1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/component.h> 34 #include <linux/of_device.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_fb_cma_helper.h> 40 #include <drm/drm_print.h> 41 #include <drm/drm_probe_helper.h> 42 #include <drm/drm_vblank.h> 43 44 #include "vc4_drv.h" 45 #include "vc4_regs.h" 46 47 #define HVS_FIFO_LATENCY_PIX 6 48 49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 51 52 static const struct debugfs_reg32 crtc_regs[] = { 53 VC4_REG32(PV_CONTROL), 54 VC4_REG32(PV_V_CONTROL), 55 VC4_REG32(PV_VSYNCD_EVEN), 56 VC4_REG32(PV_HORZA), 57 VC4_REG32(PV_HORZB), 58 VC4_REG32(PV_VERTA), 59 VC4_REG32(PV_VERTB), 60 VC4_REG32(PV_VERTA_EVEN), 61 VC4_REG32(PV_VERTB_EVEN), 62 VC4_REG32(PV_INTEN), 63 VC4_REG32(PV_INTSTAT), 64 VC4_REG32(PV_STAT), 65 VC4_REG32(PV_HACT_ACT), 66 }; 67 68 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, 69 bool in_vblank_irq, 70 int *vpos, int *hpos, 71 ktime_t *stime, ktime_t *etime, 72 const struct drm_display_mode *mode) 73 { 74 struct drm_device *dev = crtc->dev; 75 struct vc4_dev *vc4 = to_vc4_dev(dev); 76 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 77 u32 val; 78 int fifo_lines; 79 int vblank_lines; 80 bool ret = false; 81 82 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 83 84 /* Get optional system timestamp before query. */ 85 if (stime) 86 *stime = ktime_get(); 87 88 /* 89 * Read vertical scanline which is currently composed for our 90 * pixelvalve by the HVS, and also the scaler status. 91 */ 92 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 93 94 /* Get optional system timestamp after query. */ 95 if (etime) 96 *etime = ktime_get(); 97 98 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 99 100 /* Vertical position of hvs composed scanline. */ 101 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 102 *hpos = 0; 103 104 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 105 *vpos /= 2; 106 107 /* Use hpos to correct for field offset in interlaced mode. */ 108 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 109 *hpos += mode->crtc_htotal / 2; 110 } 111 112 /* This is the offset we need for translating hvs -> pv scanout pos. */ 113 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 114 115 if (fifo_lines > 0) 116 ret = true; 117 118 /* HVS more than fifo_lines into frame for compositing? */ 119 if (*vpos > fifo_lines) { 120 /* 121 * We are in active scanout and can get some meaningful results 122 * from HVS. The actual PV scanout can not trail behind more 123 * than fifo_lines as that is the fifo's capacity. Assume that 124 * in active scanout the HVS and PV work in lockstep wrt. HVS 125 * refilling the fifo and PV consuming from the fifo, ie. 126 * whenever the PV consumes and frees up a scanline in the 127 * fifo, the HVS will immediately refill it, therefore 128 * incrementing vpos. Therefore we choose HVS read position - 129 * fifo size in scanlines as a estimate of the real scanout 130 * position of the PV. 131 */ 132 *vpos -= fifo_lines + 1; 133 134 return ret; 135 } 136 137 /* 138 * Less: This happens when we are in vblank and the HVS, after getting 139 * the VSTART restart signal from the PV, just started refilling its 140 * fifo with new lines from the top-most lines of the new framebuffers. 141 * The PV does not scan out in vblank, so does not remove lines from 142 * the fifo, so the fifo will be full quickly and the HVS has to pause. 143 * We can't get meaningful readings wrt. scanline position of the PV 144 * and need to make things up in a approximative but consistent way. 145 */ 146 vblank_lines = mode->vtotal - mode->vdisplay; 147 148 if (in_vblank_irq) { 149 /* 150 * Assume the irq handler got called close to first 151 * line of vblank, so PV has about a full vblank 152 * scanlines to go, and as a base timestamp use the 153 * one taken at entry into vblank irq handler, so it 154 * is not affected by random delays due to lock 155 * contention on event_lock or vblank_time lock in 156 * the core. 157 */ 158 *vpos = -vblank_lines; 159 160 if (stime) 161 *stime = vc4_crtc->t_vblank; 162 if (etime) 163 *etime = vc4_crtc->t_vblank; 164 165 /* 166 * If the HVS fifo is not yet full then we know for certain 167 * we are at the very beginning of vblank, as the hvs just 168 * started refilling, and the stime and etime timestamps 169 * truly correspond to start of vblank. 