the length of the shader record and the offset 489 * it's expected to be found at. It gets read in from the 490 * command lists. 491 */ 492 struct vc4_shader_state { 493 uint32_t addr; 494 /* Maximum vertex index referenced by any primitive using this 495 * shader state. 496 */ 497 uint32_t max_index; 498 } *shader_state; 499 500 /** How many shader states the user declared they were using. */ 501 uint32_t shader_state_size; 502 /** How many shader state records the validator has seen. */ 503 uint32_t shader_state_count; 504 505 bool found_tile_binning_mode_config_packet; 506 bool found_start_tile_binning_packet; 507 bool found_increment_semaphore_packet; 508 bool found_flush; 509 uint8_t bin_tiles_x, bin_tiles_y; 510 /* Physical address of the start of the tile alloc array 511 * (where each tile's binned CL will start) 512 */ 513 uint32_t tile_alloc_offset; 514 /* Bitmask of which binner slots are freed when this job completes. */ 515 uint32_t bin_slots; 516 517 /** 518 * Computed addresses pointing into exec_bo where we start the 519 * bin thread (ct0) and render thread (ct1). 520 */ 521 uint32_t ct0ca, ct0ea; 522 uint32_t ct1ca, ct1ea; 523 524 /* Pointer to the unvalidated bin CL (if present). */ 525 void *bin_u; 526 527 /* Pointers to the shader recs. These paddr gets incremented as CL 528 * packets are relocated in validate_gl_shader_state, and the vaddrs 529 * (u and v) get incremented and size decremented as the shader recs 530 * themselves are validated. 531 */ 532 void *shader_rec_u; 533 void *shader_rec_v; 534 uint32_t shader_rec_p; 535 uint32_t shader_rec_size; 536 537 /* Pointers to the uniform data. These pointers are incremented, and 538 * size decremented, as each batch of uniforms is uploaded. 539 */ 540 void *uniforms_u; 541 void *uniforms_v; 542 uint32_t uniforms_p; 543 uint32_t uniforms_size; 544 545 /* Pointer to a performance monitor object if the user requested it, 546 * NULL otherwise. 547 */ 548 struct vc4_perfmon *perfmon; 549 }; 550 551 /* Per-open file private data. Any driver-specific resource that has to be 552 * released when the DRM file is closed should be placed here. 553 */ 554 struct vc4_file { 555 struct { 556 struct idr idr; 557 struct mutex lock; 558 } perfmon; 559 }; 560 561 static inline struct vc4_exec_info * 562 vc4_first_bin_job(struct vc4_dev *vc4) 563 { 564 return list_first_entry_or_null(&vc4->bin_job_list, 565 struct vc4_exec_info, head); 566 } 567 568 static inline struct vc4_exec_info * 569 vc4_first_render_job(struct vc4_dev *vc4) 570 { 571 return list_first_entry_or_null(&vc4->render_job_list, 572 struct vc4_exec_info, head); 573 } 574 575 static inline struct vc4_exec_info * 576 vc4_last_render_job(struct vc4_dev *vc4) 577 { 578 if (list_empty(&vc4->render_job_list)) 579 return NULL; 580 return list_last_entry(&vc4->render_job_list, 581 struct vc4_exec_info, head); 582 } 583 584 /** 585 * struct vc4_texture_sample_info - saves the offsets into the UBO for texture 586 * setup parameters. 587 * 588 * This will be used at draw time to relocate the reference to the texture 589 * contents in p0, and validate that the offset combined with 590 * width/height/stride/etc. from p1 and p2/p3 doesn't sample outside the BO. 591 * Note that the hardware treats unprovided config parameters as 0, so not all 592 * of them need to be set up for every texure sample, and we'll store ~0 as 593 * the offset to mark the unused ones. 594 * 595 * See the VC4 3D architecture guide page 41 ("Texture and Memory Lookup Unit 596 * Setup") for definitions of the texture parameters. 597 */ 598 struct vc4_texture_sample_info { 599 bool is_direct; 600 uint32_t p_offset[4]; 601 }; 602 603 /** 604 * struct vc4_validated_shader_info - information about validated shaders that 605 * needs to be used from command list validation. 606 * 607 * For a given shader, each time a shader state record references it, we need 608 * to verify that the shader doesn't read more uniforms than the shader state 609 * record's uniform BO pointer can provide, and we need to apply relocations 610 * and validate the shader state record's uniforms that define the texture 611 * samples. 