1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/component.h> 34 #include <linux/of_device.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_fb_cma_helper.h> 40 #include <drm/drm_print.h> 41 #include <drm/drm_probe_helper.h> 42 #include <drm/drm_vblank.h> 43 44 #include "vc4_drv.h" 45 #include "vc4_regs.h" 46 47 #define HVS_FIFO_LATENCY_PIX 6 48 49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 51 52 static const struct debugfs_reg32 crtc_regs[] = { 53 VC4_REG32(PV_CONTROL), 54 VC4_REG32(PV_V_CONTROL), 55 VC4_REG32(PV_VSYNCD_EVEN), 56 VC4_REG32(PV_HORZA), 57 VC4_REG32(PV_HORZB), 58 VC4_REG32(PV_VERTA), 59 VC4_REG32(PV_VERTB), 60 VC4_REG32(PV_VERTA_EVEN), 61 VC4_REG32(PV_VERTB_EVEN), 62 VC4_REG32(PV_INTEN), 63 VC4_REG32(PV_INTSTAT), 64 VC4_REG32(PV_STAT), 65 VC4_REG32(PV_HACT_ACT), 66 }; 67 68 static unsigned int 69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) 70 { 71 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); 72 /* Top/base are supposed to be 4-pixel aligned, but the 73 * Raspberry Pi firmware fills the low bits (which are 74 * presumably ignored). 75 */ 76 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 77 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 78 79 return top - base + 4; 80 } 81 82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, 83 bool in_vblank_irq, 84 int *vpos, int *hpos, 85 ktime_t *stime, ktime_t *etime, 86 const struct drm_display_mode *mode) 87 { 88 struct drm_device *dev = crtc->dev; 89 struct vc4_dev *vc4 = to_vc4_dev(dev); 90 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 91 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 92 unsigned int cob_size; 93 u32 val; 94 int fifo_lines; 95 int vblank_lines; 96 bool ret = false; 97 98 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 99 100 /* Get optional system timestamp before query. */ 101 if (stime) 102 *stime = ktime_get(); 103 104 /* 105 * Read vertical scanline which is currently composed for our 106 * pixelvalve by the HVS, and also the scaler status. 107 */ 108 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); 109 110 /* Get optional system timestamp after query. */ 111 if (etime) 112 *etime = ktime_get(); 113 114 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 115 116 /* Vertical position of hvs composed scanline. */ 117 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 118 *hpos = 0; 119 120 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 121 *vpos /= 2; 122 123 /* Use hpos to correct for field offset in interlaced mode. */ 124 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 125 *hpos += mode->crtc_htotal / 2; 126 } 127 128 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); 129 /* This is the offset we need for translating hvs -> pv scanout pos. */ 130 fifo_lines = cob_size / mode->crtc_hdisplay; 131 132 if (fifo_lines > 0) 133 ret = true; 134 135 /* HVS more than fifo_lines into frame for compositing? */ 136 if (*vpos > fifo_lines) { 137 /* 138 * We are in active scanout and can get some meaningful results 139 * from HVS. The actual PV scanout can not trail behind more 140 * than fifo_lines as that is the fifo's capacity. Assume that 141 * in active scanout the HVS and PV work in lockstep wrt. HVS 142 * refilling the fifo and PV consuming from the fifo, ie. 143 * whenever the PV consumes and frees up a scanline in the 144 * fifo, the HVS will immediately refill it, therefore 145 * incrementing vpos. Therefore we choose HVS read position - 146 * fifo size in scanlines as a estimate of the real scanout 147 * position of the PV. 148 */ 149 *vpos -= fifo_lines + 1; 150 151 return ret; 152 } 153 154 /* 155 * Less: This happens when we are in vblank and the HVS, after getting 156 * the VSTART restart signal from the PV, just started refilling its 157 * fifo with new lines from the top-most lines of the new framebuffers. 158 * The PV does not scan out in vblank, so does not remove lines from 159 * the fifo, so the fifo will be full quickly and the HVS has to pause. 160 * We can't get meaningful readings wrt. scanline position of the PV 161 * and need to make things up in a approximative but consistent way. 162 */ 163 vblank_lines = mode->vtotal - mode->vdisplay; 164 165 if (in_vblank_irq) { 166 /* 167 * Assume the irq handler got called close to first 168 * line of vblank, so PV has about a full vblank 169 * scanlines to go, and as a base timestamp use the 170 * one taken at entry into vblank irq handler, so it 171 * is not affected by random delays due to lock 172 * contention on event_lock or vblank_time lock in 173 * the core. 174 */ 175 *vpos = -vblank_lines; 176 177 if (stime) 178 *stime = vc4_crtc->t_vblank; 179 if (etime) 180 *etime = vc4_crtc->t_vblank; 181 182 /* 183 * If the HVS fifo is not yet full then we know for certain 184 * we are at the very beginning of vblank, as the hvs just 185 * started refilling, and the stime and etime timestamps 186 * truly correspond to start of vblank. 