1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * encoder's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, the CRTC is also 19 * responsible for writing the display list for the HVS channel that 20 * the CRTC will use. 21 * 22 * The 2835 has 3 different pixel valves. pv0 in the audio power 23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 24 * image domain can feed either HDMI or the SDTV controller. The 25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 26 * SDTV, etc.) according to which output type is chosen in the mux. 27 * 28 * For power management, the pixel valve's registers are all clocked 29 * by the AXI clock, while the timings and FIFOs make use of the 30 * output-specific clock. Since the encoders also directly consume 31 * the CPRMAN clocks, and know what timings they need, they are the 32 * ones that set the clock. 33 */ 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_crtc_helper.h> 38 #include <linux/clk.h> 39 #include <drm/drm_fb_cma_helper.h> 40 #include <linux/component.h> 41 #include <linux/of_device.h> 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 struct vc4_crtc_state { 46 struct drm_crtc_state base; 47 /* Dlist area for this CRTC configuration. */ 48 struct drm_mm_node mm; 49 bool feed_txp; 50 bool txp_armed; 51 }; 52 53 static inline struct vc4_crtc_state * 54 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 55 { 56 return (struct vc4_crtc_state *)crtc_state; 57 } 58 59 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 60 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 61 62 #define CRTC_REG(reg) { reg, #reg } 63 static const struct { 64 u32 reg; 65 const char *name; 66 } crtc_regs[] = { 67 CRTC_REG(PV_CONTROL), 68 CRTC_REG(PV_V_CONTROL), 69 CRTC_REG(PV_VSYNCD_EVEN), 70 CRTC_REG(PV_HORZA), 71 CRTC_REG(PV_HORZB), 72 CRTC_REG(PV_VERTA), 73 CRTC_REG(PV_VERTB), 74 CRTC_REG(PV_VERTA_EVEN), 75 CRTC_REG(PV_VERTB_EVEN), 76 CRTC_REG(PV_INTEN), 77 CRTC_REG(PV_INTSTAT), 78 CRTC_REG(PV_STAT), 79 CRTC_REG(PV_HACT_ACT), 80 }; 81 82 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 83 { 84 int i; 85 86 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 87 DRM_INFO("0x%04x (%s): 0x%08x\n", 88 crtc_regs[i].reg, crtc_regs[i].name, 89 CRTC_READ(crtc_regs[i].reg)); 90 } 91 } 92 93 #ifdef CONFIG_DEBUG_FS 94 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 95 { 96 struct drm_info_node *node = (struct drm_info_node *)m->private; 97 struct drm_device *dev = node->minor->dev; 98 int crtc_index = (uintptr_t)node->info_ent->data; 99 struct drm_crtc *crtc; 100 struct vc4_crtc *vc4_crtc; 101 int i; 102 103 i = 0; 104 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 105 if (i == crtc_index) 106 break; 107 i++; 108 } 109 if (!crtc) 110 return 0; 111 vc4_crtc = to_vc4_crtc(crtc); 112 113 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 114 seq_printf(m, "%s (0x%04x): 0x%08x\n", 115 crtc_regs[i].name, crtc_regs[i].reg, 116 CRTC_READ(crtc_regs[i].reg)); 117 } 118 119 return 0; 120 } 121 #endif 122 123 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 124 bool in_vblank_irq, int *vpos, int *hpos, 125 ktime_t *stime, ktime_t *etime, 126 const struct drm_display_mode *mode) 127 { 128 struct vc4_dev *vc4 = to_vc4_dev(dev); 129 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 130 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 131 u32 val; 132 int fifo_lines; 133 int vblank_lines; 134 bool ret = false; 135 136 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 137 138 /* Get optional system timestamp before query. */ 139 if (stime) 140 *stime = ktime_get(); 141 142 /* 143 * Read vertical scanline which is currently composed for our 144 * pixelvalve by the HVS, and also the scaler status. 145 */ 146 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 147 148 /* Get optional system timestamp after query. */ 149 if (etime) 150 *etime = ktime_get(); 151 152 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 153 154 /* Vertical position of hvs composed scanline. */ 155 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 156 *hpos = 0; 157 158 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 159 *vpos /= 2; 160 161 /* Use hpos to correct for field offset in interlaced mode. */ 162 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 163 *hpos += mode->crtc_htotal / 2; 164 } 165 166 /* This is the offset we need for translating hvs -> pv scanout pos. */ 167 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 168 169 if (fifo_lines > 0) 170 ret = true; 171 172 /* HVS more than fifo_lines into frame for compositing? */ 173 if (*vpos > fifo_lines) { 174 /* 175 * We are in active scanout and can get some meaningful results 176 * from HVS. The actual PV scanout can not trail behind more 177 * than fifo_lines as that is the fifo's capacity. Assume that 178 * in active scanout the HVS and PV work in lockstep wrt. HVS 179 * refilling the fifo and PV consuming from the fifo, ie. 180 * whenever the PV consumes and frees up a scanline in the 181 * fifo, the HVS will immediately refill it, therefore 182 * incrementing vpos. Therefore we choose HVS read position - 183 * fifo size in scanlines as a estimate of the real scanout 184 * position of the PV. 185 */ 186 *vpos -= fifo_lines + 1; 187 188 return ret; 189 } 190 191 /* 192 * Less: This happens when we are in vblank and the HVS, after getting 193 * the VSTART restart signal from the PV, just started refilling its 194 * fifo with new lines from the top-most lines of the new framebuffers. 