xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43 
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46 
47 #define HVS_FIFO_LATENCY_PIX	6
48 
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51 
52 static const struct debugfs_reg32 crtc_regs[] = {
53 	VC4_REG32(PV_CONTROL),
54 	VC4_REG32(PV_V_CONTROL),
55 	VC4_REG32(PV_VSYNCD_EVEN),
56 	VC4_REG32(PV_HORZA),
57 	VC4_REG32(PV_HORZB),
58 	VC4_REG32(PV_VERTA),
59 	VC4_REG32(PV_VERTB),
60 	VC4_REG32(PV_VERTA_EVEN),
61 	VC4_REG32(PV_VERTB_EVEN),
62 	VC4_REG32(PV_INTEN),
63 	VC4_REG32(PV_INTSTAT),
64 	VC4_REG32(PV_STAT),
65 	VC4_REG32(PV_HACT_ACT),
66 };
67 
68 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
69 					  bool in_vblank_irq,
70 					  int *vpos, int *hpos,
71 					  ktime_t *stime, ktime_t *etime,
72 					  const struct drm_display_mode *mode)
73 {
74 	struct drm_device *dev = crtc->dev;
75 	struct vc4_dev *vc4 = to_vc4_dev(dev);
76 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
77 	u32 val;
78 	int fifo_lines;
79 	int vblank_lines;
80 	bool ret = false;
81 
82 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
83 
84 	/* Get optional system timestamp before query. */
85 	if (stime)
86 		*stime = ktime_get();
87 
88 	/*
89 	 * Read vertical scanline which is currently composed for our
90 	 * pixelvalve by the HVS, and also the scaler status.
91 	 */
92 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
93 
94 	/* Get optional system timestamp after query. */
95 	if (etime)
96 		*etime = ktime_get();
97 
98 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
99 
100 	/* Vertical position of hvs composed scanline. */
101 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
102 	*hpos = 0;
103 
104 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
105 		*vpos /= 2;
106 
107 		/* Use hpos to correct for field offset in interlaced mode. */
108 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
109 			*hpos += mode->crtc_htotal / 2;
110 	}
111 
112 	/* This is the offset we need for translating hvs -> pv scanout pos. */
113 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
114 
115 	if (fifo_lines > 0)
116 		ret = true;
117 
118 	/* HVS more than fifo_lines into frame for compositing? */
119 	if (*vpos > fifo_lines) {
120 		/*
121 		 * We are in active scanout and can get some meaningful results
122 		 * from HVS. The actual PV scanout can not trail behind more
123 		 * than fifo_lines as that is the fifo's capacity. Assume that
124 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
125 		 * refilling the fifo and PV consuming from the fifo, ie.
126 		 * whenever the PV consumes and frees up a scanline in the
127 		 * fifo, the HVS will immediately refill it, therefore
128 		 * incrementing vpos. Therefore we choose HVS read position -
129 		 * fifo size in scanlines as a estimate of the real scanout
130 		 * position of the PV.
131 		 */
132 		*vpos -= fifo_lines + 1;
133 
134 		return ret;
135 	}
136 
137 	/*
138 	 * Less: This happens when we are in vblank and the HVS, after getting
139 	 * the VSTART restart signal from the PV, just started refilling its
140 	 * fifo with new lines from the top-most lines of the new framebuffers.
141 	 * The PV does not scan out in vblank, so does not remove lines from
142 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
143 	 * We can't get meaningful readings wrt. scanline position of the PV
144 	 * and need to make things up in a approximative but consistent way.
145 	 */
146 	vblank_lines = mode->vtotal - mode->vdisplay;
147 
148 	if (in_vblank_irq) {
149 		/*
150 		 * Assume the irq handler got called close to first
151 		 * line of vblank, so PV has about a full vblank
152 		 * scanlines to go, and as a base timestamp use the
153 		 * one taken at entry into vblank irq handler, so it
154 		 * is not affected by random delays due to lock
155 		 * contention on event_lock or vblank_time lock in
156 		 * the core.