187 * 188 * Unfortunately there's no way to report this to upper levels 189 * and make it more useful. 190 */ 191 } else { 192 /* 193 * No clue where we are inside vblank. Return a vpos of zero, 194 * which will cause calling code to just return the etime 195 * timestamp uncorrected. At least this is no worse than the 196 * standard fallback. 197 */ 198 *vpos = 0; 199 } 200 201 return ret; 202 } 203 204 void vc4_crtc_destroy(struct drm_crtc *crtc) 205 { 206 drm_crtc_cleanup(crtc); 207 } 208 209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) 210 { 211 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 212 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 213 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); 214 u32 fifo_len_bytes = pv_data->fifo_depth; 215 216 /* 217 * Pixels are pulled from the HVS if the number of bytes is 218 * lower than the FIFO full level. 219 * 220 * The latency of the pixel fetch mechanism is 6 pixels, so we 221 * need to convert those 6 pixels in bytes, depending on the 222 * format, and then subtract that from the length of the FIFO 223 * to make sure we never end up in a situation where the FIFO 224 * is full. 225 */ 226 switch (format) { 227 case PV_CONTROL_FORMAT_DSIV_16: 228 case PV_CONTROL_FORMAT_DSIC_16: 229 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; 230 case PV_CONTROL_FORMAT_DSIV_18: 231 return fifo_len_bytes - 14; 232 case PV_CONTROL_FORMAT_24: 233 case PV_CONTROL_FORMAT_DSIV_24: 234 default: 235 /* 236 * For some reason, the pixelvalve4 doesn't work with 237 * the usual formula and will only work with 32. 238 */ 239 if (crtc_data->hvs_output == 5) 240 return 32; 241 242 /* 243 * It looks like in some situations, we will overflow 244 * the PixelValve FIFO (with the bit 10 of PV stat being 245 * set) and stall the HVS / PV, eventually resulting in 246 * a page flip timeout. 247 * 248 * Displaying the video overlay during a playback with 249 * Kodi on an RPi3 seems to be a great solution with a 250 * failure rate around 50%. 251 * 252 * Removing 1 from the FIFO full level however 253 * seems to completely remove that issue. 254 */ 255 if (!vc4->hvs->hvs5) 256 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; 257 258 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; 259 } 260 } 261 262 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, 263 u32 format) 264 { 265 u32 level = vc4_get_fifo_full_level(vc4_crtc, format); 266 u32 ret = 0; 267 268 ret |= VC4_SET_FIELD((level >> 6), 269 PV5_CONTROL_FIFO_LEVEL_HIGH); 270 271 return ret | VC4_SET_FIELD(level & 0x3f, 272 PV_CONTROL_FIFO_LEVEL); 273 } 274 275 /* 276 * Returns the encoder attached to the CRTC. 277 * 278 * VC4 can only scan out to one encoder at a time, while the DRM core 279 * allows drivers to push pixels to more than one encoder from the 280 * same CRTC. 281 */ 282 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 283 { 284 struct drm_connector *connector; 285 struct drm_connector_list_iter conn_iter; 286 287 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 288 drm_for_each_connector_iter(connector, &conn_iter) { 289 if (connector->state->crtc == crtc) { 290 drm_connector_list_iter_end(&conn_iter); 291 return connector->encoder; 292 } 293 } 294 drm_connector_list_iter_end(&conn_iter); 295 296 return NULL; 297 } 298 299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) 300 { 301 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 302 303 /* The PV needs to be disabled before it can be flushed */ 304 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); 305 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); 306 } 307 308 static void vc4_crtc_config_pv(struct drm_crtc *crtc) 309 { 310 struct drm_device *dev = crtc->dev; 311 struct vc4_dev *vc4 = to_vc4_dev(dev); 312 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 313 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 314 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 315 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 316 struct