195 * The PV does not scan out in vblank, so does not remove lines from 196 * the fifo, so the fifo will be full quickly and the HVS has to pause. 197 * We can't get meaningful readings wrt. scanline position of the PV 198 * and need to make things up in a approximative but consistent way. 199 */ 200 vblank_lines = mode->vtotal - mode->vdisplay; 201 202 if (in_vblank_irq) { 203 /* 204 * Assume the irq handler got called close to first 205 * line of vblank, so PV has about a full vblank 206 * scanlines to go, and as a base timestamp use the 207 * one taken at entry into vblank irq handler, so it 208 * is not affected by random delays due to lock 209 * contention on event_lock or vblank_time lock in 210 * the core. 211 */ 212 *vpos = -vblank_lines; 213 214 if (stime) 215 *stime = vc4_crtc->t_vblank; 216 if (etime) 217 *etime = vc4_crtc->t_vblank; 218 219 /* 220 * If the HVS fifo is not yet full then we know for certain 221 * we are at the very beginning of vblank, as the hvs just 222 * started refilling, and the stime and etime timestamps 223 * truly correspond to start of vblank. 224 * 225 * Unfortunately there's no way to report this to upper levels 226 * and make it more useful. 227 */ 228 } else { 229 /* 230 * No clue where we are inside vblank. Return a vpos of zero, 231 * which will cause calling code to just return the etime 232 * timestamp uncorrected. At least this is no worse than the 233 * standard fallback. 234 */ 235 *vpos = 0; 236 } 237 238 return ret; 239 } 240 241 static void vc4_crtc_destroy(struct drm_crtc *crtc) 242 { 243 drm_crtc_cleanup(crtc); 244 } 245 246 static void 247 vc4_crtc_lut_load(struct drm_crtc *crtc) 248 { 249 struct drm_device *dev = crtc->dev; 250 struct vc4_dev *vc4 = to_vc4_dev(dev); 251 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 252 u32 i; 253 254 /* The LUT memory is laid out with each HVS channel in order, 255 * each of which takes 256 writes for R, 256 for G, then 256 256 * for B. 257 */ 258 HVS_WRITE(SCALER_GAMADDR, 259 SCALER_GAMADDR_AUTOINC | 260 (vc4_crtc->channel * 3 * crtc->gamma_size)); 261 262 for (i = 0; i < crtc->gamma_size; i++) 263 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 264 for (i = 0; i < crtc->gamma_size; i++) 265 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 266 for (i = 0; i < crtc->gamma_size; i++) 267 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 268 } 269 270 static void 271 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc) 272 { 273 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 274 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 275 u32 length = drm_color_lut_size(crtc->state->gamma_lut); 276 u32 i; 277 278 for (i = 0; i < length; i++) { 279 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); 280 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); 281 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); 282 } 283 284 vc4_crtc_lut_load(crtc); 285 } 286 287 static u32 vc4_get_fifo_full_level(u32 format) 288 { 289 static const u32 fifo_len_bytes = 64; 290 static const u32 hvs_latency_pix = 6; 291 292 switch (format) { 293 case PV_CONTROL_FORMAT_DSIV_16: 294 case PV_CONTROL_FORMAT_DSIC_16: 295 return fifo_len_bytes - 2 * hvs_latency_pix; 296 case PV_CONTROL_FORMAT_DSIV_18: 297 return fifo_len_bytes - 14; 298 case PV_CONTROL_FORMAT_24: 299 case PV_CONTROL_FORMAT_DSIV_24: 300 default: 301 return fifo_len_bytes - 3 * hvs_latency_pix; 302 } 303 } 304 305 /* 306 * Returns the encoder attached to the CRTC. 307 * 308 * VC4 can only scan out to one encoder at a time, while the DRM core 309 * allows drivers to push pixels to more than one encoder from the 310 * same CRTC. 311 */ 312 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 313 { 314 struct drm_connector *connector; 315 struct drm_connector_list_iter conn_iter; 316 317 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 318 drm_for_each_connector_iter(connector, &conn_iter) { 319 if (connector->state->crtc == crtc) { 320 drm_connector_list_iter_end(&conn_iter); 321 return connector->encoder; 322 } 323 } 324 drm_connector_list_iter_end(&conn_iter); 325 326 return NULL; 327 } 328 329 static void vc4_crtc_config_pv(struct drm_crtc *crtc) 330 { 331 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 332 