170 * 171 * Unfortunately there's no way to report this to upper levels 172 * and make it more useful. 173 */ 174 } else { 175 /* 176 * No clue where we are inside vblank. Return a vpos of zero, 177 * which will cause calling code to just return the etime 178 * timestamp uncorrected. At least this is no worse than the 179 * standard fallback. 180 */ 181 *vpos = 0; 182 } 183 184 return ret; 185 } 186 187 void vc4_crtc_destroy(struct drm_crtc *crtc) 188 { 189 drm_crtc_cleanup(crtc); 190 } 191 192 static u32 vc4_get_fifo_full_level(u32 format) 193 { 194 static const u32 fifo_len_bytes = 64; 195 196 switch (format) { 197 case PV_CONTROL_FORMAT_DSIV_16: 198 case PV_CONTROL_FORMAT_DSIC_16: 199 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; 200 case PV_CONTROL_FORMAT_DSIV_18: 201 return fifo_len_bytes - 14; 202 case PV_CONTROL_FORMAT_24: 203 case PV_CONTROL_FORMAT_DSIV_24: 204 default: 205 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; 206 } 207 } 208 209 /* 210 * Returns the encoder attached to the CRTC. 211 * 212 * VC4 can only scan out to one encoder at a time, while the DRM core 213 * allows drivers to push pixels to more than one encoder from the 214 * same CRTC. 215 */ 216 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 217 { 218 struct drm_connector *connector; 219 struct drm_connector_list_iter conn_iter; 220 221 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 222 drm_for_each_connector_iter(connector, &conn_iter) { 223 if (connector->state->crtc == crtc) { 224 drm_connector_list_iter_end(&conn_iter); 225 return connector->encoder; 226 } 227 } 228 drm_connector_list_iter_end(&conn_iter); 229 230 return NULL; 231 } 232 233 static void vc4_crtc_config_pv(struct drm_crtc *crtc) 234 { 235 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 236 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 237 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 238 struct drm_crtc_state *state = crtc->state; 239 struct drm_display_mode *mode = &state->adjusted_mode; 240 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 241 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 242 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 243 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 244 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 245 246 /* Reset the PV fifo. */ 247 CRTC_WRITE(PV_CONTROL, 0); 248 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 249 CRTC_WRITE(PV_CONTROL, 0); 250 251 CRTC_WRITE(PV_HORZA, 252 VC4_SET_FIELD((mode->htotal - 253 mode->hsync_end) * pixel_rep, 254 PV_HORZA_HBP) | 255 VC4_SET_FIELD((mode->hsync_end - 256 mode->hsync_start) * pixel_rep, 257 PV_HORZA_HSYNC)); 258 CRTC_WRITE(PV_HORZB, 259 VC4_SET_FIELD((mode->hsync_start - 260 mode->hdisplay) * pixel_rep, 261 PV_HORZB_HFP) | 262 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 263 264 CRTC_WRITE(PV_VERTA, 265 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 266 PV_VERTA_VBP) | 267 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 268 PV_VERTA_VSYNC)); 269 CRTC_WRITE(PV_VERTB, 270 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 271 PV_VERTB_VFP) | 272 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 273 274 if (interlace) { 275 CRTC_WRITE(PV_VERTA_EVEN, 276 VC4_SET_FIELD(mode->crtc_vtotal - 277 mode->crtc_vsync_end - 1, 278 PV_VERTA_VBP) | 279 VC4_SET_FIELD(mode->crtc_vsync_end - 280 mode->crtc_vsync_start, 281 PV_VERTA_VSYNC)); 282 CRTC_WRITE(PV_VERTB_EVEN, 283 VC4_SET_FIELD(mode->crtc_vsync_start - 284 mode->crtc_vdisplay, 285 PV_VERTB_VFP) | 286 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 287 288 /* We set up first field even mode for HDMI. VEC's 289 * NTSC mode would want first field odd instead, once 290 * we support it (to do so, set ODD_FIRST and put the 291 * delay in VSYNCD_EVEN instead). 