drm_crtc_state *state = crtc->state; 317 struct drm_display_mode *mode = &state->adjusted_mode; 318 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 319 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 320 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 321 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 322 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 323 u8 ppc = pv_data->pixels_per_clock; 324 bool debug_dump_regs = false; 325 326 if (debug_dump_regs) { 327 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 328 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 329 drm_crtc_index(crtc)); 330 drm_print_regset32(&p, &vc4_crtc->regset); 331 } 332 333 vc4_crtc_pixelvalve_reset(crtc); 334 335 CRTC_WRITE(PV_HORZA, 336 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, 337 PV_HORZA_HBP) | 338 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, 339 PV_HORZA_HSYNC)); 340 341 CRTC_WRITE(PV_HORZB, 342 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, 343 PV_HORZB_HFP) | 344 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, 345 PV_HORZB_HACTIVE)); 346 347 CRTC_WRITE(PV_VERTA, 348 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 349 PV_VERTA_VBP) | 350 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 351 PV_VERTA_VSYNC)); 352 CRTC_WRITE(PV_VERTB, 353 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 354 PV_VERTB_VFP) | 355 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 356 357 if (interlace) { 358 CRTC_WRITE(PV_VERTA_EVEN, 359 VC4_SET_FIELD(mode->crtc_vtotal - 360 mode->crtc_vsync_end - 1, 361 PV_VERTA_VBP) | 362 VC4_SET_FIELD(mode->crtc_vsync_end - 363 mode->crtc_vsync_start, 364 PV_VERTA_VSYNC)); 365 CRTC_WRITE(PV_VERTB_EVEN, 366 VC4_SET_FIELD(mode->crtc_vsync_start - 367 mode->crtc_vdisplay, 368 PV_VERTB_VFP) | 369 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 370 371 /* We set up first field even mode for HDMI. VEC's 372 * NTSC mode would want first field odd instead, once 373 * we support it (to do so, set ODD_FIRST and put the 374 * delay in VSYNCD_EVEN instead). 375 */ 376 CRTC_WRITE(PV_V_CONTROL, 377 PV_VCONTROL_CONTINUOUS | 378 (is_dsi ? PV_VCONTROL_DSI : 0) | 379 PV_VCONTROL_INTERLACE | 380 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 381 PV_VCONTROL_ODD_DELAY)); 382 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 383 } else { 384 CRTC_WRITE(PV_V_CONTROL, 385 PV_VCONTROL_CONTINUOUS | 386 (is_dsi ? PV_VCONTROL_DSI : 0)); 387 } 388 389 if (is_dsi) 390 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 391 392 if (vc4->hvs->hvs5) 393 CRTC_WRITE(PV_MUX_CFG, 394 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, 395 PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); 396 397 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | 398 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | 399 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 400 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 401 PV_CONTROL_CLR_AT_START | 402 PV_CONTROL_TRIGGER_UNDERFLOW | 403 PV_CONTROL_WAIT_HSTART | 404 VC4_SET_FIELD(vc4_encoder->clock_select, 405 PV_CONTROL_CLK_SELECT)); 406 407 if (debug_dump_regs) { 408 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 409 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 410 drm_crtc_index(crtc)); 411 drm_print_regset32(&p, &vc4_crtc->regset); 412 } 413 } 414 415 static void require_hvs_enabled(struct drm_device *dev) 416 { 417 struct vc4_dev *vc4 = to_vc4_dev(dev); 418 419 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 420 SCALER_DISPCTRL_ENABLE); 421 } 422 423 static int vc4_crtc_disable(struct drm_crtc *crtc, 424 struct drm_atomic_state *state, 425 unsigned int channel) 426 { 427 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 428 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 429 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 430 struct drm_device *dev = crtc->dev; 431 int ret; 432 433 CRTC_WRITE(PV_V_CONTROL, 434 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 435 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 436 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 437 438 /* 439 * This delay is needed to avoid to get a pixel stuck in an 440 * unflushable FIFO between the pixelvalve and the HDMI 441 * controllers on the BCM2711. 442 * 443 * Timing is fairly sensitive here, so mdelay is the safest 444 * approach. 