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 333 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 334 struct drm_crtc_state *state = crtc->state; 335 struct drm_display_mode *mode = &state->adjusted_mode; 336 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 337 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 338 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 339 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 340 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 341 342 /* Reset the PV fifo. */ 343 CRTC_WRITE(PV_CONTROL, 0); 344 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 345 CRTC_WRITE(PV_CONTROL, 0); 346 347 CRTC_WRITE(PV_HORZA, 348 VC4_SET_FIELD((mode->htotal - 349 mode->hsync_end) * pixel_rep, 350 PV_HORZA_HBP) | 351 VC4_SET_FIELD((mode->hsync_end - 352 mode->hsync_start) * pixel_rep, 353 PV_HORZA_HSYNC)); 354 CRTC_WRITE(PV_HORZB, 355 VC4_SET_FIELD((mode->hsync_start - 356 mode->hdisplay) * pixel_rep, 357 PV_HORZB_HFP) | 358 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 359 360 CRTC_WRITE(PV_VERTA, 361 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 362 PV_VERTA_VBP) | 363 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 364 PV_VERTA_VSYNC)); 365 CRTC_WRITE(PV_VERTB, 366 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 367 PV_VERTB_VFP) | 368 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 369 370 if (interlace) { 371 CRTC_WRITE(PV_VERTA_EVEN, 372 VC4_SET_FIELD(mode->crtc_vtotal - 373 mode->crtc_vsync_end - 1, 374 PV_VERTA_VBP) | 375 VC4_SET_FIELD(mode->crtc_vsync_end - 376 mode->crtc_vsync_start, 377 PV_VERTA_VSYNC)); 378 CRTC_WRITE(PV_VERTB_EVEN, 379 VC4_SET_FIELD(mode->crtc_vsync_start - 380 mode->crtc_vdisplay, 381 PV_VERTB_VFP) | 382 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 383 384 /* We set up first field even mode for HDMI. VEC's 385 * NTSC mode would want first field odd instead, once 386 * we support it (to do so, set ODD_FIRST and put the 387 * delay in VSYNCD_EVEN instead). 388 */ 389 CRTC_WRITE(PV_V_CONTROL, 390 PV_VCONTROL_CONTINUOUS | 391 (is_dsi ? PV_VCONTROL_DSI : 0) | 392 PV_VCONTROL_INTERLACE | 393 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 394 PV_VCONTROL_ODD_DELAY)); 395 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 396 } else { 397 CRTC_WRITE(PV_V_CONTROL, 398 PV_VCONTROL_CONTINUOUS | 399 (is_dsi ? PV_VCONTROL_DSI : 0)); 400 } 401 402 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 403 404 CRTC_WRITE(PV_CONTROL, 405 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 406 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 407 PV_CONTROL_FIFO_LEVEL) | 408 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 409 PV_CONTROL_CLR_AT_START | 410 PV_CONTROL_TRIGGER_UNDERFLOW | 411 PV_CONTROL_WAIT_HSTART | 412 VC4_SET_FIELD(vc4_encoder->clock_select, 413 PV_CONTROL_CLK_SELECT) | 414 PV_CONTROL_FIFO_CLR | 415 PV_CONTROL_EN); 416 } 417 418 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 419 { 420 struct drm_device *dev = crtc->dev; 421 struct vc4_dev *vc4 = to_vc4_dev(dev); 422 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 423 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 424 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 425 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 426 bool debug_dump_regs = false; 427 428 if (debug_dump_regs) { 429 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 430 vc4_crtc_dump_regs(vc4_crtc); 431 } 432 433 if (vc4_crtc->channel == 2) { 434 u32 dispctrl; 435 u32 dsp3_mux; 436 437 /* 438 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 439 * FIFO X'. 440 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 441 * 442 * DSP3 is connected to FIFO2 unless the transposer is 443 * enabled. In this case, FIFO 2 is directly accessed by the 444 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 445 * route. 446 */ 447 if (vc4_state->feed_txp) 448 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 449 else 450 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 451 452 dispctrl = HVS_READ(SCALER_DISPCTRL) & 453 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 454 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 455 } 456 457 if (!vc4_state->feed_txp) 458 vc4_crtc_config_pv(crtc); 459 460 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 461 SCALER_DISPBKGND_AUTOHS | 462 SCALER_DISPBKGND_GAMMA | 463 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 464 465 /* Reload the LUT, since the SRAMs would have been disabled if 466 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 467 */ 468 vc4_crtc_lut_load(crtc); 469 470 if (debug_dump_regs) { 471 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 472 vc4_crtc_dump_regs(vc4_crtc); 473 } 474 } 475 476 static void require_hvs_enabled(struct drm_device *dev) 477 { 478 struct vc4_dev *vc4 = to_vc4_dev(dev); 479 480 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 