xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision fbb6b31a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48 
49 #define HVS_FIFO_LATENCY_PIX	6
50 
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53 
54 static const struct debugfs_reg32 crtc_regs[] = {
55 	VC4_REG32(PV_CONTROL),
56 	VC4_REG32(PV_V_CONTROL),
57 	VC4_REG32(PV_VSYNCD_EVEN),
58 	VC4_REG32(PV_HORZA),
59 	VC4_REG32(PV_HORZB),
60 	VC4_REG32(PV_VERTA),
61 	VC4_REG32(PV_VERTB),
62 	VC4_REG32(PV_VERTA_EVEN),
63 	VC4_REG32(PV_VERTB_EVEN),
64 	VC4_REG32(PV_INTEN),
65 	VC4_REG32(PV_INTSTAT),
66 	VC4_REG32(PV_STAT),
67 	VC4_REG32(PV_HACT_ACT),
68 };
69 
70 static unsigned int
71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
74 	/* Top/base are supposed to be 4-pixel aligned, but the
75 	 * Raspberry Pi firmware fills the low bits (which are
76 	 * presumably ignored).
77 	 */
78 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
79 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
80 
81 	return top - base + 4;
82 }
83 
84 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
85 					  bool in_vblank_irq,
86 					  int *vpos, int *hpos,
87 					  ktime_t *stime, ktime_t *etime,
88 					  const struct drm_display_mode *mode)
89 {
90 	struct drm_device *dev = crtc->dev;
91 	struct vc4_dev *vc4 = to_vc4_dev(dev);
92 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
93 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
94 	unsigned int cob_size;
95 	u32 val;
96 	int fifo_lines;
97 	int vblank_lines;
98 	bool ret = false;
99 
100 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
101 
102 	/* Get optional system timestamp before query. */
103 	if (stime)
104 		*stime = ktime_get();
105 
106 	/*
107 	 * Read vertical scanline which is currently composed for our
108 	 * pixelvalve by the HVS, and also the scaler status.
109 	 */
110 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
111 
112 	/* Get optional system timestamp after query. */
113 	if (etime)
114 		*etime = ktime_get();
115 
116 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
117 
118 	/* Vertical position of hvs composed scanline. */
119 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120 	*hpos = 0;
121 
122 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123 		*vpos /= 2;
124 
125 		/* Use hpos to correct for field offset in interlaced mode. */
126 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
127 			*hpos += mode->crtc_htotal / 2;
128 	}
129 
130 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
131 	/* This is the offset we need for translating hvs -> pv scanout pos. */
132 	fifo_lines = cob_size / mode->crtc_hdisplay;
133 
134 	if (fifo_lines > 0)
135 		ret = true;
136 
137 	/* HVS more than fifo_lines into frame for compositing? */
138 	if (*vpos > fifo_lines) {
139 		/*
140 		 * We are in active scanout and can get some meaningful results
141 		 * from HVS. The actual PV scanout can not trail behind more
142 		 * than fifo_lines as that is the fifo's capacity. Assume that
143 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
144 		 * refilling the fifo and PV consuming from the fifo, ie.
145 		 * whenever the PV consumes and frees up a scanline in the
146 		 * fifo, the HVS will immediately refill it, therefore
147 		 * incrementing vpos. Therefore we choose HVS read position -
148 		 * fifo size in scanlines as a estimate of the real scanout
149 		 * position of the PV.
150 		 */
151 		*vpos -= fifo_lines + 1;
152 
153 		return ret;
154 	}
155 
156 	/*
157 	 * Less: This happens when we are in vblank and the HVS, after getting
158 	 * the VSTART restart signal from the PV, just started refilling its
159 	 * fifo with new lines from the top-most lines of the new framebuffers.
160 	 * The PV does not scan out in vblank, so does not remove lines from
161 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
162 	 * We can't get meaningful readings wrt. scanline position of the PV
163 	 * and need to make things up in a approximative but consistent way.
164 	 */
165 	vblank_lines = mode->vtotal - mode->vdisplay;
166 
167 	if (in_vblank_irq) {
168 		/*
169 		 * Assume the irq handler got called close to first
170 		 * line of vblank, so PV has about a full vblank
171 		 * scanlines to go, and as a base timestamp use the
172 		 * one taken at entry into vblank irq handler, so it
173 		 * is not affected by random delays due to lock
174 		 * contention on event_lock or vblank_time lock in
175 		 * the core.
176 		 */
177 		*vpos = -vblank_lines;
178 
179 		if (stime)
180 			*stime = vc4_crtc->t_vblank;
181 		if (etime)
182 			*etime = vc4_crtc->t_vblank;
183 
184 		/*
185 		 * If the HVS fifo is not yet full then we know for certain
186 		 * we are at the very beginning of vblank, as the hvs just
187 		 * started refilling, and the stime and etime timestamps
188 		 * truly correspond to start of vblank.