445 * 446 * If it was to be reworked, the stuck pixel happens on a 447 * BCM2711 when changing mode with a good probability, so a 448 * script that changes mode on a regular basis should trigger 449 * the bug after less than 10 attempts. It manifests itself with 450 * every pixels being shifted by one to the right, and thus the 451 * last pixel of a line actually being displayed as the first 452 * pixel on the next line. 453 */ 454 mdelay(20); 455 456 if (vc4_encoder && vc4_encoder->post_crtc_disable) 457 vc4_encoder->post_crtc_disable(encoder, state); 458 459 vc4_crtc_pixelvalve_reset(crtc); 460 vc4_hvs_stop_channel(dev, channel); 461 462 if (vc4_encoder && vc4_encoder->post_crtc_powerdown) 463 vc4_encoder->post_crtc_powerdown(encoder, state); 464 465 return 0; 466 } 467 468 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) 469 { 470 struct drm_device *drm = crtc->dev; 471 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 472 int channel; 473 474 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 475 "brcm,bcm2711-pixelvalve2") || 476 of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 477 "brcm,bcm2711-pixelvalve4"))) 478 return 0; 479 480 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) 481 return 0; 482 483 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) 484 return 0; 485 486 channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output); 487 if (channel < 0) 488 return 0; 489 490 return vc4_crtc_disable(crtc, NULL, channel); 491 } 492 493 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 494 struct drm_atomic_state *state) 495 { 496 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 497 crtc); 498 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); 499 struct drm_device *dev = crtc->dev; 500 501 require_hvs_enabled(dev); 502 503 /* Disable vblank irq handling before crtc is disabled. */ 504 drm_crtc_vblank_off(crtc); 505 506 vc4_crtc_disable(crtc, state, old_vc4_state->assigned_channel); 507 508 /* 509 * Make sure we issue a vblank event after disabling the CRTC if 510 * someone was waiting it. 511 */ 512 if (crtc->state->event) { 513 unsigned long flags; 514 515 spin_lock_irqsave(&dev->event_lock, flags); 516 drm_crtc_send_vblank_event(crtc, crtc->state->event); 517 crtc->state->event = NULL; 518 spin_unlock_irqrestore(&dev->event_lock, flags); 519 } 520 } 521 522 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 523 struct drm_atomic_state *state) 524 { 525 struct drm_device *dev = crtc->dev; 526 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 527 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 528 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 529 530 require_hvs_enabled(dev); 531 532 /* Enable vblank irq handling before crtc is started otherwise 533 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 534 */ 535 drm_crtc_vblank_on(crtc); 536 537 vc4_hvs_atomic_enable(crtc, state); 538 539 if (vc4_encoder->pre_crtc_configure) 540 vc4_encoder->pre_crtc_configure(encoder, state); 541 542 vc4_crtc_config_pv(crtc); 543 544 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); 545 546 if (vc4_encoder->pre_crtc_enable) 547 vc4_encoder->pre_crtc_enable(encoder, state); 548 549 /* When feeding the transposer block the pixelvalve is unneeded and 550 * should not be enabled. 551 */ 552 CRTC_WRITE(PV_V_CONTROL, 553 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 554 555 if (vc4_encoder->post_crtc_enable) 556 vc4_encoder->post_crtc_enable(encoder, state); 557 } 558 559 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 560 const struct drm_display_mode *mode) 561 { 562 /* Do not allow doublescan modes from user space */ 563 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 564 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 565 crtc->base.id); 566 return MODE_NO_DBLESCAN; 567 } 568 569 return MODE_OK; 570 } 571 572 void vc4_crtc_get_margins(struct drm_crtc_state *state, 573 unsigned int *left, unsigned int *right, 574 unsigned int *top, unsigned int *bottom) 575 { 576 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 577 struct drm_connector_state *conn_state; 578 struct drm_connector *conn; 579 int i; 580 581 *left = vc4_state->margins.left; 582 *right = vc4_state->margins.right; 583 *top = vc4_state->margins.top; 584 *bottom = vc4_state->margins.bottom; 585 586 /* We have to interate over all new connector states because 587 * vc4_crtc_get_margins() might be called before 588 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 589 * might be outdated. 