157 		 */
158 		*vpos = -vblank_lines;
159 
160 		if (stime)
161 			*stime = vc4_crtc->t_vblank;
162 		if (etime)
163 			*etime = vc4_crtc->t_vblank;
164 
165 		/*
166 		 * If the HVS fifo is not yet full then we know for certain
167 		 * we are at the very beginning of vblank, as the hvs just
168 		 * started refilling, and the stime and etime timestamps
169 		 * truly correspond to start of vblank.
170 		 *
171 		 * Unfortunately there's no way to report this to upper levels
172 		 * and make it more useful.
173 		 */
174 	} else {
175 		/*
176 		 * No clue where we are inside vblank. Return a vpos of zero,
177 		 * which will cause calling code to just return the etime
178 		 * timestamp uncorrected. At least this is no worse than the
179 		 * standard fallback.
180 		 */
181 		*vpos = 0;
182 	}
183 
184 	return ret;
185 }
186 
187 void vc4_crtc_destroy(struct drm_crtc *crtc)
188 {
189 	drm_crtc_cleanup(crtc);
190 }
191 
192 static u32 vc4_get_fifo_full_level(u32 format)
193 {
194 	static const u32 fifo_len_bytes = 64;
195 
196 	switch (format) {
197 	case PV_CONTROL_FORMAT_DSIV_16:
198 	case PV_CONTROL_FORMAT_DSIC_16:
199 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
200 	case PV_CONTROL_FORMAT_DSIV_18:
201 		return fifo_len_bytes - 14;
202 	case PV_CONTROL_FORMAT_24:
203 	case PV_CONTROL_FORMAT_DSIV_24:
204 	default:
205 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
206 	}
207 }
208 
209 /*
210  * Returns the encoder attached to the CRTC.
211  *
212  * VC4 can only scan out to one encoder at a time, while the DRM core
213  * allows drivers to push pixels to more than one encoder from the
214  * same CRTC.
215  */
216 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
217 {
218 	struct drm_connector *connector;
219 	struct drm_connector_list_iter conn_iter;
220 
221 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
222 	drm_for_each_connector_iter(connector, &conn_iter) {
223 		if (connector->state->crtc == crtc) {
224 			drm_connector_list_iter_end(&conn_iter);
225 			return connector->encoder;
226 		}
227 	}
228 	drm_connector_list_iter_end(&conn_iter);
229 
230 	return NULL;
231 }
232 
233 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
234 {
235 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
236 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
237 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238 	struct drm_crtc_state *state = crtc->state;
239 	struct drm_display_mode *mode = &state->adjusted_mode;
240 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
241 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
242 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
243 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
244 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
245 
246 	/* Reset the PV fifo. */
247 	CRTC_WRITE(PV_CONTROL, 0);
248 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
249 	CRTC_WRITE(PV_CONTROL, 0);
250 
251 	CRTC_WRITE(PV_HORZA,
252 		   VC4_SET_FIELD((mode->htotal -
253 				  mode->hsync_end) * pixel_rep,
254 				 PV_HORZA_HBP) |
255 		   VC4_SET_FIELD((mode->hsync_end -
256 				  mode->hsync_start) * pixel_rep,
257 				 PV_HORZA_HSYNC));
258 	CRTC_WRITE(PV_HORZB,
259 		   VC4_SET_FIELD((mode->hsync_start -
260 				  mode->hdisplay) * pixel_rep,
261 				 PV_HORZB_HFP) |
262 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
263 
264 	CRTC_WRITE(PV_VERTA,
265 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
266 				 PV_VERTA_VBP) |
267 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
268 				 PV_VERTA_VSYNC));
269 	CRTC_WRITE(PV_VERTB,
270 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
271 				 PV_VERTB_VFP) |
272 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
273 
274 	if (interlace) {
275 		CRTC_WRITE(PV_VERTA_EVEN,
276 			   VC4_SET_FIELD(mode->crtc_vtotal -
277 					 mode->crtc_vsync_end - 1,
278 					 PV_VERTA_VBP) |
279 			   VC4_SET_FIELD(mode->crtc_vsync_end -
280 					 mode->crtc_vsync_start,
281 					 PV_VERTA_VSYNC));
282 		CRTC_WRITE(PV_VERTB_EVEN,
283 			   VC4_SET_FIELD(mode->crtc_vsync_start -
284 					 mode->crtc_vdisplay,
285 					 PV_VERTB_VFP) |
286 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
287 
288 		/* We set up first field even mode for HDMI.  VEC's
289 		 * NTSC mode would want first field odd instead, once
290 		 * we support it (to do so, set ODD_FIRST and put the
291 		 * delay in VSYNCD_EVEN instead).
