xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision f7c35abe)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34 
35 #include "drm_atomic.h"
36 #include "drm_atomic_helper.h"
37 #include "drm_crtc_helper.h"
38 #include "linux/clk.h"
39 #include "drm_fb_cma_helper.h"
40 #include "linux/component.h"
41 #include "linux/of_device.h"
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 struct vc4_crtc {
46 	struct drm_crtc base;
47 	const struct vc4_crtc_data *data;
48 	void __iomem *regs;
49 
50 	/* Timestamp at start of vblank irq - unaffected by lock delays. */
51 	ktime_t t_vblank;
52 
53 	/* Which HVS channel we're using for our CRTC. */
54 	int channel;
55 
56 	u8 lut_r[256];
57 	u8 lut_g[256];
58 	u8 lut_b[256];
59 	/* Size in pixels of the COB memory allocated to this CRTC. */
60 	u32 cob_size;
61 
62 	struct drm_pending_vblank_event *event;
63 };
64 
65 struct vc4_crtc_state {
66 	struct drm_crtc_state base;
67 	/* Dlist area for this CRTC configuration. */
68 	struct drm_mm_node mm;
69 };
70 
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74 	return (struct vc4_crtc *)crtc;
75 }
76 
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80 	return (struct vc4_crtc_state *)crtc_state;
81 }
82 
83 struct vc4_crtc_data {
84 	/* Which channel of the HVS this pixelvalve sources from. */
85 	int hvs_channel;
86 
87 	enum vc4_encoder_type encoder_types[4];
88 };
89 
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92 
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 	u32 reg;
96 	const char *name;
97 } crtc_regs[] = {
98 	CRTC_REG(PV_CONTROL),
99 	CRTC_REG(PV_V_CONTROL),
100 	CRTC_REG(PV_VSYNCD_EVEN),
101 	CRTC_REG(PV_HORZA),
102 	CRTC_REG(PV_HORZB),
103 	CRTC_REG(PV_VERTA),
104 	CRTC_REG(PV_VERTB),
105 	CRTC_REG(PV_VERTA_EVEN),
106 	CRTC_REG(PV_VERTB_EVEN),
107 	CRTC_REG(PV_INTEN),
108 	CRTC_REG(PV_INTSTAT),
109 	CRTC_REG(PV_STAT),
110 	CRTC_REG(PV_HACT_ACT),
111 };
112 
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115 	int i;
116 
117 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 		DRM_INFO("0x%04x (%s): 0x%08x\n",
119 			 crtc_regs[i].reg, crtc_regs[i].name,
120 			 CRTC_READ(crtc_regs[i].reg));
121 	}
122 }
123 
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127 	struct drm_info_node *node = (struct drm_info_node *)m->private;
128 	struct drm_device *dev = node->minor->dev;
129 	int crtc_index = (uintptr_t)node->info_ent->data;
130 	struct drm_crtc *crtc;
131 	struct vc4_crtc *vc4_crtc;
132 	int i;
133 
134 	i = 0;
135 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 		if (i == crtc_index)
137 			break;
138 		i++;
139 	}
140 	if (!crtc)
141 		return 0;
142 	vc4_crtc = to_vc4_crtc(crtc);
143 
144 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 			   crtc_regs[i].name, crtc_regs[i].reg,
147 			   CRTC_READ(crtc_regs[i].reg));
148 	}
149 
150 	return 0;
151 }
152 #endif
153 
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 			    unsigned int flags, int *vpos, int *hpos,
156 			    ktime_t *stime, ktime_t *etime,
157 			    const struct drm_display_mode *mode)
158 {
159 	struct vc4_dev *vc4 = to_vc4_dev(dev);
160 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 	u32 val;
163 	int fifo_lines;
164 	int vblank_lines;
165 	int ret = 0;
166 
167 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168 
169 	/* Get optional system timestamp before query. */
170 	if (stime)
171 		*stime = ktime_get();
172 
173 	/*
174 	 * Read vertical scanline which is currently composed for our
175 	 * pixelvalve by the HVS, and also the scaler status.