189 		 *
190 		 * Unfortunately there's no way to report this to upper levels
191 		 * and make it more useful.
192 		 */
193 	} else {
194 		/*
195 		 * No clue where we are inside vblank. Return a vpos of zero,
196 		 * which will cause calling code to just return the etime
197 		 * timestamp uncorrected. At least this is no worse than the
198 		 * standard fallback.
199 		 */
200 		*vpos = 0;
201 	}
202 
203 	return ret;
204 }
205 
206 void vc4_crtc_destroy(struct drm_crtc *crtc)
207 {
208 	drm_crtc_cleanup(crtc);
209 }
210 
211 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
212 {
213 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
214 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
215 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
216 	u32 fifo_len_bytes = pv_data->fifo_depth;
217 
218 	/*
219 	 * Pixels are pulled from the HVS if the number of bytes is
220 	 * lower than the FIFO full level.
221 	 *
222 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
223 	 * need to convert those 6 pixels in bytes, depending on the
224 	 * format, and then subtract that from the length of the FIFO
225 	 * to make sure we never end up in a situation where the FIFO
226 	 * is full.
227 	 */
228 	switch (format) {
229 	case PV_CONTROL_FORMAT_DSIV_16:
230 	case PV_CONTROL_FORMAT_DSIC_16:
231 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
232 	case PV_CONTROL_FORMAT_DSIV_18:
233 		return fifo_len_bytes - 14;
234 	case PV_CONTROL_FORMAT_24:
235 	case PV_CONTROL_FORMAT_DSIV_24:
236 	default:
237 		/*
238 		 * For some reason, the pixelvalve4 doesn't work with
239 		 * the usual formula and will only work with 32.
240 		 */
241 		if (crtc_data->hvs_output == 5)
242 			return 32;
243 
244 		/*
245 		 * It looks like in some situations, we will overflow
246 		 * the PixelValve FIFO (with the bit 10 of PV stat being
247 		 * set) and stall the HVS / PV, eventually resulting in
248 		 * a page flip timeout.
249 		 *
250 		 * Displaying the video overlay during a playback with
251 		 * Kodi on an RPi3 seems to be a great solution with a
252 		 * failure rate around 50%.
253 		 *
254 		 * Removing 1 from the FIFO full level however
255 		 * seems to completely remove that issue.
256 		 */
257 		if (!vc4->hvs->hvs5)
258 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
259 
260 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
261 	}
262 }
263 
264 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
265 					     u32 format)
266 {
267 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
268 	u32 ret = 0;
269 
270 	ret |= VC4_SET_FIELD((level >> 6),
271 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
272 
273 	return ret | VC4_SET_FIELD(level & 0x3f,
274 				   PV_CONTROL_FIFO_LEVEL);
275 }
276 
277 /*
278  * Returns the encoder attached to the CRTC.
279  *
280  * VC4 can only scan out to one encoder at a time, while the DRM core
281  * allows drivers to push pixels to more than one encoder from the
282  * same CRTC.
283  */
284 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
285 					 struct drm_crtc_state *state)
286 {
287 	struct drm_encoder *encoder;
288 
289 	WARN_ON(hweight32(state->encoder_mask) > 1);
290 
291 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
292 		return encoder;
293 
294 	return NULL;
295 }
296 
297 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
298 {
299 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
300 
301 	/* The PV needs to be disabled before it can be flushed */
302 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
303 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
304 }
305 
306 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
307 			       struct drm_atomic_state *state)
308 {
309 	struct drm_device *dev = crtc->dev;
310 	struct vc4_dev *vc4 = to_vc4_dev(dev);
311 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
312 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
313 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
314 	struct drm_crtc_state *crtc_state = crtc->state;
315 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
316 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
317 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
318 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
319 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
320 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
321 	u8 ppc = pv_data->pixels_per_clock;
322 	bool debug_dump_regs = false;
323 
324 	if (debug_dump_regs) {
325 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
326 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
327 			 drm_crtc_index(crtc));
328 		drm_print_regset32(&p, &vc4_crtc->regset);
329 	}
330 
331 	vc4_crtc_pixelvalve_reset(crtc);
332 
333 	CRTC_WRITE(PV_HORZA,
334 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
335 				 PV_HORZA_HBP) |
336 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
337 				 PV_HORZA_HSYNC));
338 
339 	CRTC_WRITE(PV_HORZB,
340 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
341 				 PV_HORZB_HFP) |
342 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
343 				 PV_HORZB_HACTIVE));
344 
345 	CRTC_WRITE(PV_VERTA,
346 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
347 				 PV_VERTA_VBP) |
348 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
349 				 PV_VERTA_VSYNC));
350 	CRTC_WRITE(PV_VERTB,
351 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
352 				 PV_VERTB_VFP) |
353 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
354 
355 	if (interlace) {
356 		CRTC_WRITE(PV_VERTA_EVEN,
357 			   VC4_SET_FIELD(mode->crtc_vtotal -
358 					 mode->crtc_vsync_end - 1,
359 					 PV_VERTA_VBP) |
360 			   VC4_SET_FIELD(mode->crtc_vsync_end -
361 					 mode->crtc_vsync_start,
362 					 PV_VERTA_VSYNC));
363 		CRTC_WRITE(PV_VERTB_EVEN,
364 			   VC4_SET_FIELD(mode->crtc_vsync_start -
365 					 mode->crtc_vdisplay,
366 					 PV_VERTB_VFP) |
367 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
368 
369 		/* We set up first field even mode for HDMI.  VEC's
370 		 * NTSC mode would want first field odd instead, once
371 		 * we support it (to do so, set ODD_FIRST and put the
372 		 * delay in VSYNCD_EVEN instead).