292 		 */
293 		CRTC_WRITE(PV_V_CONTROL,
294 			   PV_VCONTROL_CONTINUOUS |
295 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
296 			   PV_VCONTROL_INTERLACE |
297 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
298 					 PV_VCONTROL_ODD_DELAY));
299 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
300 	} else {
301 		CRTC_WRITE(PV_V_CONTROL,
302 			   PV_VCONTROL_CONTINUOUS |
303 			   (is_dsi ? PV_VCONTROL_DSI : 0));
304 	}
305 
306 	if (is_dsi)
307 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
308 
309 	CRTC_WRITE(PV_CONTROL,
310 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
311 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
312 				 PV_CONTROL_FIFO_LEVEL) |
313 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
314 		   PV_CONTROL_CLR_AT_START |
315 		   PV_CONTROL_TRIGGER_UNDERFLOW |
316 		   PV_CONTROL_WAIT_HSTART |
317 		   VC4_SET_FIELD(vc4_encoder->clock_select,
318 				 PV_CONTROL_CLK_SELECT) |
319 		   PV_CONTROL_FIFO_CLR |
320 		   PV_CONTROL_EN);
321 }
322 
323 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
324 {
325 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
326 	bool debug_dump_regs = false;
327 
328 	if (debug_dump_regs) {
329 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
330 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
331 			 drm_crtc_index(crtc));
332 		drm_print_regset32(&p, &vc4_crtc->regset);
333 	}
334 
335 	vc4_crtc_config_pv(crtc);
336 
337 	vc4_hvs_mode_set_nofb(crtc);
338 
339 	if (debug_dump_regs) {
340 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
341 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
342 			 drm_crtc_index(crtc));
343 		drm_print_regset32(&p, &vc4_crtc->regset);
344 	}
345 }
346 
347 static void require_hvs_enabled(struct drm_device *dev)
348 {
349 	struct vc4_dev *vc4 = to_vc4_dev(dev);
350 
351 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
352 		     SCALER_DISPCTRL_ENABLE);
353 }
354 
355 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
356 				    struct drm_crtc_state *old_state)
357 {
358 	struct drm_device *dev = crtc->dev;
359 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
360 	int ret;
361 
362 	require_hvs_enabled(dev);
363 
364 	/* Disable vblank irq handling before crtc is disabled. */
365 	drm_crtc_vblank_off(crtc);
366 
367 	CRTC_WRITE(PV_V_CONTROL,
368 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
369 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
370 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
371 
372 	vc4_hvs_atomic_disable(crtc, old_state);
373 
374 	/*
375 	 * Make sure we issue a vblank event after disabling the CRTC if
376 	 * someone was waiting it.
377 	 */
378 	if (crtc->state->event) {
379 		unsigned long flags;
380 
381 		spin_lock_irqsave(&dev->event_lock, flags);
382 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
383 		crtc->state->event = NULL;
384 		spin_unlock_irqrestore(&dev->event_lock, flags);
385 	}
386 }
387 
388 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
389 				   struct drm_crtc_state *old_state)
390 {
391 	struct drm_device *dev = crtc->dev;
392 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
393 
394 	require_hvs_enabled(dev);
395 
396 	/* Enable vblank irq handling before crtc is started otherwise
397 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
398 	 */
399 	drm_crtc_vblank_on(crtc);
400 
401 	vc4_hvs_atomic_enable(crtc, old_state);
402 
403 	/* When feeding the transposer block the pixelvalve is unneeded and
404 	 * should not be enabled.