176 	 */
177 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178 
179 	/* Get optional system timestamp after query. */
180 	if (etime)
181 		*etime = ktime_get();
182 
183 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184 
185 	/* Vertical position of hvs composed scanline. */
186 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 	*hpos = 0;
188 
189 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190 		*vpos /= 2;
191 
192 		/* Use hpos to correct for field offset in interlaced mode. */
193 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194 			*hpos += mode->crtc_htotal / 2;
195 	}
196 
197 	/* This is the offset we need for translating hvs -> pv scanout pos. */
198 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199 
200 	if (fifo_lines > 0)
201 		ret |= DRM_SCANOUTPOS_VALID;
202 
203 	/* HVS more than fifo_lines into frame for compositing? */
204 	if (*vpos > fifo_lines) {
205 		/*
206 		 * We are in active scanout and can get some meaningful results
207 		 * from HVS. The actual PV scanout can not trail behind more
208 		 * than fifo_lines as that is the fifo's capacity. Assume that
209 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
210 		 * refilling the fifo and PV consuming from the fifo, ie.
211 		 * whenever the PV consumes and frees up a scanline in the
212 		 * fifo, the HVS will immediately refill it, therefore
213 		 * incrementing vpos. Therefore we choose HVS read position -
214 		 * fifo size in scanlines as a estimate of the real scanout
215 		 * position of the PV.
216 		 */
217 		*vpos -= fifo_lines + 1;
218 
219 		ret |= DRM_SCANOUTPOS_ACCURATE;
220 		return ret;
221 	}
222 
223 	/*
224 	 * Less: This happens when we are in vblank and the HVS, after getting
225 	 * the VSTART restart signal from the PV, just started refilling its
226 	 * fifo with new lines from the top-most lines of the new framebuffers.
227 	 * The PV does not scan out in vblank, so does not remove lines from
228 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
229 	 * We can't get meaningful readings wrt. scanline position of the PV
230 	 * and need to make things up in a approximative but consistent way.
231 	 */
232 	ret |= DRM_SCANOUTPOS_IN_VBLANK;
233 	vblank_lines = mode->vtotal - mode->vdisplay;
234 
235 	if (flags & DRM_CALLED_FROM_VBLIRQ) {
236 		/*
237 		 * Assume the irq handler got called close to first
238 		 * line of vblank, so PV has about a full vblank
239 		 * scanlines to go, and as a base timestamp use the
240 		 * one taken at entry into vblank irq handler, so it
241 		 * is not affected by random delays due to lock
242 		 * contention on event_lock or vblank_time lock in
243 		 * the core.
244 		 */
245 		*vpos = -vblank_lines;
246 
247 		if (stime)
248 			*stime = vc4_crtc->t_vblank;
249 		if (etime)
250 			*etime = vc4_crtc->t_vblank;
251 
252 		/*
253 		 * If the HVS fifo is not yet full then we know for certain
254 		 * we are at the very beginning of vblank, as the hvs just
255 		 * started refilling, and the stime and etime timestamps
256 		 * truly correspond to start of vblank.
257 		 */
258 		if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
259 			ret |= DRM_SCANOUTPOS_ACCURATE;
260 	} else {
261 		/*
262 		 * No clue where we are inside vblank. Return a vpos of zero,
263 		 * which will cause calling code to just return the etime
264 		 * timestamp uncorrected. At least this is no worse than the
265 		 * standard fallback.
266 		 */
267 		*vpos = 0;
268 	}
269 
270 	return ret;
271 }
272 
273 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
274 				  int *max_error, struct timeval *vblank_time,
275 				  unsigned flags)
276 {
277 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
278 	struct drm_crtc_state *state = crtc->state;
279 
280 	/* Helper routine in DRM core does all the work: */
281 	return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
282 						     vblank_time, flags,
283 						     &state->adjusted_mode);
284 }
285 
286 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 {
288 	drm_crtc_cleanup(crtc);
289 }
290 
291 static void
292 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 {
294 	struct drm_device *dev = crtc->dev;
295 	struct vc4_dev *vc4 = to_vc4_dev(dev);
296 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
297 	u32 i;
298 
299 	/* The LUT memory is laid out with each HVS channel in order,
300 	 * each of which takes 256 writes for R, 256 for G, then 256
301 	 * for B.