373 		 */
374 		CRTC_WRITE(PV_V_CONTROL,
375 			   PV_VCONTROL_CONTINUOUS |
376 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
377 			   PV_VCONTROL_INTERLACE |
378 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
379 					 PV_VCONTROL_ODD_DELAY));
380 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
381 	} else {
382 		CRTC_WRITE(PV_V_CONTROL,
383 			   PV_VCONTROL_CONTINUOUS |
384 			   (is_dsi ? PV_VCONTROL_DSI : 0));
385 	}
386 
387 	if (is_dsi)
388 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
389 
390 	if (vc4->hvs->hvs5)
391 		CRTC_WRITE(PV_MUX_CFG,
392 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
393 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
394 
395 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
396 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
397 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
398 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
399 		   PV_CONTROL_CLR_AT_START |
400 		   PV_CONTROL_TRIGGER_UNDERFLOW |
401 		   PV_CONTROL_WAIT_HSTART |
402 		   VC4_SET_FIELD(vc4_encoder->clock_select,
403 				 PV_CONTROL_CLK_SELECT));
404 
405 	if (debug_dump_regs) {
406 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
407 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
408 			 drm_crtc_index(crtc));
409 		drm_print_regset32(&p, &vc4_crtc->regset);
410 	}
411 }
412 
413 static void require_hvs_enabled(struct drm_device *dev)
414 {
415 	struct vc4_dev *vc4 = to_vc4_dev(dev);
416 
417 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
418 		     SCALER_DISPCTRL_ENABLE);
419 }
420 
421 static int vc4_crtc_disable(struct drm_crtc *crtc,
422 			    struct drm_encoder *encoder,
423 			    struct drm_atomic_state *state,
424 			    unsigned int channel)
425 {
426 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
427 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
428 	struct drm_device *dev = crtc->dev;
429 	int ret;
430 
431 	CRTC_WRITE(PV_V_CONTROL,
432 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
433 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
434 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
435 
436 	/*
437 	 * This delay is needed to avoid to get a pixel stuck in an
438 	 * unflushable FIFO between the pixelvalve and the HDMI
439 	 * controllers on the BCM2711.
440 	 *
441 	 * Timing is fairly sensitive here, so mdelay is the safest
442 	 * approach.
443 	 *
444 	 * If it was to be reworked, the stuck pixel happens on a
445 	 * BCM2711 when changing mode with a good probability, so a
446 	 * script that changes mode on a regular basis should trigger
447 	 * the bug after less than 10 attempts. It manifests itself with
448 	 * every pixels being shifted by one to the right, and thus the
449 	 * last pixel of a line actually being displayed as the first
450 	 * pixel on the next line.
451 	 */
452 	mdelay(20);
453 
454 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
455 		vc4_encoder->post_crtc_disable(encoder, state);
456 
457 	vc4_crtc_pixelvalve_reset(crtc);
458 	vc4_hvs_stop_channel(dev, channel);
459 
460 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
461 		vc4_encoder->post_crtc_powerdown(encoder, state);
462 
463 	return 0;
464 }
465 
466 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
467 							enum vc4_encoder_type type)
468 {
469 	struct drm_encoder *encoder;
470 
471 	drm_for_each_encoder(encoder, crtc->dev) {
472 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
473 
474 		if (vc4_encoder->type == type)
475 			return encoder;
476 	}
477 
478 	return NULL;
479 }
480 
481 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
482 {
483 	struct drm_device *drm = crtc->dev;
484 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
485 	enum vc4_encoder_type encoder_type;
486 	const struct vc4_pv_data *pv_data;
487 	struct drm_encoder *encoder;
488 	struct vc4_hdmi *vc4_hdmi;
489 	unsigned encoder_sel;
490 	int channel;
491 	int ret;
492 
493 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
494 				      "brcm,bcm2711-pixelvalve2") ||
495 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
496 				      "brcm,bcm2711-pixelvalve4")))
497 		return 0;
498 
499 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
500 		return 0;
501 
502 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
503 		return 0;
504 
505 	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
506 	if (channel < 0)
507 		return 0;
508 
509 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
510 	if (WARN_ON(encoder_sel != 0))
511 		return 0;
512 
513 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
514 	encoder_type = pv_data->encoder_types[encoder_sel];
515 	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
516 	if (WARN_ON(!encoder))
517 		return 0;
518 
519 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
520 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
521 	if (ret)
522 		return ret;
523 
524 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
525 	if (ret)
526 		return ret;
527 
528 	/*
529 	 * post_crtc_powerdown will have called pm_runtime_put, so we
530 	 * don't need it here otherwise we'll get the reference counting
531 	 * wrong.