405 	 */
406 	CRTC_WRITE(PV_V_CONTROL,
407 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
408 }
409 
410 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
411 						const struct drm_display_mode *mode)
412 {
413 	/* Do not allow doublescan modes from user space */
414 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
415 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
416 			      crtc->base.id);
417 		return MODE_NO_DBLESCAN;
418 	}
419 
420 	return MODE_OK;
421 }
422 
423 void vc4_crtc_get_margins(struct drm_crtc_state *state,
424 			  unsigned int *left, unsigned int *right,
425 			  unsigned int *top, unsigned int *bottom)
426 {
427 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
428 	struct drm_connector_state *conn_state;
429 	struct drm_connector *conn;
430 	int i;
431 
432 	*left = vc4_state->margins.left;
433 	*right = vc4_state->margins.right;
434 	*top = vc4_state->margins.top;
435 	*bottom = vc4_state->margins.bottom;
436 
437 	/* We have to interate over all new connector states because
438 	 * vc4_crtc_get_margins() might be called before
439 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
440 	 * might be outdated.
441 	 */
442 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
443 		if (conn_state->crtc != state->crtc)
444 			continue;
445 
446 		*left = conn_state->tv.margins.left;
447 		*right = conn_state->tv.margins.right;
448 		*top = conn_state->tv.margins.top;
449 		*bottom = conn_state->tv.margins.bottom;
450 		break;
451 	}
452 }
453 
454 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
455 				 struct drm_crtc_state *state)
456 {
457 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
458 	struct drm_connector *conn;
459 	struct drm_connector_state *conn_state;
460 	int ret, i;
461 
462 	ret = vc4_hvs_atomic_check(crtc, state);
463 	if (ret)
464 		return ret;
465 
466 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
467 		if (conn_state->crtc != crtc)
468 			continue;
469 
470 		vc4_state->margins.left = conn_state->tv.margins.left;
471 		vc4_state->margins.right = conn_state->tv.margins.right;
472 		vc4_state->margins.top = conn_state->tv.margins.top;
473 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
474 		break;
475 	}
476 
477 	return 0;
478 }
479 
480 static int vc4_enable_vblank(struct drm_crtc *crtc)
481 {
482 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
483 
484 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
485 
486 	return 0;
487 }
488 
489 static void vc4_disable_vblank(struct drm_crtc *crtc)
490 {
491 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
492 
493 	CRTC_WRITE(PV_INTEN, 0);
494 }
495 
496 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
497 {
498 	struct drm_crtc *crtc = &vc4_crtc->base;
499 	struct drm_device *dev = crtc->dev;
500 	struct vc4_dev *vc4 = to_vc4_dev(dev);
501 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
502 	u32 chan = vc4_crtc->channel;
503 	unsigned long flags;
504 
505 	spin_lock_irqsave(&dev->event_lock, flags);
506 	if (vc4_crtc->event &&
507 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
508 	     vc4_state->feed_txp)) {
509 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
510 		vc4_crtc->event = NULL;
511 		drm_crtc_vblank_put(crtc);
512 
513 		/* Wait for the page flip to unmask the underrun to ensure that
514 		 * the display list was updated by the hardware. Before that
515 		 * happens, the HVS will be using the previous display list with
516 		 * the CRTC and encoder already reconfigured, leading to
517 		 * underruns. This can be seen when reconfiguring the CRTC.