302 	 */
303 	HVS_WRITE(SCALER_GAMADDR,
304 		  SCALER_GAMADDR_AUTOINC |
305 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
306 
307 	for (i = 0; i < crtc->gamma_size; i++)
308 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
309 	for (i = 0; i < crtc->gamma_size; i++)
310 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
311 	for (i = 0; i < crtc->gamma_size; i++)
312 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
313 }
314 
315 static int
316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
317 		   uint32_t size)
318 {
319 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
320 	u32 i;
321 
322 	for (i = 0; i < size; i++) {
323 		vc4_crtc->lut_r[i] = r[i] >> 8;
324 		vc4_crtc->lut_g[i] = g[i] >> 8;
325 		vc4_crtc->lut_b[i] = b[i] >> 8;
326 	}
327 
328 	vc4_crtc_lut_load(crtc);
329 
330 	return 0;
331 }
332 
333 static u32 vc4_get_fifo_full_level(u32 format)
334 {
335 	static const u32 fifo_len_bytes = 64;
336 	static const u32 hvs_latency_pix = 6;
337 
338 	switch (format) {
339 	case PV_CONTROL_FORMAT_DSIV_16:
340 	case PV_CONTROL_FORMAT_DSIC_16:
341 		return fifo_len_bytes - 2 * hvs_latency_pix;
342 	case PV_CONTROL_FORMAT_DSIV_18:
343 		return fifo_len_bytes - 14;
344 	case PV_CONTROL_FORMAT_24:
345 	case PV_CONTROL_FORMAT_DSIV_24:
346 	default:
347 		return fifo_len_bytes - 3 * hvs_latency_pix;
348 	}
349 }
350 
351 /*
352  * Returns the encoder attached to the CRTC.
353  *
354  * VC4 can only scan out to one encoder at a time, while the DRM core
355  * allows drivers to push pixels to more than one encoder from the
356  * same CRTC.
357  */
358 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
359 {
360 	struct drm_connector *connector;
361 
362 	drm_for_each_connector(connector, crtc->dev) {
363 		if (connector->state->crtc == crtc) {
364 			return connector->encoder;
365 		}
366 	}
367 
368 	return NULL;
369 }
370 
371 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
372 {
373 	struct drm_device *dev = crtc->dev;
374 	struct vc4_dev *vc4 = to_vc4_dev(dev);
375 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
376 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
377 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
378 	struct drm_crtc_state *state = crtc->state;
379 	struct drm_display_mode *mode = &state->adjusted_mode;
380 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
381 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
382 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
383 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
384 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
385 	bool debug_dump_regs = false;
386 
387 	if (debug_dump_regs) {
388 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
389 		vc4_crtc_dump_regs(vc4_crtc);
390 	}
391 
392 	/* Reset the PV fifo. */
393 	CRTC_WRITE(PV_CONTROL, 0);
394 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
395 	CRTC_WRITE(PV_CONTROL, 0);
396 
397 	CRTC_WRITE(PV_HORZA,
398 		   VC4_SET_FIELD((mode->htotal -
399 				  mode->hsync_end) * pixel_rep,
400 				 PV_HORZA_HBP) |
401 		   VC4_SET_FIELD((mode->hsync_end -
402 				  mode->hsync_start) * pixel_rep,
403 				 PV_HORZA_HSYNC));
404 	CRTC_WRITE(PV_HORZB,
405 		   VC4_SET_FIELD((mode->hsync_start -
406 				  mode->hdisplay) * pixel_rep,
407 				 PV_HORZB_HFP) |
408 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
409 
410 	CRTC_WRITE(PV_VERTA,
411 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
412 				 PV_VERTA_VBP) |
413 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
414 				 PV_VERTA_VSYNC));
415 	CRTC_WRITE(PV_VERTB,
416 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
417 				 PV_VERTB_VFP) |
418 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
419 
420 	if (interlace) {
421 		CRTC_WRITE(PV_VERTA_EVEN,
422 			   VC4_SET_FIELD(mode->crtc_vtotal -
423 					 mode->crtc_vsync_end - 1,
424 					 PV_VERTA_VBP) |
425 			   VC4_SET_FIELD(mode->crtc_vsync_end -
426 					 mode->crtc_vsync_start,
427 					 PV_VERTA_VSYNC));
428 		CRTC_WRITE(PV_VERTB_EVEN,
429 			   VC4_SET_FIELD(mode->crtc_vsync_start -
430 					 mode->crtc_vdisplay,
431 					 PV_VERTB_VFP) |
432 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
433 
434 		/* We set up first field even mode for HDMI.  VEC's
435 		 * NTSC mode would want first field odd instead, once
436 		 * we support it (to do so, set ODD_FIRST and put the
437 		 * delay in VSYNCD_EVEN instead).