532 	 */
533 
534 	return 0;
535 }
536 
537 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
538 				    struct drm_atomic_state *state)
539 {
540 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
541 									 crtc);
542 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
543 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
544 	struct drm_device *dev = crtc->dev;
545 
546 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
547 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
548 
549 	require_hvs_enabled(dev);
550 
551 	/* Disable vblank irq handling before crtc is disabled. */
552 	drm_crtc_vblank_off(crtc);
553 
554 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
555 
556 	/*
557 	 * Make sure we issue a vblank event after disabling the CRTC if
558 	 * someone was waiting it.
559 	 */
560 	if (crtc->state->event) {
561 		unsigned long flags;
562 
563 		spin_lock_irqsave(&dev->event_lock, flags);
564 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
565 		crtc->state->event = NULL;
566 		spin_unlock_irqrestore(&dev->event_lock, flags);
567 	}
568 }
569 
570 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
571 				   struct drm_atomic_state *state)
572 {
573 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
574 									 crtc);
575 	struct drm_device *dev = crtc->dev;
576 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
577 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
578 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
579 
580 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
581 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
582 
583 	require_hvs_enabled(dev);
584 
585 	/* Enable vblank irq handling before crtc is started otherwise
586 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
587 	 */
588 	drm_crtc_vblank_on(crtc);
589 
590 	vc4_hvs_atomic_enable(crtc, state);
591 
592 	if (vc4_encoder->pre_crtc_configure)
593 		vc4_encoder->pre_crtc_configure(encoder, state);
594 
595 	vc4_crtc_config_pv(crtc, encoder, state);
596 
597 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
598 
599 	if (vc4_encoder->pre_crtc_enable)
600 		vc4_encoder->pre_crtc_enable(encoder, state);
601 
602 	/* When feeding the transposer block the pixelvalve is unneeded and
603 	 * should not be enabled.
604 	 */
605 	CRTC_WRITE(PV_V_CONTROL,
606 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
607 
608 	if (vc4_encoder->post_crtc_enable)
609 		vc4_encoder->post_crtc_enable(encoder, state);
610 }
611 
612 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
613 						const struct drm_display_mode *mode)
614 {
615 	/* Do not allow doublescan modes from user space */
616 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
617 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
618 			      crtc->base.id);
619 		return MODE_NO_DBLESCAN;
620 	}
621 
622 	return MODE_OK;
623 }
624 
625 void vc4_crtc_get_margins(struct drm_crtc_state *state,
626 			  unsigned int *left, unsigned int *right,
627 			  unsigned int *top, unsigned int *bottom)
628 {
629 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
630 	struct drm_connector_state *conn_state;
631 	struct drm_connector *conn;
632 	int i;
633 
634 	*left = vc4_state->margins.left;
635 	*right = vc4_state->margins.right;
636 	*top = vc4_state->margins.top;
637 	*bottom = vc4_state->margins.bottom;
638 
639 	/* We have to interate over all new connector states because
640 	 * vc4_crtc_get_margins() might be called before
641 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
642 	 * might be outdated.