518 		 */
519 		vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
520 	}
521 	spin_unlock_irqrestore(&dev->event_lock, flags);
522 }
523 
524 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
525 {
526 	crtc->t_vblank = ktime_get();
527 	drm_crtc_handle_vblank(&crtc->base);
528 	vc4_crtc_handle_page_flip(crtc);
529 }
530 
531 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
532 {
533 	struct vc4_crtc *vc4_crtc = data;
534 	u32 stat = CRTC_READ(PV_INTSTAT);
535 	irqreturn_t ret = IRQ_NONE;
536 
537 	if (stat & PV_INT_VFP_START) {
538 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
539 		vc4_crtc_handle_vblank(vc4_crtc);
540 		ret = IRQ_HANDLED;
541 	}
542 
543 	return ret;
544 }
545 
546 struct vc4_async_flip_state {
547 	struct drm_crtc *crtc;
548 	struct drm_framebuffer *fb;
549 	struct drm_framebuffer *old_fb;
550 	struct drm_pending_vblank_event *event;
551 
552 	struct vc4_seqno_cb cb;
553 };
554 
555 /* Called when the V3D execution for the BO being flipped to is done, so that
556  * we can actually update the plane's address to point to it.
557  */
558 static void
559 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
560 {
561 	struct vc4_async_flip_state *flip_state =
562 		container_of(cb, struct vc4_async_flip_state, cb);
563 	struct drm_crtc *crtc = flip_state->crtc;
564 	struct drm_device *dev = crtc->dev;
565 	struct vc4_dev *vc4 = to_vc4_dev(dev);
566 	struct drm_plane *plane = crtc->primary;
567 
568 	vc4_plane_async_set_fb(plane, flip_state->fb);
569 	if (flip_state->event) {
570 		unsigned long flags;
571 
572 		spin_lock_irqsave(&dev->event_lock, flags);
573 		drm_crtc_send_vblank_event(crtc, flip_state->event);
574 		spin_unlock_irqrestore(&dev->event_lock, flags);
575 	}
576 
577 	drm_crtc_vblank_put(crtc);
578 	drm_framebuffer_put(flip_state->fb);
579 
580 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
581 	 * when the planes are updated through the async update path.
582 	 * FIXME: we should move to generic async-page-flip when it's
583 	 * available, so that we can get rid of this hand-made cleanup_fb()
584 	 * logic.
585 	 */
586 	if (flip_state->old_fb) {
587 		struct drm_gem_cma_object *cma_bo;
588 		struct vc4_bo *bo;
589 
590 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
591 		bo = to_vc4_bo(&cma_bo->base);
592 		vc4_bo_dec_usecnt(bo);
593 		drm_framebuffer_put(flip_state->old_fb);
594 	}
595 
596 	kfree(flip_state);
597 
598 	up(&vc4->async_modeset);
599 }
600 
601 /* Implements async (non-vblank-synced) page flips.
602  *
603  * The page flip ioctl needs to return immediately, so we grab the
604  * modeset semaphore on the pipe, and queue the address update for
605  * when V3D is done with the BO being flipped to.
606  */
607 static int vc4_async_page_flip(struct drm_crtc *crtc,
608 			       struct drm_framebuffer *fb,
609 			       struct drm_pending_vblank_event *event,
610 			       uint32_t flags)
611 {
612 	struct drm_device *dev = crtc->dev;
613 	struct vc4_dev *vc4 = to_vc4_dev(dev);
614 	struct drm_plane *plane = crtc->primary;
615 	int ret = 0;
616 	struct vc4_async_flip_state *flip_state;
617 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
618 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
619 
620 	/* Increment the BO usecnt here, so that we never end up with an
621 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
622 	 * plane is later updated through the non-async path.
623 	 * FIXME: we should move to generic async-page-flip when it's
624 	 * available, so that we can get rid of this hand-made prepare_fb()
625 	 * logic.
626 	 */
627 	ret = vc4_bo_inc_usecnt(bo);
628 	if (ret)
629 		return ret;
630 
631 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
632 	if (!flip_state) {
633 		vc4_bo_dec_usecnt(bo);
634 		return -ENOMEM;
635 	}
636 
637 	drm_framebuffer_get(fb);
638 	flip_state->fb = fb;
639 	flip_state->crtc = crtc;
640 	flip_state->event = event;
641 
642 	/* Make sure all other async modesetes have landed. */
643 	ret = down_interruptible(&vc4->async_modeset);
644 	if (ret) {
645 		drm_framebuffer_put(fb);
646 		vc4_bo_dec_usecnt(bo);
647 		kfree(flip_state);
648 		return ret;
649 	}
650 
651 	/* Save the current FB before it's replaced by the new one in
652 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
653 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
654 	 * it consistent.