590 */ 591 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 592 if (conn_state->crtc != state->crtc) 593 continue; 594 595 *left = conn_state->tv.margins.left; 596 *right = conn_state->tv.margins.right; 597 *top = conn_state->tv.margins.top; 598 *bottom = conn_state->tv.margins.bottom; 599 break; 600 } 601 } 602 603 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 604 struct drm_atomic_state *state) 605 { 606 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 607 crtc); 608 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 609 struct drm_connector *conn; 610 struct drm_connector_state *conn_state; 611 int ret, i; 612 613 ret = vc4_hvs_atomic_check(crtc, state); 614 if (ret) 615 return ret; 616 617 for_each_new_connector_in_state(state, conn, conn_state, 618 i) { 619 if (conn_state->crtc != crtc) 620 continue; 621 622 vc4_state->margins.left = conn_state->tv.margins.left; 623 vc4_state->margins.right = conn_state->tv.margins.right; 624 vc4_state->margins.top = conn_state->tv.margins.top; 625 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 626 break; 627 } 628 629 return 0; 630 } 631 632 static int vc4_enable_vblank(struct drm_crtc *crtc) 633 { 634 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 635 636 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 637 638 return 0; 639 } 640 641 static void vc4_disable_vblank(struct drm_crtc *crtc) 642 { 643 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 644 645 CRTC_WRITE(PV_INTEN, 0); 646 } 647 648 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 649 { 650 struct drm_crtc *crtc = &vc4_crtc->base; 651 struct drm_device *dev = crtc->dev; 652 struct vc4_dev *vc4 = to_vc4_dev(dev); 653 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 654 u32 chan = vc4_state->assigned_channel; 655 unsigned long flags; 656 657 spin_lock_irqsave(&dev->event_lock, flags); 658 if (vc4_crtc->event && 659 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 660 vc4_state->feed_txp)) { 661 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 662 vc4_crtc->event = NULL; 663 drm_crtc_vblank_put(crtc); 664 665 /* Wait for the page flip to unmask the underrun to ensure that 666 * the display list was updated by the hardware. Before that 667 * happens, the HVS will be using the previous display list with 668 * the CRTC and encoder already reconfigured, leading to 669 * underruns. This can be seen when reconfiguring the CRTC. 670 */ 671 vc4_hvs_unmask_underrun(dev, chan); 672 } 673 spin_unlock_irqrestore(&dev->event_lock, flags); 674 } 675 676 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 677 { 678 crtc->t_vblank = ktime_get(); 679 drm_crtc_handle_vblank(&crtc->base); 680 vc4_crtc_handle_page_flip(crtc); 681 } 682 683 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 684 { 685 struct vc4_crtc *vc4_crtc = data; 686 u32 stat = CRTC_READ(PV_INTSTAT); 687 irqreturn_t ret = IRQ_NONE; 688 689 if (stat & PV_INT_VFP_START) { 690 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 691 vc4_crtc_handle_vblank(vc4_crtc); 692 ret = IRQ_HANDLED; 693 } 694 695 return ret; 696 } 697 698 struct vc4_async_flip_state { 699 struct drm_crtc *crtc; 700 struct drm_framebuffer *fb; 701 struct drm_framebuffer *old_fb; 702 struct drm_pending_vblank_event *event; 703 704 struct vc4_seqno_cb cb; 705 }; 706 707 /* Called when the V3D execution for the BO being flipped to is done, so that 708 * we can actually update the plane's address to point to it. 709 */ 710 static void 711 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 712 { 713 struct vc4_async_flip_state *flip_state = 714 container_of(cb, struct vc4_async_flip_state, cb); 715 struct drm_crtc *crtc = flip_state->crtc; 716 struct drm_device *dev = crtc->dev; 717 struct drm_plane *plane = crtc->primary; 718 719 vc4_plane_async_set_fb(plane, flip_state->fb); 720 if (flip_state->event) { 721 unsigned long flags; 722 723 spin_lock_irqsave(&dev->event_lock, flags); 724 drm_crtc_send_vblank_event(crtc, flip_state->event); 725 spin_unlock_irqrestore(&dev->event_lock, flags); 726 } 727 728 drm_crtc_vblank_put(crtc); 729 drm_framebuffer_put(flip_state->fb); 730 731 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 732 * when the planes are updated through the async update path. 733 * FIXME: we should move to generic async-page-flip when it's 734 * available, so that we can get rid of this hand-made cleanup_fb() 735 * logic. 