438 		 */
439 		CRTC_WRITE(PV_V_CONTROL,
440 			   PV_VCONTROL_CONTINUOUS |
441 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
442 			   PV_VCONTROL_INTERLACE |
443 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
444 					 PV_VCONTROL_ODD_DELAY));
445 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
446 	} else {
447 		CRTC_WRITE(PV_V_CONTROL,
448 			   PV_VCONTROL_CONTINUOUS |
449 			   (is_dsi ? PV_VCONTROL_DSI : 0));
450 	}
451 
452 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
453 
454 	CRTC_WRITE(PV_CONTROL,
455 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
456 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
457 				 PV_CONTROL_FIFO_LEVEL) |
458 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
459 		   PV_CONTROL_CLR_AT_START |
460 		   PV_CONTROL_TRIGGER_UNDERFLOW |
461 		   PV_CONTROL_WAIT_HSTART |
462 		   VC4_SET_FIELD(vc4_encoder->clock_select,
463 				 PV_CONTROL_CLK_SELECT) |
464 		   PV_CONTROL_FIFO_CLR |
465 		   PV_CONTROL_EN);
466 
467 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
468 		  SCALER_DISPBKGND_AUTOHS |
469 		  SCALER_DISPBKGND_GAMMA |
470 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
471 
472 	/* Reload the LUT, since the SRAMs would have been disabled if
473 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
474 	 */
475 	vc4_crtc_lut_load(crtc);
476 
477 	if (debug_dump_regs) {
478 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
479 		vc4_crtc_dump_regs(vc4_crtc);
480 	}
481 }
482 
483 static void require_hvs_enabled(struct drm_device *dev)
484 {
485 	struct vc4_dev *vc4 = to_vc4_dev(dev);
486 
487 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
488 		     SCALER_DISPCTRL_ENABLE);
489 }
490 
491 static void vc4_crtc_disable(struct drm_crtc *crtc)
492 {
493 	struct drm_device *dev = crtc->dev;
494 	struct vc4_dev *vc4 = to_vc4_dev(dev);
495 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
496 	u32 chan = vc4_crtc->channel;
497 	int ret;
498 	require_hvs_enabled(dev);
499 
500 	/* Disable vblank irq handling before crtc is disabled. */
501 	drm_crtc_vblank_off(crtc);
502 
503 	CRTC_WRITE(PV_V_CONTROL,
504 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
505 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
506 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
507 
508 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
509 	    SCALER_DISPCTRLX_ENABLE) {
510 		HVS_WRITE(SCALER_DISPCTRLX(chan),
511 			  SCALER_DISPCTRLX_RESET);
512 
513 		/* While the docs say that reset is self-clearing, it
514 		 * seems it doesn't actually.
515 		 */
516 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
517 	}
518 
519 	/* Once we leave, the scaler should be disabled and its fifo empty. */
520 
521 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
522 
523 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
524 				   SCALER_DISPSTATX_MODE) !=
525 		     SCALER_DISPSTATX_MODE_DISABLED);
526 
527 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
528 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
529 		     SCALER_DISPSTATX_EMPTY);
530 }
531 
532 static void vc4_crtc_enable(struct drm_crtc *crtc)
533 {
534 	struct drm_device *dev = crtc->dev;
535 	struct vc4_dev *vc4 = to_vc4_dev(dev);
536 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
537 	struct drm_crtc_state *state = crtc->state;
538 	struct drm_display_mode *mode = &state->adjusted_mode;
539 
540 	require_hvs_enabled(dev);
541 
542 	/* Turn on the scaler, which will wait for vstart to start
543 	 * compositing.