481 SCALER_DISPCTRL_ENABLE); 482 } 483 484 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 485 struct drm_crtc_state *old_state) 486 { 487 struct drm_device *dev = crtc->dev; 488 struct vc4_dev *vc4 = to_vc4_dev(dev); 489 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 490 u32 chan = vc4_crtc->channel; 491 int ret; 492 require_hvs_enabled(dev); 493 494 /* Disable vblank irq handling before crtc is disabled. */ 495 drm_crtc_vblank_off(crtc); 496 497 CRTC_WRITE(PV_V_CONTROL, 498 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 499 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 500 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 501 502 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 503 SCALER_DISPCTRLX_ENABLE) { 504 HVS_WRITE(SCALER_DISPCTRLX(chan), 505 SCALER_DISPCTRLX_RESET); 506 507 /* While the docs say that reset is self-clearing, it 508 * seems it doesn't actually. 509 */ 510 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 511 } 512 513 /* Once we leave, the scaler should be disabled and its fifo empty. */ 514 515 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 516 517 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 518 SCALER_DISPSTATX_MODE) != 519 SCALER_DISPSTATX_MODE_DISABLED); 520 521 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 522 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 523 SCALER_DISPSTATX_EMPTY); 524 525 /* 526 * Make sure we issue a vblank event after disabling the CRTC if 527 * someone was waiting it. 528 */ 529 if (crtc->state->event) { 530 unsigned long flags; 531 532 spin_lock_irqsave(&dev->event_lock, flags); 533 drm_crtc_send_vblank_event(crtc, crtc->state->event); 534 crtc->state->event = NULL; 535 spin_unlock_irqrestore(&dev->event_lock, flags); 536 } 537 } 538 539 void vc4_crtc_txp_armed(struct drm_crtc_state *state) 540 { 541 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 542 543 vc4_state->txp_armed = true; 544 } 545 546 static void vc4_crtc_update_dlist(struct drm_crtc *crtc) 547 { 548 struct drm_device *dev = crtc->dev; 549 struct vc4_dev *vc4 = to_vc4_dev(dev); 550 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 551 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 552 553 if (crtc->state->event) { 554 unsigned long flags; 555 556 crtc->state->event->pipe = drm_crtc_index(crtc); 557 558 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 559 560 spin_lock_irqsave(&dev->event_lock, flags); 561 562 if (!vc4_state->feed_txp || vc4_state->txp_armed) { 563 vc4_crtc->event = crtc->state->event; 564 crtc->state->event = NULL; 565 } 566 567 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 568 vc4_state->mm.start); 569 570 spin_unlock_irqrestore(&dev->event_lock, flags); 571 } else { 572 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 573 vc4_state->mm.start); 574 } 575 } 576 577 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 578 struct drm_crtc_state *old_state) 579 { 580 struct drm_device *dev = crtc->dev; 581 struct vc4_dev *vc4 = to_vc4_dev(dev); 582 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 583 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 584 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 585 586 require_hvs_enabled(dev); 587 588 /* Enable vblank irq handling before crtc is started otherwise 589 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 590 */ 591 drm_crtc_vblank_on(crtc); 592 vc4_crtc_update_dlist(crtc); 593 594 /* Turn on the scaler, which will wait for vstart to start 595 * compositing. 596 * When feeding the transposer, we should operate in oneshot 597 * mode. 598 */ 599 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 600 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 601 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 602 SCALER_DISPCTRLX_ENABLE | 603 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0)); 604 605 /* When feeding the transposer block the pixelvalve is unneeded and 606 * should not be enabled. 607 */ 608 if (!vc4_state->feed_txp) 609 CRTC_WRITE(PV_V_CONTROL, 610 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 611 } 612 613 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 614 const struct drm_display_mode *mode) 615 { 616 /* Do not allow doublescan modes from user space */ 617 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 618 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 619 crtc->base.id); 620 return MODE_NO_DBLESCAN; 621 } 622 623 return MODE_OK; 624 } 625 626 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 627 struct drm_crtc_state *state) 628 { 629 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 630 struct drm_device *dev = crtc->dev; 631 struct vc4_dev *vc4 = to_vc4_dev(dev); 632 struct drm_plane *plane; 633 unsigned long flags; 634 const struct drm_plane_state *plane_state; 635 struct drm_connector *conn; 636 struct drm_connector_state *conn_state; 637 u32 dlist_count = 0; 638 int ret, i; 639 640 /* The pixelvalve can only feed one encoder (and encoders are 641 * 1:1 with connectors.) 