736 */ 737 if (flip_state->old_fb) { 738 struct drm_gem_cma_object *cma_bo; 739 struct vc4_bo *bo; 740 741 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 742 bo = to_vc4_bo(&cma_bo->base); 743 vc4_bo_dec_usecnt(bo); 744 drm_framebuffer_put(flip_state->old_fb); 745 } 746 747 kfree(flip_state); 748 } 749 750 /* Implements async (non-vblank-synced) page flips. 751 * 752 * The page flip ioctl needs to return immediately, so we grab the 753 * modeset semaphore on the pipe, and queue the address update for 754 * when V3D is done with the BO being flipped to. 755 */ 756 static int vc4_async_page_flip(struct drm_crtc *crtc, 757 struct drm_framebuffer *fb, 758 struct drm_pending_vblank_event *event, 759 uint32_t flags) 760 { 761 struct drm_device *dev = crtc->dev; 762 struct drm_plane *plane = crtc->primary; 763 int ret = 0; 764 struct vc4_async_flip_state *flip_state; 765 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 766 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 767 768 /* Increment the BO usecnt here, so that we never end up with an 769 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 770 * plane is later updated through the non-async path. 771 * FIXME: we should move to generic async-page-flip when it's 772 * available, so that we can get rid of this hand-made prepare_fb() 773 * logic. 774 */ 775 ret = vc4_bo_inc_usecnt(bo); 776 if (ret) 777 return ret; 778 779 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 780 if (!flip_state) { 781 vc4_bo_dec_usecnt(bo); 782 return -ENOMEM; 783 } 784 785 drm_framebuffer_get(fb); 786 flip_state->fb = fb; 787 flip_state->crtc = crtc; 788 flip_state->event = event; 789 790 /* Save the current FB before it's replaced by the new one in 791 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 792 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 793 * it consistent. 794 * FIXME: we should move to generic async-page-flip when it's 795 * available, so that we can get rid of this hand-made cleanup_fb() 796 * logic. 797 */ 798 flip_state->old_fb = plane->state->fb; 799 if (flip_state->old_fb) 800 drm_framebuffer_get(flip_state->old_fb); 801 802 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 803 804 /* Immediately update the plane's legacy fb pointer, so that later 805 * modeset prep sees the state that will be present when the semaphore 806 * is released. 807 */ 808 drm_atomic_set_fb_for_plane(plane->state, fb); 809 810 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 811 vc4_async_page_flip_complete); 812 813 /* Driver takes ownership of state on successful async commit. */ 814 return 0; 815 } 816 817 int vc4_page_flip(struct drm_crtc *crtc, 818 struct drm_framebuffer *fb, 819 struct drm_pending_vblank_event *event, 820 uint32_t flags, 821 struct drm_modeset_acquire_ctx *ctx) 822 { 823 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 824 return vc4_async_page_flip(crtc, fb, event, flags); 825 else 826 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 827 } 828 829 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 830 { 831 struct vc4_crtc_state *vc4_state, *old_vc4_state; 832 833 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 834 if (!vc4_state) 835 return NULL; 836 837 old_vc4_state = to_vc4_crtc_state(crtc->state); 838 vc4_state->feed_txp = old_vc4_state->feed_txp; 839 vc4_state->margins = old_vc4_state->margins; 840 vc4_state->assigned_channel = old_vc4_state->assigned_channel; 841 842 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 843 return &vc4_state->base; 844 } 845 846 void vc4_crtc_destroy_state(struct drm_crtc *crtc, 847 struct drm_crtc_state *state) 848 { 849 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 850 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 851 852 if (drm_mm_node_allocated(&vc4_state->mm)) { 853 unsigned long flags; 854 855 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 856 drm_mm_remove_node(&vc4_state->mm); 857 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 858 859 } 860 861 drm_atomic_helper_crtc_destroy_state(crtc, state); 862 } 863 864 void vc4_crtc_reset(struct drm_crtc *crtc) 865 { 866 struct vc4_crtc_state *vc4_crtc_state; 867 868 if (crtc->state) 869 vc4_crtc_destroy_state(crtc, crtc->state); 870 871 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); 872 if (!vc4_crtc_state) { 873 crtc->state = NULL; 874 return; 875 } 876 877 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 878 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); 879 } 880 881 static const struct drm_crtc_funcs vc4_crtc_funcs = { 882 .set_config = drm_atomic_helper_set_config, 883 .destroy = vc4_crtc_destroy, 884 .page_flip = vc4_page_flip, 885 .set_property = NULL, 886 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 887 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 888 .reset = vc4_crtc_reset, 889 .atomic_duplicate_state = vc4_crtc_duplicate_state, 890 .atomic_destroy_state = vc4_crtc_destroy_state, 891 .enable_vblank = vc4_enable_vblank, 892 .disable_vblank = vc4_disable_vblank, 893 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 894 }; 895 896 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 897 .mode_valid = vc4_crtc_mode_valid, 898 .atomic_check = vc4_crtc_atomic_check, 899 .atomic_flush = vc4_hvs_atomic_flush, 900 .atomic_enable = vc4_crtc_atomic_enable, 901 .atomic_disable = vc4_crtc_atomic_disable, 902 .get_scanout_position = vc4_crtc_get_scanout_position, 903 }; 904 905 static const struct vc4_pv_data bcm2835_pv0_data = { 906 .base = { 907 .hvs_available_channels = BIT(0), 908 .hvs_output = 0, 909 }, 910 .debugfs_name = "crtc0_regs", 911 .fifo_depth = 64, 912 .pixels_per_clock = 1, 913 .encoder_types = { 914 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 915 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 916 }, 917 }; 918 919 static const struct vc4_pv_data bcm2835_pv1_data = { 920 .base = { 921 .hvs_available_channels = BIT(2), 922 .hvs_output = 2, 923 }, 924 .debugfs_name = "crtc1_regs", 925 .fifo_depth = 64, 926 .pixels_per_clock = 1, 927 .encoder_types = { 928 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 929 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 930 }, 931 }; 932 933 static const struct vc4_pv_data bcm2835_pv2_data = { 934 .base = { 935 .hvs_available_channels = BIT(1), 936 .hvs_output = 1, 937 }, 938 .debugfs_name = "crtc2_regs", 939 .fifo_depth = 64, 940 .pixels_per_clock = 1, 941 .encoder_types = { 942 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, 943 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 944 }, 945 }; 946 947 static const struct vc4_pv_data bcm2711_pv0_data = { 948 .base = { 949 .hvs_available_channels = BIT(0), 950 .hvs_output = 0, 951 }, 952 .debugfs_name = "crtc0_regs", 953 .fifo_depth = 64, 954 .pixels_per_clock = 1, 955 .encoder_types = { 956 [0] = VC4_ENCODER_TYPE_DSI0, 957 [1] = VC4_ENCODER_TYPE_DPI, 958 }, 959 }; 960 961 static const struct vc4_pv_data bcm2711_pv1_data = { 962 .base = { 963 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 964 .hvs_output = 3, 965 }, 966 .debugfs_name = "crtc1_regs", 967 .fifo_depth = 64, 968 .pixels_per_clock = 1, 969 .encoder_types = { 970 [0] = VC4_ENCODER_TYPE_DSI1, 971 [1] = VC4_ENCODER_TYPE_SMI, 972 }, 973 }; 974 975 static const struct vc4_pv_data bcm2711_pv2_data = { 976 .base = { 977 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 978 .hvs_output = 4, 979 }, 980 .debugfs_name = "crtc2_regs", 981 .fifo_depth = 256, 982 .pixels_per_clock = 2, 983 .encoder_types = { 984 [0] = VC4_ENCODER_TYPE_HDMI0, 985 }, 986 }; 987 988 static const struct vc4_pv_data bcm2711_pv3_data = { 989 .base = { 990 .hvs_available_channels = BIT(1), 991 .hvs_output = 1, 992 }, 993 .debugfs_name = "crtc3_regs", 994 .fifo_depth = 64, 995 .pixels_per_clock = 1, 996 .encoder_types = { 997 [0] = VC4_ENCODER_TYPE_VEC, 998 }, 999 }; 1000 1001 static const struct vc4_pv_data bcm2711_pv4_data = { 1002 .base = { 1003 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1004 .hvs_output = 5, 1005 }, 1006 .debugfs_name = "crtc4_regs", 1007 .fifo_depth = 64, 1008 .pixels_per_clock = 2, 1009 .encoder_types = { 1010 [0] = VC4_ENCODER_TYPE_HDMI1, 1011 }, 1012 }; 1013 1014 static const struct of_device_id vc4_crtc_dt_match[] = { 1015 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, 1016 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, 1017 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, 1018 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, 1019 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, 1020 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, 1021 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, 1022 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, 1023 {} 1024 }; 1025 1026 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1027 struct drm_crtc *crtc) 1028 { 1029 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1030 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 1031 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; 1032 struct drm_encoder *encoder; 1033 1034 drm_for_each_encoder(encoder, drm) { 1035 struct vc4_encoder *vc4_encoder; 1036 int i; 1037 