612 */ 613 struct vc4_validated_shader_info { 614 uint32_t uniforms_size; 615 uint32_t uniforms_src_size; 616 uint32_t num_texture_samples; 617 struct vc4_texture_sample_info *texture_samples; 618 619 uint32_t num_uniform_addr_offsets; 620 uint32_t *uniform_addr_offsets; 621 622 bool is_threaded; 623 }; 624 625 /** 626 * _wait_for - magic (register) wait macro 627 * 628 * Does the right thing for modeset paths when run under kdgb or similar atomic 629 * contexts. Note that it's important that we check the condition again after 630 * having timed out, since the timeout could be due to preemption or similar and 631 * we've never had a chance to check the condition before the timeout. 632 */ 633 #define _wait_for(COND, MS, W) ({ \ 634 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS) + 1; \ 635 int ret__ = 0; \ 636 while (!(COND)) { \ 637 if (time_after(jiffies, timeout__)) { \ 638 if (!(COND)) \ 639 ret__ = -ETIMEDOUT; \ 640 break; \ 641 } \ 642 if (W && drm_can_sleep()) { \ 643 msleep(W); \ 644 } else { \ 645 cpu_relax(); \ 646 } \ 647 } \ 648 ret__; \ 649 }) 650 651 #define wait_for(COND, MS) _wait_for(COND, MS, 1) 652 653 /* vc4_bo.c */ 654 struct drm_gem_object *vc4_create_object(struct drm_device *dev, size_t size); 655 void vc4_free_object(struct drm_gem_object *gem_obj); 656 struct vc4_bo *vc4_bo_create(struct drm_device *dev, size_t size, 657 bool from_cache, enum vc4_kernel_bo_type type); 658 int vc4_dumb_create(struct drm_file *file_priv, 659 struct drm_device *dev, 660 struct drm_mode_create_dumb *args); 661 struct dma_buf *vc4_prime_export(struct drm_device *dev, 662 struct drm_gem_object *obj, int flags); 663 int vc4_create_bo_ioctl(struct drm_device *dev, void *data, 664 struct drm_file *file_priv); 665 int vc4_create_shader_bo_ioctl(struct drm_device *dev, void *data, 666 struct drm_file *file_priv); 667 int vc4_mmap_bo_ioctl(struct drm_device *dev, void *data, 668 struct drm_file *file_priv); 669 int vc4_set_tiling_ioctl(struct drm_device *dev, void *data, 670 struct drm_file *file_priv); 671 int vc4_get_tiling_ioctl(struct drm_device *dev, void *data, 672 struct drm_file *file_priv); 673 int vc4_get_hang_state_ioctl(struct drm_device *dev, void *data, 674 struct drm_file *file_priv); 675 int vc4_label_bo_ioctl(struct drm_device *dev, void *data, 676 struct drm_file *file_priv); 677 int vc4_fault(struct vm_fault *vmf); 678 int vc4_mmap(struct file *filp, struct vm_area_struct *vma); 679 struct reservation_object *vc4_prime_res_obj(struct drm_gem_object *obj); 680 int vc4_prime_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma); 681 struct drm_gem_object *vc4_prime_import_sg_table(struct drm_device *dev, 682 struct dma_buf_attachment *attach, 683 struct sg_table *sgt); 684 void *vc4_prime_vmap(struct drm_gem_object *obj); 685 int vc4_bo_cache_init(struct drm_device *dev); 686 void vc4_bo_cache_destroy(struct drm_device *dev); 687 int vc4_bo_stats_debugfs(struct seq_file *m, void *arg); 688 int vc4_bo_inc_usecnt(struct vc4_bo *bo); 689 void vc4_bo_dec_usecnt(struct vc4_bo *bo); 690 void vc4_bo_add_to_purgeable_pool(struct vc4_bo *bo); 691 void vc4_bo_remove_from_purgeable_pool(struct vc4_bo *bo); 692 693 /* vc4_crtc.c */ 694 extern struct platform_driver vc4_crtc_driver; 695 int vc4_crtc_debugfs_regs(struct seq_file *m, void *arg); 696 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 697 bool in_vblank_irq, int *vpos, int *hpos, 698 ktime_t *stime, ktime_t *etime, 699 const struct drm_display_mode *mode); 700 701 /* vc4_debugfs.c */ 702 int vc4_debugfs_init(struct drm_minor *minor); 703 704 /* vc4_drv.c */ 705 void __iomem *vc4_ioremap_regs(struct platform_device *dev, int index); 706 707 /* vc4_dpi.c */ 708 extern struct platform_driver vc4_dpi_driver; 709 int vc4_dpi_debugfs_regs(struct seq_file *m, void *unused); 710 711 /* vc4_dsi.c */ 712 extern struct platform_driver vc4_dsi_driver; 713 int vc4_dsi_debugfs_regs(struct seq_file *m, void *unused); 714 715 /* vc4_fence.c */ 716 extern const struct dma_fence_ops vc4_fence_ops; 717 718 /* vc4_gem.c */ 719 void vc4_gem_init(struct drm_device *dev); 720 void vc4_gem_destroy(struct drm_device *dev); 721 int vc4_submit_cl_ioctl(struct drm_device *dev, void *data, 722 struct drm_file *file_priv); 723 int vc4_wait_seqno_ioctl(struct drm_device *dev, void *data, 724 struct drm_file *file_priv); 725 int vc4_wait_bo_ioctl(struct drm_device *dev, void *data, 726 struct drm_file *file_priv); 727 void vc4_submit_next_bin_job(struct drm_device *dev); 728 void vc4_submit_next_render_job(struct drm_device *dev); 729 void vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec); 730 int vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, 731 uint64_t timeout_ns, bool interruptible); 732 void vc4_job_handle_completed(struct vc4_dev *vc4); 733 int vc4_queue_seqno_cb(struct drm_device *dev, 734 struct vc4_seqno_cb *cb, uint64_t seqno, 735 void (*func)(struct vc4_seqno_cb *cb)); 736 int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data, 737 struct drm_file *file_priv); 738 739 /* vc4_hdmi.c */ 740 extern struct platform_driver vc4_hdmi_driver; 741 int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused); 742 743 /* vc4_vec.c */ 744 extern struct platform_driver vc4_vec_driver; 745 int vc4_vec_debugfs_regs(struct seq_file *m, void *unused); 746 747 /* vc4_irq.c */ 748 irqreturn_t vc4_irq(int irq, void *arg); 749 void vc4_irq_preinstall(struct drm_device *dev); 750 int vc4_irq_postinstall(struct drm_device *dev); 751 void vc4_irq_uninstall(struct drm_device *dev); 752 void vc4_irq_reset(struct drm_device *dev); 753 754 /* vc4_hvs.c */ 755 extern struct platform_driver vc4_hvs_driver; 756 void vc4_hvs_dump_state(struct drm_device *dev); 757 int vc4_hvs_debugfs_regs(struct seq_file *m, void *unused); 758 759 /* vc4_kms.c */ 760 int vc4_kms_load(struct drm_device *dev); 761 762 /* vc4_plane.c */ 763 struct drm_plane *vc4_plane_init(struct drm_device *dev, 764 enum drm_plane_type type); 765 u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist); 766 u32 vc4_plane_dlist_size(const struct drm_plane_state *state); 767 void vc4_plane_async_set_fb(struct drm_plane *plane, 768 struct drm_framebuffer *fb); 769 770 /* vc4_v3d.c */ 771 extern struct platform_driver vc4_v3d_driver; 772 int vc4_v3d_debugfs_ident(struct seq_file *m, void *unused); 773 int vc4_v3d_debugfs_regs(struct seq_file *m, void *unused); 774 int vc4_v3d_get_bin_slot(struct vc4_dev *vc4); 775 776 /* vc4_validate.c */ 777 int 778 vc4_validate_bin_cl(struct drm_device *dev, 779 void *validated, 780 void *unvalidated, 781 struct vc4_exec_info *exec); 782 783 int 784 vc4_validate_shader_recs(struct drm_device *dev, struct vc4_exec_info *exec); 785 786 struct drm_gem_cma_object *vc4_use_bo(struct vc4_exec_info *exec, 787 uint32_t hindex); 788 789 int vc4_get_rcl(struct drm_device *dev, struct vc4_exec_info *exec); 790 791 bool vc4_check_tex_size(struct vc4_exec_info *exec, 792 struct drm_gem_cma_object *fbo, 793 uint32_t offset, uint8_t tiling_format, 794 uint32_t width, uint32_t height, uint8_t cpp); 795 796 /* vc4_validate_shader.c */ 797 struct vc4_validated_shader_info * 798 vc4_validate_shader(struct drm_gem_cma_object *shader_obj); 799 800 /* vc4_perfmon.c */ 801 void vc4_perfmon_get(struct vc4_perfmon *perfmon); 802 void vc4_perfmon_put(struct vc4_perfmon *perfmon); 803 void vc4_perfmon_start(struct vc4_dev *vc4, struct vc4_perfmon *perfmon); 804 void vc4_perfmon_stop(struct vc4_dev *vc4, struct vc4_perfmon *perfmon, 805 bool capture); 806 struct vc4_perfmon *vc4_perfmon_find(struct vc4_file *vc4file, int id); 807 void vc4_perfmon_open_file(struct vc4_file *vc4file); 808 void vc4_perfmon_close_file(struct vc4_file *vc4file); 809 int vc4_perfmon_create_ioctl(struct drm_device *dev, void *data, 810 struct drm_file *file_priv); 811 int vc4_perfmon_destroy_ioctl(struct drm_device *dev, void *data, 812 struct drm_file *file_priv); 813 int vc4_perfmon_get_values_ioctl(struct drm_device *dev, void *data, 814 struct drm_file *file_priv); 815