643 	 */
644 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
645 		if (conn_state->crtc != state->crtc)
646 			continue;
647 
648 		*left = conn_state->tv.margins.left;
649 		*right = conn_state->tv.margins.right;
650 		*top = conn_state->tv.margins.top;
651 		*bottom = conn_state->tv.margins.bottom;
652 		break;
653 	}
654 }
655 
656 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
657 				 struct drm_atomic_state *state)
658 {
659 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
660 									  crtc);
661 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
662 	struct drm_connector *conn;
663 	struct drm_connector_state *conn_state;
664 	struct drm_encoder *encoder;
665 	int ret, i;
666 
667 	ret = vc4_hvs_atomic_check(crtc, state);
668 	if (ret)
669 		return ret;
670 
671 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
672 	if (encoder) {
673 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
674 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
675 
676 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
677 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
678 						  mode->clock * 9 / 10) * 1000;
679 		} else {
680 			vc4_state->hvs_load = mode->clock * 1000;
681 		}
682 	}
683 
684 	for_each_new_connector_in_state(state, conn, conn_state,
685 					i) {
686 		if (conn_state->crtc != crtc)
687 			continue;
688 
689 		vc4_state->margins.left = conn_state->tv.margins.left;
690 		vc4_state->margins.right = conn_state->tv.margins.right;
691 		vc4_state->margins.top = conn_state->tv.margins.top;
692 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
693 		break;
694 	}
695 
696 	return 0;
697 }
698 
699 static int vc4_enable_vblank(struct drm_crtc *crtc)
700 {
701 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
702 
703 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
704 
705 	return 0;
706 }
707 
708 static void vc4_disable_vblank(struct drm_crtc *crtc)
709 {
710 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
711 
712 	CRTC_WRITE(PV_INTEN, 0);
713 }
714 
715 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
716 {
717 	struct drm_crtc *crtc = &vc4_crtc->base;
718 	struct drm_device *dev = crtc->dev;
719 	struct vc4_dev *vc4 = to_vc4_dev(dev);
720 	u32 chan = vc4_crtc->current_hvs_channel;
721 	unsigned long flags;
722 
723 	spin_lock_irqsave(&dev->event_lock, flags);
724 	spin_lock(&vc4_crtc->irq_lock);
725 	if (vc4_crtc->event &&
726 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
727 	     vc4_crtc->feeds_txp)) {
728 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
729 		vc4_crtc->event = NULL;
730 		drm_crtc_vblank_put(crtc);
731 
732 		/* Wait for the page flip to unmask the underrun to ensure that
733 		 * the display list was updated by the hardware. Before that
734 		 * happens, the HVS will be using the previous display list with
735 		 * the CRTC and encoder already reconfigured, leading to
736 		 * underruns. This can be seen when reconfiguring the CRTC.
737 		 */
738 		vc4_hvs_unmask_underrun(dev, chan);
739 	}
740 	spin_unlock(&vc4_crtc->irq_lock);
741 	spin_unlock_irqrestore(&dev->event_lock, flags);
742 }
743 
744 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
745 {
746 	crtc->t_vblank = ktime_get();
747 	drm_crtc_handle_vblank(&crtc->base);
748 	vc4_crtc_handle_page_flip(crtc);
749 }
750 
751 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
752 {
753 	struct vc4_crtc *vc4_crtc = data;
754 	u32 stat = CRTC_READ(PV_INTSTAT);
755 	irqreturn_t ret = IRQ_NONE;
756 
757 	if (stat & PV_INT_VFP_START) {
758 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
759 		vc4_crtc_handle_vblank(vc4_crtc);
760 		ret = IRQ_HANDLED;
761 	}
762 
763 	return ret;
764 }
765 
766 struct vc4_async_flip_state {
767 	struct drm_crtc *crtc;
768 	struct drm_framebuffer *fb;
769 	struct drm_framebuffer *old_fb;
770 	struct drm_pending_vblank_event *event;
771 
772 	struct vc4_seqno_cb cb;
773 };
774 
775 /* Called when the V3D execution for the BO being flipped to is done, so that
776  * we can actually update the plane's address to point to it.
777  */
778 static void
779 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
780 {
781 	struct vc4_async_flip_state *flip_state =
782 		container_of(cb, struct vc4_async_flip_state, cb);
783 	struct drm_crtc *crtc = flip_state->crtc;
784 	struct drm_device *dev = crtc->dev;
785 	struct drm_plane *plane = crtc->primary;
786 
787 	vc4_plane_async_set_fb(plane, flip_state->fb);
788 	if (flip_state->event) {
789 		unsigned long flags;
790 
791 		spin_lock_irqsave(&dev->event_lock, flags);
792 		drm_crtc_send_vblank_event(crtc, flip_state->event);
793 		spin_unlock_irqrestore(&dev->event_lock, flags);
794 	}
795 
796 	drm_crtc_vblank_put(crtc);
797 	drm_framebuffer_put(flip_state->fb);
798 
799 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
800 	 * when the planes are updated through the async update path.
801 	 * FIXME: we should move to generic async-page-flip when it's
802 	 * available, so that we can get rid of this hand-made cleanup_fb()
803 	 * logic.
804 	 */
805 	if (flip_state->old_fb) {
806 		struct drm_gem_cma_object *cma_bo;
807 		struct vc4_bo *bo;
808 
809 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
810 		bo = to_vc4_bo(&cma_bo->base);
811 		vc4_bo_dec_usecnt(bo);
812 		drm_framebuffer_put(flip_state->old_fb);
813 	}
814 
815 	kfree(flip_state);
816 }
817 
818 /* Implements async (non-vblank-synced) page flips.