292 */ 293 CRTC_WRITE(PV_V_CONTROL, 294 PV_VCONTROL_CONTINUOUS | 295 (is_dsi ? PV_VCONTROL_DSI : 0) | 296 PV_VCONTROL_INTERLACE | 297 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 298 PV_VCONTROL_ODD_DELAY)); 299 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 300 } else { 301 CRTC_WRITE(PV_V_CONTROL, 302 PV_VCONTROL_CONTINUOUS | 303 (is_dsi ? PV_VCONTROL_DSI : 0)); 304 } 305 306 if (is_dsi) 307 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 308 309 CRTC_WRITE(PV_CONTROL, 310 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 311 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 312 PV_CONTROL_FIFO_LEVEL) | 313 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 314 PV_CONTROL_CLR_AT_START | 315 PV_CONTROL_TRIGGER_UNDERFLOW | 316 PV_CONTROL_WAIT_HSTART | 317 VC4_SET_FIELD(vc4_encoder->clock_select, 318 PV_CONTROL_CLK_SELECT) | 319 PV_CONTROL_FIFO_CLR | 320 PV_CONTROL_EN); 321 } 322 323 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 324 { 325 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 326 bool debug_dump_regs = false; 327 328 if (debug_dump_regs) { 329 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 330 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 331 drm_crtc_index(crtc)); 332 drm_print_regset32(&p, &vc4_crtc->regset); 333 } 334 335 vc4_crtc_config_pv(crtc); 336 337 vc4_hvs_mode_set_nofb(crtc); 338 339 if (debug_dump_regs) { 340 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 341 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 342 drm_crtc_index(crtc)); 343 drm_print_regset32(&p, &vc4_crtc->regset); 344 } 345 } 346 347 static void require_hvs_enabled(struct drm_device *dev) 348 { 349 struct vc4_dev *vc4 = to_vc4_dev(dev); 350 351 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 352 SCALER_DISPCTRL_ENABLE); 353 } 354 355 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 356 struct drm_crtc_state *old_state) 357 { 358 struct drm_device *dev = crtc->dev; 359 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 360 int ret; 361 362 require_hvs_enabled(dev); 363 364 /* Disable vblank irq handling before crtc is disabled. */ 365 drm_crtc_vblank_off(crtc); 366 367 CRTC_WRITE(PV_V_CONTROL, 368 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 369 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 370 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 371 372 vc4_hvs_atomic_disable(crtc, old_state); 373 374 /* 375 * Make sure we issue a vblank event after disabling the CRTC if 376 * someone was waiting it. 377 */ 378 if (crtc->state->event) { 379 unsigned long flags; 380 381 spin_lock_irqsave(&dev->event_lock, flags); 382 drm_crtc_send_vblank_event(crtc, crtc->state->event); 383 crtc->state->event = NULL; 384 spin_unlock_irqrestore(&dev->event_lock, flags); 385 } 386 } 387 388 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 389 struct drm_crtc_state *old_state) 390 { 391 struct drm_device *dev = crtc->dev; 392 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 393 394 require_hvs_enabled(dev); 395 396 /* Enable vblank irq handling before crtc is started otherwise 397 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 398 */ 399 drm_crtc_vblank_on(crtc); 400 401 vc4_hvs_atomic_enable(crtc, old_state); 402 403 /* When feeding the transposer block the pixelvalve is unneeded and 404 * should not be enabled. 405 */ 406 CRTC_WRITE(PV_V_CONTROL, 407 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 408 } 409 410 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 411 const struct drm_display_mode *mode) 412 { 413 /* Do not allow doublescan modes from user space */ 414 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 415 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 416 crtc->base.id); 417 return MODE_NO_DBLESCAN; 418 } 419 420 return MODE_OK; 421 } 422 423 void vc4_crtc_get_margins(struct drm_crtc_state *state, 424 unsigned int *left, unsigned int *right, 425 unsigned int *top, unsigned int *bottom) 426 { 427 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 428 struct drm_connector_state *conn_state; 429 struct drm_connector *conn; 430 int i; 431 432 *left = vc4_state->margins.left; 433 *right = vc4_state->margins.right; 434 *top = vc4_state->margins.top; 435 *bottom = vc4_state->margins.bottom; 436 437 /* We have to interate over all new connector states because 438 * vc4_crtc_get_margins() might be called before 439 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 440 * might be outdated. 