544 	 */
545 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
546 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
547 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
548 		  SCALER_DISPCTRLX_ENABLE);
549 
550 	/* Turn on the pixel valve, which will emit the vstart signal. */
551 	CRTC_WRITE(PV_V_CONTROL,
552 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
553 
554 	/* Enable vblank irq handling after crtc is started. */
555 	drm_crtc_vblank_on(crtc);
556 }
557 
558 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
559 				const struct drm_display_mode *mode,
560 				struct drm_display_mode *adjusted_mode)
561 {
562 	/* Do not allow doublescan modes from user space */
563 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
564 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
565 			      crtc->base.id);
566 		return false;
567 	}
568 
569 	return true;
570 }
571 
572 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
573 				 struct drm_crtc_state *state)
574 {
575 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
576 	struct drm_device *dev = crtc->dev;
577 	struct vc4_dev *vc4 = to_vc4_dev(dev);
578 	struct drm_plane *plane;
579 	unsigned long flags;
580 	const struct drm_plane_state *plane_state;
581 	u32 dlist_count = 0;
582 	int ret;
583 
584 	/* The pixelvalve can only feed one encoder (and encoders are
585 	 * 1:1 with connectors.)
586 	 */
587 	if (hweight32(state->connector_mask) > 1)
588 		return -EINVAL;
589 
590 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
591 		dlist_count += vc4_plane_dlist_size(plane_state);
592 
593 	dlist_count++; /* Account for SCALER_CTL0_END. */
594 
595 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
596 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
597 				 dlist_count);
598 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
599 	if (ret)
600 		return ret;
601 
602 	return 0;
603 }
604 
605 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
606 				  struct drm_crtc_state *old_state)
607 {
608 	struct drm_device *dev = crtc->dev;
609 	struct vc4_dev *vc4 = to_vc4_dev(dev);
610 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
611 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
612 	struct drm_plane *plane;
613 	bool debug_dump_regs = false;
614 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
615 	u32 __iomem *dlist_next = dlist_start;
616 
617 	if (debug_dump_regs) {
618 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
619 		vc4_hvs_dump_state(dev);
620 	}
621 
622 	/* Copy all the active planes' dlist contents to the hardware dlist. */
623 	drm_atomic_crtc_for_each_plane(plane, crtc) {
624 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
625 	}
626 
627 	writel(SCALER_CTL0_END, dlist_next);
628 	dlist_next++;
629 
630 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
631 
632 	if (crtc->state->event) {
633 		unsigned long flags;
634 
635 		crtc->state->event->pipe = drm_crtc_index(crtc);
636 
637 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
638 
639 		spin_lock_irqsave(&dev->event_lock, flags);
640 		vc4_crtc->event = crtc->state->event;
641 		crtc->state->event = NULL;
642 
643 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
644 			  vc4_state->mm.start);
645 
646 		spin_unlock_irqrestore(&dev->event_lock, flags);
647 	} else {
648 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
649 			  vc4_state->mm.start);
650 	}
651 
652 	if (debug_dump_regs) {
653 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
654 		vc4_hvs_dump_state(dev);
655 	}
656 }
657 
658 static int vc4_enable_vblank(struct drm_crtc *crtc)
659 {
660 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
661 
662 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
663 
664 	return 0;
665 }
666 
667 static void vc4_disable_vblank(struct drm_crtc *crtc)
668 {
669 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
670 
671 	CRTC_WRITE(PV_INTEN, 0);