819  *
820  * The page flip ioctl needs to return immediately, so we grab the
821  * modeset semaphore on the pipe, and queue the address update for
822  * when V3D is done with the BO being flipped to.
823  */
824 static int vc4_async_page_flip(struct drm_crtc *crtc,
825 			       struct drm_framebuffer *fb,
826 			       struct drm_pending_vblank_event *event,
827 			       uint32_t flags)
828 {
829 	struct drm_device *dev = crtc->dev;
830 	struct drm_plane *plane = crtc->primary;
831 	int ret = 0;
832 	struct vc4_async_flip_state *flip_state;
833 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
834 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
835 
836 	/* Increment the BO usecnt here, so that we never end up with an
837 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
838 	 * plane is later updated through the non-async path.
839 	 * FIXME: we should move to generic async-page-flip when it's
840 	 * available, so that we can get rid of this hand-made prepare_fb()
841 	 * logic.
842 	 */
843 	ret = vc4_bo_inc_usecnt(bo);
844 	if (ret)
845 		return ret;
846 
847 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
848 	if (!flip_state) {
849 		vc4_bo_dec_usecnt(bo);
850 		return -ENOMEM;
851 	}
852 
853 	drm_framebuffer_get(fb);
854 	flip_state->fb = fb;
855 	flip_state->crtc = crtc;
856 	flip_state->event = event;
857 
858 	/* Save the current FB before it's replaced by the new one in
859 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
860 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
861 	 * it consistent.
862 	 * FIXME: we should move to generic async-page-flip when it's
863 	 * available, so that we can get rid of this hand-made cleanup_fb()
864 	 * logic.
865 	 */
866 	flip_state->old_fb = plane->state->fb;
867 	if (flip_state->old_fb)
868 		drm_framebuffer_get(flip_state->old_fb);
869 
870 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
871 
872 	/* Immediately update the plane's legacy fb pointer, so that later
873 	 * modeset prep sees the state that will be present when the semaphore
874 	 * is released.
875 	 */
876 	drm_atomic_set_fb_for_plane(plane->state, fb);
877 
878 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
879 			   vc4_async_page_flip_complete);
880 
881 	/* Driver takes ownership of state on successful async commit. */
882 	return 0;
883 }
884 
885 int vc4_page_flip(struct drm_crtc *crtc,
886 		  struct drm_framebuffer *fb,
887 		  struct drm_pending_vblank_event *event,
888 		  uint32_t flags,
889 		  struct drm_modeset_acquire_ctx *ctx)
890 {
891 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
892 		return vc4_async_page_flip(crtc, fb, event, flags);
893 	else
894 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
895 }
896 
897 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
898 {
899 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
900 
901 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
902 	if (!vc4_state)
903 		return NULL;
904 
905 	old_vc4_state = to_vc4_crtc_state(crtc->state);
906 	vc4_state->margins = old_vc4_state->margins;
907 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
908 
909 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
910 	return &vc4_state->base;
911 }
912 
913 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
914 			    struct drm_crtc_state *state)
915 {
916 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
917 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
918 
919 	if (drm_mm_node_allocated(&vc4_state->mm)) {
920 		unsigned long flags;
921 
922 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
923 		drm_mm_remove_node(&vc4_state->mm);
924 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
925 
926 	}
927 
928 	drm_atomic_helper_crtc_destroy_state(crtc, state);
929 }
930 
931 void vc4_crtc_reset(struct drm_crtc *crtc)
932 {
933 	struct vc4_crtc_state *vc4_crtc_state;
934 
935 	if (crtc->state)
936 		vc4_crtc_destroy_state(crtc, crtc->state);
937 
938 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
939 	if (!vc4_crtc_state) {
940 		crtc->state = NULL;
941 		return;
942 	}
943 
944 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
945 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
946 }
947 
948 static const struct drm_crtc_funcs vc4_crtc_funcs = {
949 	.set_config = drm_atomic_helper_set_config,
950 	.destroy = vc4_crtc_destroy,
951 	.page_flip = vc4_page_flip,
952 	.set_property = NULL,
953 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
954 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
955 	.reset = vc4_crtc_reset,
956 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
957 	.atomic_destroy_state = vc4_crtc_destroy_state,
958 	.enable_vblank = vc4_enable_vblank,
959 	.disable_vblank = vc4_disable_vblank,
960 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
961 };
962 
963 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
964 	.mode_valid = vc4_crtc_mode_valid,
965 	.atomic_check = vc4_crtc_atomic_check,
966 	.atomic_begin = vc4_hvs_atomic_begin,
967 	.atomic_flush = vc4_hvs_atomic_flush,