642 */ 643 if (hweight32(state->connector_mask) > 1) 644 return -EINVAL; 645 646 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 647 dlist_count += vc4_plane_dlist_size(plane_state); 648 649 dlist_count++; /* Account for SCALER_CTL0_END. */ 650 651 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 652 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 653 dlist_count); 654 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 655 if (ret) 656 return ret; 657 658 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 659 if (conn_state->crtc != crtc) 660 continue; 661 662 /* The writeback connector is implemented using the transposer 663 * block which is directly taking its data from the HVS FIFO. 664 */ 665 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) { 666 state->no_vblank = true; 667 vc4_state->feed_txp = true; 668 } else { 669 state->no_vblank = false; 670 vc4_state->feed_txp = false; 671 } 672 673 break; 674 } 675 676 return 0; 677 } 678 679 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 680 struct drm_crtc_state *old_state) 681 { 682 struct drm_device *dev = crtc->dev; 683 struct vc4_dev *vc4 = to_vc4_dev(dev); 684 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 685 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 686 struct drm_plane *plane; 687 struct vc4_plane_state *vc4_plane_state; 688 bool debug_dump_regs = false; 689 bool enable_bg_fill = false; 690 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 691 u32 __iomem *dlist_next = dlist_start; 692 693 if (debug_dump_regs) { 694 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 695 vc4_hvs_dump_state(dev); 696 } 697 698 /* Copy all the active planes' dlist contents to the hardware dlist. */ 699 drm_atomic_crtc_for_each_plane(plane, crtc) { 700 /* Is this the first active plane? */ 701 if (dlist_next == dlist_start) { 702 /* We need to enable background fill when a plane 703 * could be alpha blending from the background, i.e. 704 * where no other plane is underneath. It suffices to 705 * consider the first active plane here since we set 706 * needs_bg_fill such that either the first plane 707 * already needs it or all planes on top blend from 708 * the first or a lower plane. 709 */ 710 vc4_plane_state = to_vc4_plane_state(plane->state); 711 enable_bg_fill = vc4_plane_state->needs_bg_fill; 712 } 713 714 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 715 } 716 717 writel(SCALER_CTL0_END, dlist_next); 718 dlist_next++; 719 720 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 721 722 if (enable_bg_fill) 723 /* This sets a black background color fill, as is the case 724 * with other DRM drivers. 725 */ 726 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 727 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) | 728 SCALER_DISPBKGND_FILL); 729 730 /* Only update DISPLIST if the CRTC was already running and is not 731 * being disabled. 732 * vc4_crtc_enable() takes care of updating the dlist just after 733 * re-enabling VBLANK interrupts and before enabling the engine. 734 * If the CRTC is being disabled, there's no point in updating this 735 * information. 736 */ 737 if (crtc->state->active && old_state->active) 738 vc4_crtc_update_dlist(crtc); 739 740 if (crtc->state->color_mgmt_changed) { 741 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)); 742 743 if (crtc->state->gamma_lut) { 744 vc4_crtc_update_gamma_lut(crtc); 745 dispbkgndx |= SCALER_DISPBKGND_GAMMA; 746 } else { 747 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step 748 * in hardware, which is the same as a linear lut that 749 * DRM expects us to use in absence of a user lut. 750 */ 751 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 752 } 753 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx); 754 } 755 756 if (debug_dump_regs) { 757 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 758 vc4_hvs_dump_state(dev); 759 } 760 } 761 762 static int vc4_enable_vblank(struct drm_crtc *crtc) 763 { 764 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 765 766 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 767 768 return 0; 769 } 770 771 static void vc4_disable_vblank(struct drm_crtc *crtc) 772 { 773 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 774 775 CRTC_WRITE(PV_INTEN, 0); 776 } 777 778 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 779 { 780 struct drm_crtc *crtc = &vc4_crtc->base; 781 struct drm_device *dev = crtc->dev; 782 struct vc4_dev *vc4 = to_vc4_dev(dev); 783 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 784 u32 chan = vc4_crtc->channel; 785 unsigned long flags; 786 787 spin_lock_irqsave(&dev->event_lock, flags); 788 if (vc4_crtc->event && 789 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 790 vc4_state->feed_txp)) { 