441 */ 442 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 443 if (conn_state->crtc != state->crtc) 444 continue; 445 446 *left = conn_state->tv.margins.left; 447 *right = conn_state->tv.margins.right; 448 *top = conn_state->tv.margins.top; 449 *bottom = conn_state->tv.margins.bottom; 450 break; 451 } 452 } 453 454 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 455 struct drm_crtc_state *state) 456 { 457 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 458 struct drm_connector *conn; 459 struct drm_connector_state *conn_state; 460 int ret, i; 461 462 ret = vc4_hvs_atomic_check(crtc, state); 463 if (ret) 464 return ret; 465 466 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 467 if (conn_state->crtc != crtc) 468 continue; 469 470 vc4_state->margins.left = conn_state->tv.margins.left; 471 vc4_state->margins.right = conn_state->tv.margins.right; 472 vc4_state->margins.top = conn_state->tv.margins.top; 473 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 474 break; 475 } 476 477 return 0; 478 } 479 480 static int vc4_enable_vblank(struct drm_crtc *crtc) 481 { 482 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 483 484 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 485 486 return 0; 487 } 488 489 static void vc4_disable_vblank(struct drm_crtc *crtc) 490 { 491 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 492 493 CRTC_WRITE(PV_INTEN, 0); 494 } 495 496 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 497 { 498 struct drm_crtc *crtc = &vc4_crtc->base; 499 struct drm_device *dev = crtc->dev; 500 struct vc4_dev *vc4 = to_vc4_dev(dev); 501 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 502 u32 chan = vc4_crtc->channel; 503 unsigned long flags; 504 505 spin_lock_irqsave(&dev->event_lock, flags); 506 if (vc4_crtc->event && 507 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 508 vc4_state->feed_txp)) { 509 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 510 vc4_crtc->event = NULL; 511 drm_crtc_vblank_put(crtc); 512 513 /* Wait for the page flip to unmask the underrun to ensure that 514 * the display list was updated by the hardware. Before that 515 * happens, the HVS will be using the previous display list with 516 * the CRTC and encoder already reconfigured, leading to 517 * underruns. This can be seen when reconfiguring the CRTC. 518 */ 519 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel); 520 } 521 spin_unlock_irqrestore(&dev->event_lock, flags); 522 } 523 524 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 525 { 526 crtc->t_vblank = ktime_get(); 527 drm_crtc_handle_vblank(&crtc->base); 528 vc4_crtc_handle_page_flip(crtc); 529 } 530 531 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 532 { 533 struct vc4_crtc *vc4_crtc = data; 534 u32 stat = CRTC_READ(PV_INTSTAT); 535 irqreturn_t ret = IRQ_NONE; 536 537 if (stat & PV_INT_VFP_START) { 538 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 539 vc4_crtc_handle_vblank(vc4_crtc); 540 ret = IRQ_HANDLED; 541 } 542 543 return ret; 544 } 545 546 struct vc4_async_flip_state { 547 struct drm_crtc *crtc; 548 struct drm_framebuffer *fb; 549 struct drm_framebuffer *old_fb; 550 struct drm_pending_vblank_event *event; 551 552 struct vc4_seqno_cb cb; 553 }; 554 555 /* Called when the V3D execution for the BO being flipped to is done, so that 556 * we can actually update the plane's address to point to it. 557 */ 558 static void 559 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 560 { 561 struct vc4_async_flip_state *flip_state = 562 container_of(cb, struct vc4_async_flip_state, cb); 563 struct drm_crtc *crtc = flip_state->crtc; 564 struct drm_device *dev = crtc->dev; 565 struct vc4_dev *vc4 = to_vc4_dev(dev); 566 struct drm_plane *plane = crtc->primary; 567 568 vc4_plane_async_set_fb(plane, flip_state->fb); 569 if (flip_state->event) { 570 unsigned long flags; 571 572 spin_lock_irqsave(&dev->event_lock, flags); 573 drm_crtc_send_vblank_event(crtc, flip_state->event); 574 spin_unlock_irqrestore(&dev->event_lock, flags); 575 } 576 577 drm_crtc_vblank_put(crtc); 578 drm_framebuffer_put(flip_state->fb); 579 580 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 581 * when the planes are updated through the async update path. 582 * FIXME: we should move to generic async-page-flip when it's 583 * available, so that we can get rid of this hand-made cleanup_fb() 584 * logic. 