968 	.atomic_enable = vc4_crtc_atomic_enable,
969 	.atomic_disable = vc4_crtc_atomic_disable,
970 	.get_scanout_position = vc4_crtc_get_scanout_position,
971 };
972 
973 static const struct vc4_pv_data bcm2835_pv0_data = {
974 	.base = {
975 		.hvs_available_channels = BIT(0),
976 		.hvs_output = 0,
977 	},
978 	.debugfs_name = "crtc0_regs",
979 	.fifo_depth = 64,
980 	.pixels_per_clock = 1,
981 	.encoder_types = {
982 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
983 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
984 	},
985 };
986 
987 static const struct vc4_pv_data bcm2835_pv1_data = {
988 	.base = {
989 		.hvs_available_channels = BIT(2),
990 		.hvs_output = 2,
991 	},
992 	.debugfs_name = "crtc1_regs",
993 	.fifo_depth = 64,
994 	.pixels_per_clock = 1,
995 	.encoder_types = {
996 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
997 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
998 	},
999 };
1000 
1001 static const struct vc4_pv_data bcm2835_pv2_data = {
1002 	.base = {
1003 		.hvs_available_channels = BIT(1),
1004 		.hvs_output = 1,
1005 	},
1006 	.debugfs_name = "crtc2_regs",
1007 	.fifo_depth = 64,
1008 	.pixels_per_clock = 1,
1009 	.encoder_types = {
1010 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1011 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1012 	},
1013 };
1014 
1015 static const struct vc4_pv_data bcm2711_pv0_data = {
1016 	.base = {
1017 		.hvs_available_channels = BIT(0),
1018 		.hvs_output = 0,
1019 	},
1020 	.debugfs_name = "crtc0_regs",
1021 	.fifo_depth = 64,
1022 	.pixels_per_clock = 1,
1023 	.encoder_types = {
1024 		[0] = VC4_ENCODER_TYPE_DSI0,
1025 		[1] = VC4_ENCODER_TYPE_DPI,
1026 	},
1027 };
1028 
1029 static const struct vc4_pv_data bcm2711_pv1_data = {
1030 	.base = {
1031 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1032 		.hvs_output = 3,
1033 	},
1034 	.debugfs_name = "crtc1_regs",
1035 	.fifo_depth = 64,
1036 	.pixels_per_clock = 1,
1037 	.encoder_types = {
1038 		[0] = VC4_ENCODER_TYPE_DSI1,
1039 		[1] = VC4_ENCODER_TYPE_SMI,
1040 	},
1041 };
1042 
1043 static const struct vc4_pv_data bcm2711_pv2_data = {
1044 	.base = {
1045 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1046 		.hvs_output = 4,
1047 	},
1048 	.debugfs_name = "crtc2_regs",
1049 	.fifo_depth = 256,
1050 	.pixels_per_clock = 2,
1051 	.encoder_types = {
1052 		[0] = VC4_ENCODER_TYPE_HDMI0,
1053 	},
1054 };
1055 
1056 static const struct vc4_pv_data bcm2711_pv3_data = {
1057 	.base = {
1058 		.hvs_available_channels = BIT(1),
1059 		.hvs_output = 1,
1060 	},
1061 	.debugfs_name = "crtc3_regs",
1062 	.fifo_depth = 64,
1063 	.pixels_per_clock = 1,
1064 	.encoder_types = {
1065 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1066 	},
1067 };
1068 
1069 static const struct vc4_pv_data bcm2711_pv4_data = {
1070 	.base = {
1071 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1072 		.hvs_output = 5,
1073 	},
1074 	.debugfs_name = "crtc4_regs",
1075 	.fifo_depth = 64,
1076 	.pixels_per_clock = 2,
1077 	.encoder_types = {
1078 		[0] = VC4_ENCODER_TYPE_HDMI1,
1079 	},
1080 };
1081 
1082 static const struct of_device_id vc4_crtc_dt_match[] = {
1083 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1084 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1085 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1086 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1087 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1088 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1089 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1090 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1091 	{}
1092 };
1093 
1094 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1095 					struct drm_crtc *crtc)
1096 {
1097 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1098 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1099 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1100 	struct drm_encoder *encoder;
1101 
1102 	drm_for_each_encoder(encoder, drm) {
1103 		struct vc4_encoder *vc4_encoder;
1104 		int i;
1105 
1106 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1107 			continue;
1108 
1109 		vc4_encoder = to_vc4_encoder(encoder);
1110 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1111 			if (vc4_encoder->type == encoder_types[i]) {
1112 				vc4_encoder->clock_select = i;
1113 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1114 				break;
1115 			}
1116 		}
1117 	}
1118 }
1119 
1120 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1121 		  const struct drm_crtc_funcs *crtc_funcs,
1122 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1123 {
1124 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1125 	struct drm_crtc *crtc = &vc4_crtc->base;
1126 	struct drm_plane *primary_plane;
1127 	unsigned int i;
1128 
1129 	/* For now, we create just the primary and the legacy cursor
1130 	 * planes.  We should be able to stack more planes on easily,
1131 	 * but to do that we would need to compute the bandwidth
1132 	 * requirement of the plane configuration, and reject ones
1133 	 * that will take too much.