791 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 792 vc4_crtc->event = NULL; 793 drm_crtc_vblank_put(crtc); 794 } 795 spin_unlock_irqrestore(&dev->event_lock, flags); 796 } 797 798 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 799 { 800 crtc->t_vblank = ktime_get(); 801 drm_crtc_handle_vblank(&crtc->base); 802 vc4_crtc_handle_page_flip(crtc); 803 } 804 805 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 806 { 807 struct vc4_crtc *vc4_crtc = data; 808 u32 stat = CRTC_READ(PV_INTSTAT); 809 irqreturn_t ret = IRQ_NONE; 810 811 if (stat & PV_INT_VFP_START) { 812 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 813 vc4_crtc_handle_vblank(vc4_crtc); 814 ret = IRQ_HANDLED; 815 } 816 817 return ret; 818 } 819 820 struct vc4_async_flip_state { 821 struct drm_crtc *crtc; 822 struct drm_framebuffer *fb; 823 struct drm_framebuffer *old_fb; 824 struct drm_pending_vblank_event *event; 825 826 struct vc4_seqno_cb cb; 827 }; 828 829 /* Called when the V3D execution for the BO being flipped to is done, so that 830 * we can actually update the plane's address to point to it. 831 */ 832 static void 833 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 834 { 835 struct vc4_async_flip_state *flip_state = 836 container_of(cb, struct vc4_async_flip_state, cb); 837 struct drm_crtc *crtc = flip_state->crtc; 838 struct drm_device *dev = crtc->dev; 839 struct vc4_dev *vc4 = to_vc4_dev(dev); 840 struct drm_plane *plane = crtc->primary; 841 842 vc4_plane_async_set_fb(plane, flip_state->fb); 843 if (flip_state->event) { 844 unsigned long flags; 845 846 spin_lock_irqsave(&dev->event_lock, flags); 847 drm_crtc_send_vblank_event(crtc, flip_state->event); 848 spin_unlock_irqrestore(&dev->event_lock, flags); 849 } 850 851 drm_crtc_vblank_put(crtc); 852 drm_framebuffer_put(flip_state->fb); 853 854 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 855 * when the planes are updated through the async update path. 856 * FIXME: we should move to generic async-page-flip when it's 857 * available, so that we can get rid of this hand-made cleanup_fb() 858 * logic. 859 */ 860 if (flip_state->old_fb) { 861 struct drm_gem_cma_object *cma_bo; 862 struct vc4_bo *bo; 863 864 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 865 bo = to_vc4_bo(&cma_bo->base); 866 vc4_bo_dec_usecnt(bo); 867 drm_framebuffer_put(flip_state->old_fb); 868 } 869 870 kfree(flip_state); 871 872 up(&vc4->async_modeset); 873 } 874 875 /* Implements async (non-vblank-synced) page flips. 876 * 877 * The page flip ioctl needs to return immediately, so we grab the 878 * modeset semaphore on the pipe, and queue the address update for 879 * when V3D is done with the BO being flipped to. 880 */ 881 static int vc4_async_page_flip(struct drm_crtc *crtc, 882 struct drm_framebuffer *fb, 883 struct drm_pending_vblank_event *event, 884 uint32_t flags) 885 { 886 struct drm_device *dev = crtc->dev; 887 struct vc4_dev *vc4 = to_vc4_dev(dev); 888 struct drm_plane *plane = crtc->primary; 889 int ret = 0; 890 struct vc4_async_flip_state *flip_state; 891 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 892 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 893 894 /* Increment the BO usecnt here, so that we never end up with an 895 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 896 * plane is later updated through the non-async path. 897 * FIXME: we should move to generic async-page-flip when it's 898 * available, so that we can get rid of this hand-made prepare_fb() 899 * logic. 900 */ 901 ret = vc4_bo_inc_usecnt(bo); 902 if (ret) 903 return ret; 904 905 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 906 if (!flip_state) { 907 vc4_bo_dec_usecnt(bo); 908 return -ENOMEM; 909 } 910 911 drm_framebuffer_get(fb); 912 flip_state->fb = fb; 913 flip_state->crtc = crtc; 914 flip_state->event = event; 915 916 /* Make sure all other async modesetes have landed. */ 917 ret = down_interruptible(&vc4->async_modeset); 918 if (ret) { 919 drm_framebuffer_put(fb); 920 vc4_bo_dec_usecnt(bo); 921 kfree(flip_state); 922 return ret; 923 } 924 925 /* Save the current FB before it's replaced by the new one in 926 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 927 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 928 * it consistent. 929 * FIXME: we should move to generic async-page-flip when it's 930 * available, so that we can get rid of this hand-made cleanup_fb() 931 * logic. 932 */ 933 flip_state->old_fb = plane->state->fb; 934 if (flip_state->old_fb) 935 drm_framebuffer_get(flip_state->old_fb); 936 937 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 938 939 /* Immediately update the plane's legacy fb pointer, so that later 940 * modeset prep sees the state that will be present when the semaphore 941 * is released. 