655 	 * FIXME: we should move to generic async-page-flip when it's
656 	 * available, so that we can get rid of this hand-made cleanup_fb()
657 	 * logic.
658 	 */
659 	flip_state->old_fb = plane->state->fb;
660 	if (flip_state->old_fb)
661 		drm_framebuffer_get(flip_state->old_fb);
662 
663 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
664 
665 	/* Immediately update the plane's legacy fb pointer, so that later
666 	 * modeset prep sees the state that will be present when the semaphore
667 	 * is released.
668 	 */
669 	drm_atomic_set_fb_for_plane(plane->state, fb);
670 
671 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
672 			   vc4_async_page_flip_complete);
673 
674 	/* Driver takes ownership of state on successful async commit. */
675 	return 0;
676 }
677 
678 int vc4_page_flip(struct drm_crtc *crtc,
679 		  struct drm_framebuffer *fb,
680 		  struct drm_pending_vblank_event *event,
681 		  uint32_t flags,
682 		  struct drm_modeset_acquire_ctx *ctx)
683 {
684 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
685 		return vc4_async_page_flip(crtc, fb, event, flags);
686 	else
687 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
688 }
689 
690 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
691 {
692 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
693 
694 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
695 	if (!vc4_state)
696 		return NULL;
697 
698 	old_vc4_state = to_vc4_crtc_state(crtc->state);
699 	vc4_state->feed_txp = old_vc4_state->feed_txp;
700 	vc4_state->margins = old_vc4_state->margins;
701 
702 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
703 	return &vc4_state->base;
704 }
705 
706 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
707 			    struct drm_crtc_state *state)
708 {
709 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
710 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
711 
712 	if (drm_mm_node_allocated(&vc4_state->mm)) {
713 		unsigned long flags;
714 
715 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
716 		drm_mm_remove_node(&vc4_state->mm);
717 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
718 
719 	}
720 
721 	drm_atomic_helper_crtc_destroy_state(crtc, state);
722 }
723 
724 void vc4_crtc_reset(struct drm_crtc *crtc)
725 {
726 	if (crtc->state)
727 		vc4_crtc_destroy_state(crtc, crtc->state);
728 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
729 	if (crtc->state)
730 		__drm_atomic_helper_crtc_reset(crtc, crtc->state);
731 }
732 
733 static const struct drm_crtc_funcs vc4_crtc_funcs = {
734 	.set_config = drm_atomic_helper_set_config,
735 	.destroy = vc4_crtc_destroy,
736 	.page_flip = vc4_page_flip,
737 	.set_property = NULL,
738 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
739 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
740 	.reset = vc4_crtc_reset,
741 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
742 	.atomic_destroy_state = vc4_crtc_destroy_state,
743 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
744 	.enable_vblank = vc4_enable_vblank,
745 	.disable_vblank = vc4_disable_vblank,
746 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
747 };
748 
749 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
750 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
751 	.mode_valid = vc4_crtc_mode_valid,
752 	.atomic_check = vc4_crtc_atomic_check,
753 	.atomic_flush = vc4_hvs_atomic_flush,
754 	.atomic_enable = vc4_crtc_atomic_enable,
755 	.atomic_disable = vc4_crtc_atomic_disable,
756 	.get_scanout_position = vc4_crtc_get_scanout_position,
757 };
758 
759 static const struct vc4_pv_data bcm2835_pv0_data = {
760 	.base = {
761 		.hvs_channel = 0,
762 	},
763 	.debugfs_name = "crtc0_regs",
764 	.encoder_types = {
765 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
766 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
767 	},
768 };
769 
770 static const struct vc4_pv_data bcm2835_pv1_data = {
771 	.base = {
772 		.hvs_channel = 2,
773 	},
774 	.debugfs_name = "crtc1_regs",
775 	.encoder_types = {
776 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
777 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
778 	},
779 };
780 