672 }
673 
674 /* Must be called with the event lock held */
675 bool vc4_event_pending(struct drm_crtc *crtc)
676 {
677 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
678 
679 	return !!vc4_crtc->event;
680 }
681 
682 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
683 {
684 	struct drm_crtc *crtc = &vc4_crtc->base;
685 	struct drm_device *dev = crtc->dev;
686 	struct vc4_dev *vc4 = to_vc4_dev(dev);
687 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
688 	u32 chan = vc4_crtc->channel;
689 	unsigned long flags;
690 
691 	spin_lock_irqsave(&dev->event_lock, flags);
692 	if (vc4_crtc->event &&
693 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
694 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
695 		vc4_crtc->event = NULL;
696 		drm_crtc_vblank_put(crtc);
697 	}
698 	spin_unlock_irqrestore(&dev->event_lock, flags);
699 }
700 
701 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
702 {
703 	struct vc4_crtc *vc4_crtc = data;
704 	u32 stat = CRTC_READ(PV_INTSTAT);
705 	irqreturn_t ret = IRQ_NONE;
706 
707 	if (stat & PV_INT_VFP_START) {
708 		vc4_crtc->t_vblank = ktime_get();
709 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
710 		drm_crtc_handle_vblank(&vc4_crtc->base);
711 		vc4_crtc_handle_page_flip(vc4_crtc);
712 		ret = IRQ_HANDLED;
713 	}
714 
715 	return ret;
716 }
717 
718 struct vc4_async_flip_state {
719 	struct drm_crtc *crtc;
720 	struct drm_framebuffer *fb;
721 	struct drm_pending_vblank_event *event;
722 
723 	struct vc4_seqno_cb cb;
724 };
725 
726 /* Called when the V3D execution for the BO being flipped to is done, so that
727  * we can actually update the plane's address to point to it.
728  */
729 static void
730 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
731 {
732 	struct vc4_async_flip_state *flip_state =
733 		container_of(cb, struct vc4_async_flip_state, cb);
734 	struct drm_crtc *crtc = flip_state->crtc;
735 	struct drm_device *dev = crtc->dev;
736 	struct vc4_dev *vc4 = to_vc4_dev(dev);
737 	struct drm_plane *plane = crtc->primary;
738 
739 	vc4_plane_async_set_fb(plane, flip_state->fb);
740 	if (flip_state->event) {
741 		unsigned long flags;
742 
743 		spin_lock_irqsave(&dev->event_lock, flags);
744 		drm_crtc_send_vblank_event(crtc, flip_state->event);
745 		spin_unlock_irqrestore(&dev->event_lock, flags);
746 	}
747 
748 	drm_crtc_vblank_put(crtc);
749 	drm_framebuffer_unreference(flip_state->fb);
750 	kfree(flip_state);
751 
752 	up(&vc4->async_modeset);
753 }
754 
755 /* Implements async (non-vblank-synced) page flips.
756  *
757  * The page flip ioctl needs to return immediately, so we grab the
758  * modeset semaphore on the pipe, and queue the address update for
759  * when V3D is done with the BO being flipped to.
760  */
761 static int vc4_async_page_flip(struct drm_crtc *crtc,
762 			       struct drm_framebuffer *fb,
763 			       struct drm_pending_vblank_event *event,
764 			       uint32_t flags)
765 {
766 	struct drm_device *dev = crtc->dev;
767 	struct vc4_dev *vc4 = to_vc4_dev(dev);
768 	struct drm_plane *plane = crtc->primary;
769 	int ret = 0;
770 	struct vc4_async_flip_state *flip_state;
771 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
772 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
773 
774 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
775 	if (!flip_state)
776 		return -ENOMEM;
777 
778 	drm_framebuffer_reference(fb);
779 	flip_state->fb = fb;
780 	flip_state->crtc = crtc;
781 	flip_state->event = event;
782 
783 	/* Make sure all other async modesetes have landed. */
784 	ret = down_interruptible(&vc4->async_modeset);
785 	if (ret) {
786 		drm_framebuffer_unreference(fb);
787 		kfree(flip_state);
788 		return ret;
789 	}
790 
791 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
792 
793 	/* Immediately update the plane's legacy fb pointer, so that later
794 	 * modeset prep sees the state that will be present when the semaphore
795 	 * is released.