1038 vc4_encoder = to_vc4_encoder(encoder); 1039 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { 1040 if (vc4_encoder->type == encoder_types[i]) { 1041 vc4_encoder->clock_select = i; 1042 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1043 break; 1044 } 1045 } 1046 } 1047 } 1048 1049 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc, 1050 const struct drm_crtc_funcs *crtc_funcs, 1051 const struct drm_crtc_helper_funcs *crtc_helper_funcs) 1052 { 1053 struct vc4_dev *vc4 = to_vc4_dev(drm); 1054 struct drm_crtc *crtc = &vc4_crtc->base; 1055 struct drm_plane *primary_plane; 1056 unsigned int i; 1057 1058 /* For now, we create just the primary and the legacy cursor 1059 * planes. We should be able to stack more planes on easily, 1060 * but to do that we would need to compute the bandwidth 1061 * requirement of the plane configuration, and reject ones 1062 * that will take too much. 1063 */ 1064 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1065 if (IS_ERR(primary_plane)) { 1066 dev_err(drm->dev, "failed to construct primary plane\n"); 1067 return PTR_ERR(primary_plane); 1068 } 1069 1070 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1071 crtc_funcs, NULL); 1072 drm_crtc_helper_add(crtc, crtc_helper_funcs); 1073 1074 if (!vc4->hvs->hvs5) { 1075 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1076 1077 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1078 1079 /* We support CTM, but only for one CRTC at a time. It's therefore 1080 * implemented as private driver state in vc4_kms, not here. 1081 */ 1082 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1083 } 1084 1085 for (i = 0; i < crtc->gamma_size; i++) { 1086 vc4_crtc->lut_r[i] = i; 1087 vc4_crtc->lut_g[i] = i; 1088 vc4_crtc->lut_b[i] = i; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1095 { 1096 struct platform_device *pdev = to_platform_device(dev); 1097 struct drm_device *drm = dev_get_drvdata(master); 1098 const struct vc4_pv_data *pv_data; 1099 struct vc4_crtc *vc4_crtc; 1100 struct drm_crtc *crtc; 1101 struct drm_plane *destroy_plane, *temp; 1102 int ret; 1103 1104 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1105 if (!vc4_crtc) 1106 return -ENOMEM; 1107 crtc = &vc4_crtc->base; 1108 1109 pv_data = of_device_get_match_data(dev); 1110 if (!pv_data) 1111 return -ENODEV; 1112 vc4_crtc->data = &pv_data->base; 1113 vc4_crtc->pdev = pdev; 1114 1115 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1116 if (IS_ERR(vc4_crtc->regs)) 1117 return PTR_ERR(vc4_crtc->regs); 1118 1119 vc4_crtc->regset.base = vc4_crtc->regs; 1120 vc4_crtc->regset.regs = crtc_regs; 1121 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1122 1123 ret = vc4_crtc_init(drm, vc4_crtc, 1124 &vc4_crtc_funcs, &vc4_crtc_helper_funcs); 1125 if (ret) 1126 return ret; 1127 vc4_set_crtc_possible_masks(drm, crtc); 1128 1129 CRTC_WRITE(PV_INTEN, 0); 1130 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1131 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1132 vc4_crtc_irq_handler, 1133 IRQF_SHARED, 1134 "vc4 crtc", vc4_crtc); 1135 if (ret) 1136 goto err_destroy_planes; 1137 1138 platform_set_drvdata(pdev, vc4_crtc); 1139 1140 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name, 1141 &vc4_crtc->regset); 1142 1143 return 0; 1144 1145 err_destroy_planes: 1146 list_for_each_entry_safe(destroy_plane, temp, 1147 &drm->mode_config.plane_list, head) { 1148 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1149 destroy_plane->funcs->destroy(destroy_plane); 1150 } 1151 1152 return ret; 1153 } 1154 1155 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1156 void *data) 1157 { 1158 struct platform_device *pdev = to_platform_device(dev); 1159 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1160 1161 vc4_crtc_destroy(&vc4_crtc->base); 1162 1163 CRTC_WRITE(PV_INTEN, 0); 1164 1165 platform_set_drvdata(pdev, NULL); 1166 } 1167 1168 static const struct component_ops vc4_crtc_ops = { 1169 .bind = vc4_crtc_bind, 1170 .unbind = vc4_crtc_unbind, 1171 }; 1172 1173 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1174 { 1175 return component_add(&pdev->dev, &vc4_crtc_ops); 1176 } 1177 1178 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1179 { 1180 component_del(&pdev->dev, &vc4_crtc_ops); 1181 return 0; 1182 } 1183 1184 struct platform_driver vc4_crtc_driver = { 1185 .probe = vc4_crtc_dev_probe, 1186 .remove = vc4_crtc_dev_remove, 1187 .driver = { 1188 .name = "vc4_crtc", 1189 .of_match_table = vc4_crtc_dt_match, 1190 }, 1191 }; 1192