942 */ 943 drm_atomic_set_fb_for_plane(plane->state, fb); 944 945 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 946 vc4_async_page_flip_complete); 947 948 /* Driver takes ownership of state on successful async commit. */ 949 return 0; 950 } 951 952 static int vc4_page_flip(struct drm_crtc *crtc, 953 struct drm_framebuffer *fb, 954 struct drm_pending_vblank_event *event, 955 uint32_t flags, 956 struct drm_modeset_acquire_ctx *ctx) 957 { 958 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 959 return vc4_async_page_flip(crtc, fb, event, flags); 960 else 961 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 962 } 963 964 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 965 { 966 struct vc4_crtc_state *vc4_state, *old_vc4_state; 967 968 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 969 if (!vc4_state) 970 return NULL; 971 972 old_vc4_state = to_vc4_crtc_state(crtc->state); 973 vc4_state->feed_txp = old_vc4_state->feed_txp; 974 975 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 976 return &vc4_state->base; 977 } 978 979 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 980 struct drm_crtc_state *state) 981 { 982 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 983 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 984 985 if (vc4_state->mm.allocated) { 986 unsigned long flags; 987 988 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 989 drm_mm_remove_node(&vc4_state->mm); 990 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 991 992 } 993 994 drm_atomic_helper_crtc_destroy_state(crtc, state); 995 } 996 997 static void 998 vc4_crtc_reset(struct drm_crtc *crtc) 999 { 1000 if (crtc->state) 1001 __drm_atomic_helper_crtc_destroy_state(crtc->state); 1002 1003 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 1004 if (crtc->state) 1005 crtc->state->crtc = crtc; 1006 } 1007 1008 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1009 .set_config = drm_atomic_helper_set_config, 1010 .destroy = vc4_crtc_destroy, 1011 .page_flip = vc4_page_flip, 1012 .set_property = NULL, 1013 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1014 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1015 .reset = vc4_crtc_reset, 1016 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1017 .atomic_destroy_state = vc4_crtc_destroy_state, 1018 .gamma_set = drm_atomic_helper_legacy_gamma_set, 1019 .enable_vblank = vc4_enable_vblank, 1020 .disable_vblank = vc4_disable_vblank, 1021 }; 1022 1023 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1024 .mode_set_nofb = vc4_crtc_mode_set_nofb, 1025 .mode_valid = vc4_crtc_mode_valid, 1026 .atomic_check = vc4_crtc_atomic_check, 1027 .atomic_flush = vc4_crtc_atomic_flush, 1028 .atomic_enable = vc4_crtc_atomic_enable, 1029 .atomic_disable = vc4_crtc_atomic_disable, 1030 }; 1031 1032 static const struct vc4_crtc_data pv0_data = { 1033 .hvs_channel = 0, 1034 .encoder_types = { 1035 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1036 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1037 }, 1038 }; 1039 1040 static const struct vc4_crtc_data pv1_data = { 1041 .hvs_channel = 2, 1042 .encoder_types = { 1043 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1044 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1045 }, 1046 }; 1047 1048 static const struct vc4_crtc_data pv2_data = { 1049 .hvs_channel = 1, 1050 .encoder_types = { 1051 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 1052 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1053 }, 1054 }; 1055 1056 static const struct of_device_id vc4_crtc_dt_match[] = { 1057 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 1058 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 1059 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 1060 {} 1061 }; 1062 1063 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1064 struct drm_crtc *crtc) 1065 { 1066 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1067 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 1068 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 1069 struct drm_encoder *encoder; 1070 1071 drm_for_each_encoder(encoder, drm) { 1072 struct vc4_encoder *vc4_encoder; 1073 int i; 1074 1075 /* HVS FIFO2 can feed the TXP IP. */ 1076 if (crtc_data->hvs_channel == 2 && 1077 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 1078 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1079 continue; 1080 } 1081 1082 vc4_encoder = to_vc4_encoder(encoder); 1083 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 1084 if (vc4_encoder->type == encoder_types[i]) { 1085 vc4_encoder->clock_select = i; 1086 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1087 break; 1088 } 1089 } 1090 } 1091 } 1092 1093 static void 1094 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 1095 { 1096 struct drm_device *drm = vc4_crtc->base.dev; 1097 struct vc4_dev *vc4 = to_vc4_dev(drm); 1098 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 1099 /* Top/base are supposed to be 4-pixel aligned, but the 1100 * Raspberry Pi firmware fills the low bits (which are 1101 * presumably ignored). 