1134 	 */
1135 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1136 	if (IS_ERR(primary_plane)) {
1137 		dev_err(drm->dev, "failed to construct primary plane\n");
1138 		return PTR_ERR(primary_plane);
1139 	}
1140 
1141 	spin_lock_init(&vc4_crtc->irq_lock);
1142 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1143 				  crtc_funcs, NULL);
1144 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1145 
1146 	if (!vc4->hvs->hvs5) {
1147 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1148 
1149 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1150 
1151 		/* We support CTM, but only for one CRTC at a time. It's therefore
1152 		 * implemented as private driver state in vc4_kms, not here.
1153 		 */
1154 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1155 	}
1156 
1157 	for (i = 0; i < crtc->gamma_size; i++) {
1158 		vc4_crtc->lut_r[i] = i;
1159 		vc4_crtc->lut_g[i] = i;
1160 		vc4_crtc->lut_b[i] = i;
1161 	}
1162 
1163 	return 0;
1164 }
1165 
1166 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1167 {
1168 	struct platform_device *pdev = to_platform_device(dev);
1169 	struct drm_device *drm = dev_get_drvdata(master);
1170 	const struct vc4_pv_data *pv_data;
1171 	struct vc4_crtc *vc4_crtc;
1172 	struct drm_crtc *crtc;
1173 	struct drm_plane *destroy_plane, *temp;
1174 	int ret;
1175 
1176 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1177 	if (!vc4_crtc)
1178 		return -ENOMEM;
1179 	crtc = &vc4_crtc->base;
1180 
1181 	pv_data = of_device_get_match_data(dev);
1182 	if (!pv_data)
1183 		return -ENODEV;
1184 	vc4_crtc->data = &pv_data->base;
1185 	vc4_crtc->pdev = pdev;
1186 
1187 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1188 	if (IS_ERR(vc4_crtc->regs))
1189 		return PTR_ERR(vc4_crtc->regs);
1190 
1191 	vc4_crtc->regset.base = vc4_crtc->regs;
1192 	vc4_crtc->regset.regs = crtc_regs;
1193 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1194 
1195 	ret = vc4_crtc_init(drm, vc4_crtc,
1196 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1197 	if (ret)
1198 		return ret;
1199 	vc4_set_crtc_possible_masks(drm, crtc);
1200 
1201 	CRTC_WRITE(PV_INTEN, 0);
1202 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1203 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1204 			       vc4_crtc_irq_handler,
1205 			       IRQF_SHARED,
1206 			       "vc4 crtc", vc4_crtc);
1207 	if (ret)
1208 		goto err_destroy_planes;
1209 
1210 	platform_set_drvdata(pdev, vc4_crtc);
1211 
1212 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1213 				 &vc4_crtc->regset);
1214 
1215 	return 0;
1216 
1217 err_destroy_planes:
1218 	list_for_each_entry_safe(destroy_plane, temp,
1219 				 &drm->mode_config.plane_list, head) {
1220 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1221 		    destroy_plane->funcs->destroy(destroy_plane);
1222 	}
1223 
1224 	return ret;
1225 }
1226 
1227 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1228 			    void *data)
1229 {
1230 	struct platform_device *pdev = to_platform_device(dev);
1231 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1232 
1233 	vc4_crtc_destroy(&vc4_crtc->base);
1234 
1235 	CRTC_WRITE(PV_INTEN, 0);
1236 
1237 	platform_set_drvdata(pdev, NULL);
1238 }
1239 
1240 static const struct component_ops vc4_crtc_ops = {
1241 	.bind   = vc4_crtc_bind,
1242 	.unbind = vc4_crtc_unbind,
1243 };
1244 
1245 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1246 {
1247 	return component_add(&pdev->dev, &vc4_crtc_ops);
1248 }
1249 
1250 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1251 {
1252 	component_del(&pdev->dev, &vc4_crtc_ops);
1253 	return 0;
1254 }
1255 
1256 struct platform_driver vc4_crtc_driver = {
1257 	.probe = vc4_crtc_dev_probe,
1258 	.remove = vc4_crtc_dev_remove,
1259 	.driver = {
1260 		.name = "vc4_crtc",
1261 		.of_match_table = vc4_crtc_dt_match,
1262 	},
1263 };
1264