585 */ 586 if (flip_state->old_fb) { 587 struct drm_gem_cma_object *cma_bo; 588 struct vc4_bo *bo; 589 590 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 591 bo = to_vc4_bo(&cma_bo->base); 592 vc4_bo_dec_usecnt(bo); 593 drm_framebuffer_put(flip_state->old_fb); 594 } 595 596 kfree(flip_state); 597 598 up(&vc4->async_modeset); 599 } 600 601 /* Implements async (non-vblank-synced) page flips. 602 * 603 * The page flip ioctl needs to return immediately, so we grab the 604 * modeset semaphore on the pipe, and queue the address update for 605 * when V3D is done with the BO being flipped to. 606 */ 607 static int vc4_async_page_flip(struct drm_crtc *crtc, 608 struct drm_framebuffer *fb, 609 struct drm_pending_vblank_event *event, 610 uint32_t flags) 611 { 612 struct drm_device *dev = crtc->dev; 613 struct vc4_dev *vc4 = to_vc4_dev(dev); 614 struct drm_plane *plane = crtc->primary; 615 int ret = 0; 616 struct vc4_async_flip_state *flip_state; 617 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 618 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 619 620 /* Increment the BO usecnt here, so that we never end up with an 621 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 622 * plane is later updated through the non-async path. 623 * FIXME: we should move to generic async-page-flip when it's 624 * available, so that we can get rid of this hand-made prepare_fb() 625 * logic. 626 */ 627 ret = vc4_bo_inc_usecnt(bo); 628 if (ret) 629 return ret; 630 631 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 632 if (!flip_state) { 633 vc4_bo_dec_usecnt(bo); 634 return -ENOMEM; 635 } 636 637 drm_framebuffer_get(fb); 638 flip_state->fb = fb; 639 flip_state->crtc = crtc; 640 flip_state->event = event; 641 642 /* Make sure all other async modesetes have landed. */ 643 ret = down_interruptible(&vc4->async_modeset); 644 if (ret) { 645 drm_framebuffer_put(fb); 646 vc4_bo_dec_usecnt(bo); 647 kfree(flip_state); 648 return ret; 649 } 650 651 /* Save the current FB before it's replaced by the new one in 652 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 653 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 654 * it consistent. 655 * FIXME: we should move to generic async-page-flip when it's 656 * available, so that we can get rid of this hand-made cleanup_fb() 657 * logic. 658 */ 659 flip_state->old_fb = plane->state->fb; 660 if (flip_state->old_fb) 661 drm_framebuffer_get(flip_state->old_fb); 662 663 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 664 665 /* Immediately update the plane's legacy fb pointer, so that later 666 * modeset prep sees the state that will be present when the semaphore 667 * is released. 668 */ 669 drm_atomic_set_fb_for_plane(plane->state, fb); 670 671 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 672 vc4_async_page_flip_complete); 673 674 /* Driver takes ownership of state on successful async commit. */ 675 return 0; 676 } 677 678 int vc4_page_flip(struct drm_crtc *crtc, 679 struct drm_framebuffer *fb, 680 struct drm_pending_vblank_event *event, 681 uint32_t flags, 682 struct drm_modeset_acquire_ctx *ctx) 683 { 684 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 685 return vc4_async_page_flip(crtc, fb, event, flags); 686 else 687 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 688 } 689 690 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 691 { 692 struct vc4_crtc_state *vc4_state, *old_vc4_state; 693 694 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 695 if (!vc4_state) 696 return NULL; 697 698 old_vc4_state = to_vc4_crtc_state(crtc->state); 699 vc4_state->feed_txp = old_vc4_state->feed_txp; 700 vc4_state->margins = old_vc4_state->margins; 701 702 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 703 return &vc4_state->base; 704 } 705 706 void