1102 */ 1103 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 1104 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 1105 1106 vc4_crtc->cob_size = top - base + 4; 1107 } 1108 1109 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1110 { 1111 struct platform_device *pdev = to_platform_device(dev); 1112 struct drm_device *drm = dev_get_drvdata(master); 1113 struct vc4_crtc *vc4_crtc; 1114 struct drm_crtc *crtc; 1115 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 1116 const struct of_device_id *match; 1117 int ret, i; 1118 1119 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1120 if (!vc4_crtc) 1121 return -ENOMEM; 1122 crtc = &vc4_crtc->base; 1123 1124 match = of_match_device(vc4_crtc_dt_match, dev); 1125 if (!match) 1126 return -ENODEV; 1127 vc4_crtc->data = match->data; 1128 1129 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1130 if (IS_ERR(vc4_crtc->regs)) 1131 return PTR_ERR(vc4_crtc->regs); 1132 1133 /* For now, we create just the primary and the legacy cursor 1134 * planes. We should be able to stack more planes on easily, 1135 * but to do that we would need to compute the bandwidth 1136 * requirement of the plane configuration, and reject ones 1137 * that will take too much. 1138 */ 1139 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1140 if (IS_ERR(primary_plane)) { 1141 dev_err(dev, "failed to construct primary plane\n"); 1142 ret = PTR_ERR(primary_plane); 1143 goto err; 1144 } 1145 1146 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1147 &vc4_crtc_funcs, NULL); 1148 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 1149 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 1150 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1151 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1152 1153 /* We support CTM, but only for one CRTC at a time. It's therefore 1154 * implemented as private driver state in vc4_kms, not here. 1155 */ 1156 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1157 1158 /* Set up some arbitrary number of planes. We're not limited 1159 * by a set number of physical registers, just the space in 1160 * the HVS (16k) and how small an plane can be (28 bytes). 1161 * However, each plane we set up takes up some memory, and 1162 * increases the cost of looping over planes, which atomic 1163 * modesetting does quite a bit. As a result, we pick a 1164 * modest number of planes to expose, that should hopefully 1165 * still cover any sane usecase. 1166 */ 1167 for (i = 0; i < 8; i++) { 1168 struct drm_plane *plane = 1169 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1170 1171 if (IS_ERR(plane)) 1172 continue; 1173 1174 plane->possible_crtcs = drm_crtc_mask(crtc); 1175 } 1176 1177 /* Set up the legacy cursor after overlay initialization, 1178 * since we overlay planes on the CRTC in the order they were 1179 * initialized. 1180 */ 1181 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1182 if (!IS_ERR(cursor_plane)) { 1183 cursor_plane->possible_crtcs = drm_crtc_mask(crtc); 1184 crtc->cursor = cursor_plane; 1185 } 1186 1187 vc4_crtc_get_cob_allocation(vc4_crtc); 1188 1189 CRTC_WRITE(PV_INTEN, 0); 1190 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1191 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1192 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1193 if (ret) 1194 goto err_destroy_planes; 1195 1196 vc4_set_crtc_possible_masks(drm, crtc); 1197 1198 for (i = 0; i < crtc->gamma_size; i++) { 1199 vc4_crtc->lut_r[i] = i; 1200 vc4_crtc->lut_g[i] = i; 1201 vc4_crtc->lut_b[i] = i; 1202 } 1203 1204 platform_set_drvdata(pdev, vc4_crtc); 1205 1206 return 0; 1207 1208 err_destroy_planes: 1209 list_for_each_entry_safe(destroy_plane, temp, 1210 &drm->mode_config.plane_list, head) { 1211 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1212 destroy_plane->funcs->destroy(destroy_plane); 1213 } 1214 err: 1215 return ret; 1216 } 1217 1218 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1219 void *data) 1220 { 1221 struct platform_device *pdev = to_platform_device(dev); 1222 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1223 1224 vc4_crtc_destroy(&vc4_crtc->base); 1225 1226 CRTC_WRITE(PV_INTEN, 0); 1227 1228 platform_set_drvdata(pdev, NULL); 1229 } 1230 1231 static const struct component_ops vc4_crtc_ops = { 1232 .bind = vc4_crtc_bind, 1233 .unbind = vc4_crtc_unbind, 1234 }; 1235 1236 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1237 { 1238 return component_add(&pdev->dev, &vc4_crtc_ops); 1239 } 1240 1241 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1242 { 1243 component_del(&pdev->dev, &vc4_crtc_ops); 1244 return 0; 1245 } 1246 1247 struct platform_driver vc4_crtc_driver = { 1248 .probe = vc4_crtc_dev_probe, 1249 .remove = vc4_crtc_dev_remove, 1250 .driver = { 1251 .name = "vc4_crtc", 1252 .of_match_table = vc4_crtc_dt_match, 1253 }, 1254 }; 1255