796 	 */
797 	drm_atomic_set_fb_for_plane(plane->state, fb);
798 	plane->fb = fb;
799 
800 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
801 			   vc4_async_page_flip_complete);
802 
803 	/* Driver takes ownership of state on successful async commit. */
804 	return 0;
805 }
806 
807 static int vc4_page_flip(struct drm_crtc *crtc,
808 			 struct drm_framebuffer *fb,
809 			 struct drm_pending_vblank_event *event,
810 			 uint32_t flags)
811 {
812 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
813 		return vc4_async_page_flip(crtc, fb, event, flags);
814 	else
815 		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
816 }
817 
818 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
819 {
820 	struct vc4_crtc_state *vc4_state;
821 
822 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
823 	if (!vc4_state)
824 		return NULL;
825 
826 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
827 	return &vc4_state->base;
828 }
829 
830 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
831 				   struct drm_crtc_state *state)
832 {
833 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
834 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
835 
836 	if (vc4_state->mm.allocated) {
837 		unsigned long flags;
838 
839 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
840 		drm_mm_remove_node(&vc4_state->mm);
841 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
842 
843 	}
844 
845 	drm_atomic_helper_crtc_destroy_state(crtc, state);
846 }
847 
848 static const struct drm_crtc_funcs vc4_crtc_funcs = {
849 	.set_config = drm_atomic_helper_set_config,
850 	.destroy = vc4_crtc_destroy,
851 	.page_flip = vc4_page_flip,
852 	.set_property = NULL,
853 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
854 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
855 	.reset = drm_atomic_helper_crtc_reset,
856 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
857 	.atomic_destroy_state = vc4_crtc_destroy_state,
858 	.gamma_set = vc4_crtc_gamma_set,
859 	.enable_vblank = vc4_enable_vblank,
860 	.disable_vblank = vc4_disable_vblank,
861 };
862 
863 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
864 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
865 	.disable = vc4_crtc_disable,
866 	.enable = vc4_crtc_enable,
867 	.mode_fixup = vc4_crtc_mode_fixup,
868 	.atomic_check = vc4_crtc_atomic_check,
869 	.atomic_flush = vc4_crtc_atomic_flush,
870 };
871 
872 static const struct vc4_crtc_data pv0_data = {
873 	.hvs_channel = 0,
874 	.encoder_types = {
875 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
876 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
877 	},
878 };
879 
880 static const struct vc4_crtc_data pv1_data = {
881 	.hvs_channel = 2,
882 	.encoder_types = {
883 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
884 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
885 	},
886 };
887 
888 static const struct vc4_crtc_data pv2_data = {
889 	.hvs_channel = 1,
890 	.encoder_types = {
891 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
892 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
893 	},
894 };
895 
896 static const struct of_device_id vc4_crtc_dt_match[] = {
897 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
898 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
899 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
900 	{}
901 };
902 
903 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
904 					struct drm_crtc *crtc)
905 {
906 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
907 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
908 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
909 	struct drm_encoder *encoder;
910 
911 	drm_for_each_encoder(encoder, drm) {
912 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
913 		int i;
914 
915 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
916 			if (vc4_encoder->type == encoder_types[i]) {
917 				vc4_encoder->clock_select = i;
918 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
919 				break;
920 			}
921 		}
922 	}
923 }
924 
925 static void
926 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
927 {
928 	struct drm_device *drm = vc4_crtc->base.dev;
929 	struct vc4_dev *vc4 = to_vc4_dev(drm);
930 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
931 	/* Top/base are supposed to be 4-pixel aligned, but the
932 	 * Raspberry Pi firmware fills the low bits (which are
933 	 * presumably ignored).
934 	 */
935 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
936 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
937 
938 	vc4_crtc->cob_size = top - base + 4;
939 }
940 
941 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
942 {
943 	struct platform_device *pdev = to_platform_device(dev);
944 	struct drm_device *drm = dev_get_drvdata(master);
945 	struct vc4_crtc *vc4_crtc;
946 	struct drm_crtc *crtc;
947 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
948 	const struct of_device_id *match;
949 	int ret, i;
950 
951 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
952 	if (!vc4_crtc)
953 		return -ENOMEM;
954 	crtc = &vc4_crtc->base;
955 
956 	match = of_match_device(vc4_crtc_dt_match, dev);
957 	if (!match)
958 		return -ENODEV;
959 	vc4_crtc->data = match->data;
960 
961 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
962 	if (IS_ERR(vc4_crtc->regs))
963 		return PTR_ERR(vc4_crtc->regs);
964 
965 	/* For now, we create just the primary and the legacy cursor
966 	 * planes.  We should be able to stack more planes on easily,
967 	 * but to do that we would need to compute the bandwidth
968 	 * requirement of the plane configuration, and reject ones
969 	 * that will take too much.