vc4_crtc_destroy_state(struct drm_crtc *crtc, 707 struct drm_crtc_state *state) 708 { 709 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 710 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 711 712 if (drm_mm_node_allocated(&vc4_state->mm)) { 713 unsigned long flags; 714 715 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 716 drm_mm_remove_node(&vc4_state->mm); 717 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 718 719 } 720 721 drm_atomic_helper_crtc_destroy_state(crtc, state); 722 } 723 724 void vc4_crtc_reset(struct drm_crtc *crtc) 725 { 726 if (crtc->state) 727 vc4_crtc_destroy_state(crtc, crtc->state); 728 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 729 if (crtc->state) 730 __drm_atomic_helper_crtc_reset(crtc, crtc->state); 731 } 732 733 static const struct drm_crtc_funcs vc4_crtc_funcs = { 734 .set_config = drm_atomic_helper_set_config, 735 .destroy = vc4_crtc_destroy, 736 .page_flip = vc4_page_flip, 737 .set_property = NULL, 738 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 739 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 740 .reset = vc4_crtc_reset, 741 .atomic_duplicate_state = vc4_crtc_duplicate_state, 742 .atomic_destroy_state = vc4_crtc_destroy_state, 743 .gamma_set = drm_atomic_helper_legacy_gamma_set, 744 .enable_vblank = vc4_enable_vblank, 745 .disable_vblank = vc4_disable_vblank, 746 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 747 }; 748 749 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 750 .mode_set_nofb = vc4_crtc_mode_set_nofb, 751 .mode_valid = vc4_crtc_mode_valid, 752 .atomic_check = vc4_crtc_atomic_check, 753 .atomic_flush = vc4_hvs_atomic_flush, 754 .atomic_enable = vc4_crtc_atomic_enable, 755 .atomic_disable = vc4_crtc_atomic_disable, 756 .get_scanout_position = vc4_crtc_get_scanout_position, 757 }; 758 759 static const struct vc4_pv_data bcm2835_pv0_data = { 760 .base = { 761 .hvs_channel = 0, 762 }, 763 .debugfs_name = "crtc0_regs", 764 .encoder_types = { 765 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 766 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 767 }, 768 }; 769 770 static const struct vc4_pv_data bcm2835_pv1_data = { 771 .base = { 772 .hvs_channel = 2, 773 }, 774 .debugfs_name = "crtc1_regs", 775 .encoder_types = { 776 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 777 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 778 }, 779 }; 780 781 static const struct vc4_pv_data bcm2835_pv2_data = { 782 .base = { 783 .hvs_channel = 1, 784 }, 785 .debugfs_name = "crtc2_regs", 786 .encoder_types = { 787 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 788 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 789 }, 790 }; 791 792 static const struct of_device_id vc4_crtc_dt_match[] = { 793 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, 794 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, 795 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, 796 {} 797 }; 798 799 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 800 struct drm_crtc *crtc) 801 { 802 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 803 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 804 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; 805 struct drm_encoder *encoder; 806 807 drm_for_each_encoder(encoder, drm) { 808 struct vc4_encoder *vc4_encoder; 809 int i; 810 811 vc4_encoder = to_vc4_encoder(encoder); 812 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { 813 if (vc4_encoder->type == encoder_types[i]) { 814 vc4_encoder->clock_select = i; 815 encoder->possible_crtcs |= drm_crtc_mask(crtc); 816 break; 817 } 818 } 819 } 820 } 821 822 static void 823 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 824 { 825 struct drm_device *drm = vc4_crtc->base.dev; 826 struct vc4_dev *vc4 = to_vc4_dev(drm); 827 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 828 /* Top/base are supposed to be 4-pixel aligned, but the 829 * Raspberry Pi firmware fills the low bits (which are 830 * presumably ignored). 831 */ 832 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 833 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 834 835 vc4_crtc->cob_size = top - base + 4; 836 } 837 838 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc, 839 const struct drm_crtc_funcs *crtc_funcs, 840 const struct drm_crtc_helper_funcs *crtc_helper_funcs) 841 { 842 struct drm_crtc *crtc = &vc4_crtc->base; 843 struct drm_plane *primary_plane; 844 unsigned int i; 845 846 /* For now, we create just the primary and the legacy cursor 847 * planes. We should be able to stack more planes on easily, 848 * but to do that we would need to compute the bandwidth 849 * requirement of the plane configuration, and reject ones 850 * that will take too much. 851 */ 852 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 853 if (IS_ERR(primary_plane)) { 854 dev_err(drm->dev, "failed to construct primary plane\n"); 855 return PTR_ERR(primary_plane); 856 } 857 858 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 859 crtc_funcs, NULL); 860 drm_crtc_helper_add(crtc, crtc_helper_funcs); 861 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 862 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 863 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 864 865 /* We support CTM, but only for one CRTC at a time. It's therefore 866 * implemented as private driver state in vc4_kms, not here. 867 */ 868 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 869 vc4_crtc_get_cob_allocation(vc4_crtc); 870 871 for (i = 0; i < crtc->gamma_size; i++) { 872 vc4_crtc->lut_r[i] = i; 873 vc4_crtc->lut_g[i] = i; 874 vc4_crtc->lut_b[i] = i; 875 } 876 877 return 0; 878 } 879 880 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 881 { 882 struct platform_device *pdev = to_platform_device(dev); 883 struct drm_device *drm = dev_get_drvdata(master); 884 const struct vc4_pv_data *pv_data; 885 struct vc4_crtc *vc4_crtc; 886 struct drm_crtc *crtc; 887 struct drm_plane *destroy_plane, *temp; 888 int ret; 889 890 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 891 if (!vc4_crtc) 892 return -ENOMEM; 893 crtc = &vc4_crtc->base; 894 895 pv_data = of_device_get_match_data(dev); 896 if (!pv_data) 897 return -ENODEV; 898 vc4_crtc->data = &pv_data->base; 899 vc4_crtc->pdev = pdev; 900 901 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 902 if (IS_ERR(vc4_crtc->regs)) 903 return PTR_ERR(vc4_crtc->regs); 904 905 vc4_crtc->regset.base = vc4_crtc->regs; 906 vc4_crtc->regset.regs = crtc_regs; 907 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 908 909 ret = vc4_crtc_init(drm, vc4_crtc, 910 &vc4_crtc_funcs, &vc4_crtc_helper_funcs); 911 if (ret) 912 return ret; 913 vc4_set_crtc_possible_masks(drm, crtc); 914 915 CRTC_WRITE(PV_INTEN, 0); 916 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 917 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 918 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 919 if (ret) 920 goto err_destroy_planes; 921 922 platform_set_drvdata(pdev, vc4_crtc); 923 924 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name, 925 &vc4_crtc->regset); 926 927 return 0; 928 929 err_destroy_planes: 930 list_for_each_entry_safe(destroy_plane, temp, 931 &drm->mode_config.plane_list, head) { 932 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 933 destroy_plane->funcs->destroy(destroy_plane); 934 } 935 936 return ret; 937 } 938 939 static void vc4_crtc_unbind(struct device *dev, struct device *master, 940 void *data) 941 { 942 struct platform_device *pdev = to_platform_device(dev); 943 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 944 945 vc4_crtc_destroy(&vc4_crtc->base); 946 947 CRTC_WRITE(PV_INTEN, 0); 948 949 platform_set_drvdata(pdev, NULL); 950 } 951 952 static const struct component_ops vc4_crtc_ops = { 953 .bind = vc4_crtc_bind, 954 .unbind = vc4_crtc_unbind, 955 }; 956 957 static int vc4_crtc_dev_probe(struct platform_device *pdev) 958 { 959 return component_add(&pdev->dev, &vc4_crtc_ops); 960 } 961 962 static int vc4_crtc_dev_remove(struct platform_device *pdev) 963 { 964 component_del(&pdev->dev, &vc4_crtc_ops); 965 return 0; 966 } 967 968 struct platform_driver vc4_crtc_driver = { 969 .probe = vc4_crtc_dev_probe, 970 .remove = vc4_crtc_dev_remove, 971 .driver = { 972 .name = "vc4_crtc", 973 .of_match_table = vc4_crtc_dt_match, 974 }, 975 }; 976