970 	 */
971 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
972 	if (IS_ERR(primary_plane)) {
973 		dev_err(dev, "failed to construct primary plane\n");
974 		ret = PTR_ERR(primary_plane);
975 		goto err;
976 	}
977 
978 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
979 				  &vc4_crtc_funcs, NULL);
980 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
981 	primary_plane->crtc = crtc;
982 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
983 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
984 
985 	/* Set up some arbitrary number of planes.  We're not limited
986 	 * by a set number of physical registers, just the space in
987 	 * the HVS (16k) and how small an plane can be (28 bytes).
988 	 * However, each plane we set up takes up some memory, and
989 	 * increases the cost of looping over planes, which atomic
990 	 * modesetting does quite a bit.  As a result, we pick a
991 	 * modest number of planes to expose, that should hopefully
992 	 * still cover any sane usecase.
993 	 */
994 	for (i = 0; i < 8; i++) {
995 		struct drm_plane *plane =
996 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
997 
998 		if (IS_ERR(plane))
999 			continue;
1000 
1001 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1002 	}
1003 
1004 	/* Set up the legacy cursor after overlay initialization,
1005 	 * since we overlay planes on the CRTC in the order they were
1006 	 * initialized.
1007 	 */
1008 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1009 	if (!IS_ERR(cursor_plane)) {
1010 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1011 		cursor_plane->crtc = crtc;
1012 		crtc->cursor = cursor_plane;
1013 	}
1014 
1015 	vc4_crtc_get_cob_allocation(vc4_crtc);
1016 
1017 	CRTC_WRITE(PV_INTEN, 0);
1018 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1019 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1020 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1021 	if (ret)
1022 		goto err_destroy_planes;
1023 
1024 	vc4_set_crtc_possible_masks(drm, crtc);
1025 
1026 	for (i = 0; i < crtc->gamma_size; i++) {
1027 		vc4_crtc->lut_r[i] = i;
1028 		vc4_crtc->lut_g[i] = i;
1029 		vc4_crtc->lut_b[i] = i;
1030 	}
1031 
1032 	platform_set_drvdata(pdev, vc4_crtc);
1033 
1034 	return 0;
1035 
1036 err_destroy_planes:
1037 	list_for_each_entry_safe(destroy_plane, temp,
1038 				 &drm->mode_config.plane_list, head) {
1039 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1040 		    destroy_plane->funcs->destroy(destroy_plane);
1041 	}
1042 err:
1043 	return ret;
1044 }
1045 
1046 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1047 			    void *data)
1048 {
1049 	struct platform_device *pdev = to_platform_device(dev);
1050 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1051 
1052 	vc4_crtc_destroy(&vc4_crtc->base);
1053 
1054 	CRTC_WRITE(PV_INTEN, 0);
1055 
1056 	platform_set_drvdata(pdev, NULL);
1057 }
1058 
1059 static const struct component_ops vc4_crtc_ops = {
1060 	.bind   = vc4_crtc_bind,
1061 	.unbind = vc4_crtc_unbind,
1062 };
1063 
1064 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1065 {
1066 	return component_add(&pdev->dev, &vc4_crtc_ops);
1067 }
1068 
1069 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1070 {
1071 	component_del(&pdev->dev, &vc4_crtc_ops);
1072 	return 0;
1073 }
1074 
1075 struct platform_driver vc4_crtc_driver = {
1076 	.probe = vc4_crtc_dev_probe,
1077 	.remove = vc4_crtc_dev_remove,
1078 	.driver = {
1079 		.name = "vc4_crtc",
1080 		.of_match_table = vc4_crtc_dt_match,
1081 	},
1082 };
1083