781 static const struct vc4_pv_data bcm2835_pv2_data = {
782 	.base = {
783 		.hvs_channel = 1,
784 	},
785 	.debugfs_name = "crtc2_regs",
786 	.encoder_types = {
787 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
788 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
789 	},
790 };
791 
792 static const struct of_device_id vc4_crtc_dt_match[] = {
793 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
794 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
795 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
796 	{}
797 };
798 
799 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
800 					struct drm_crtc *crtc)
801 {
802 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
803 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
804 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
805 	struct drm_encoder *encoder;
806 
807 	drm_for_each_encoder(encoder, drm) {
808 		struct vc4_encoder *vc4_encoder;
809 		int i;
810 
811 		vc4_encoder = to_vc4_encoder(encoder);
812 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
813 			if (vc4_encoder->type == encoder_types[i]) {
814 				vc4_encoder->clock_select = i;
815 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
816 				break;
817 			}
818 		}
819 	}
820 }
821 
822 static void
823 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
824 {
825 	struct drm_device *drm = vc4_crtc->base.dev;
826 	struct vc4_dev *vc4 = to_vc4_dev(drm);
827 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
828 	/* Top/base are supposed to be 4-pixel aligned, but the
829 	 * Raspberry Pi firmware fills the low bits (which are
830 	 * presumably ignored).
831 	 */
832 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
833 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
834 
835 	vc4_crtc->cob_size = top - base + 4;
836 }
837 
838 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
839 		  const struct drm_crtc_funcs *crtc_funcs,
840 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
841 {
842 	struct drm_crtc *crtc = &vc4_crtc->base;
843 	struct drm_plane *primary_plane;
844 	unsigned int i;
845 
846 	/* For now, we create just the primary and the legacy cursor
847 	 * planes.  We should be able to stack more planes on easily,
848 	 * but to do that we would need to compute the bandwidth
849 	 * requirement of the plane configuration, and reject ones
850 	 * that will take too much.
851 	 */
852 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
853 	if (IS_ERR(primary_plane)) {
854 		dev_err(drm->dev, "failed to construct primary plane\n");
855 		return PTR_ERR(primary_plane);
856 	}
857 
858 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
859 				  crtc_funcs, NULL);
860 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
861 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
862 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
863 	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
864 
865 	/* We support CTM, but only for one CRTC at a time. It's therefore
866 	 * implemented as private driver state in vc4_kms, not here.
867 	 */
868 	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
869 	vc4_crtc_get_cob_allocation(vc4_crtc);
870 
871 	for (i = 0; i < crtc->gamma_size; i++) {
872 		vc4_crtc->lut_r[i] = i;
873 		vc4_crtc->lut_g[i] = i;
874 		vc4_crtc->lut_b[i] = i;
875 	}
876 
877 	return 0;
878 }
879 
880 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
881 {
882 	struct platform_device *pdev = to_platform_device(dev);
883 	struct drm_device *drm = dev_get_drvdata(master);
884 	const struct vc4_pv_data *pv_data;
885 	struct vc4_crtc *vc4_crtc;
886 	struct drm_crtc *crtc;
887 	struct drm_plane *destroy_plane, *temp;
888 	int ret;
889 
890 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
891 	if (!vc4_crtc)
892 		return -ENOMEM;
893 	crtc = &vc4_crtc->base;
894 
895 	pv_data = of_device_get_match_data(dev);
896 	if (!pv_data)
897 		return -ENODEV;
898 	vc4_crtc->data = &pv_data->base;
899 	vc4_crtc->pdev = pdev;
900 
901 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
902 	if (IS_ERR(vc4_crtc->regs))
903 		return PTR_ERR(vc4_crtc->regs);
904 
905 	vc4_crtc->regset.base = vc4_crtc->regs;
906 	vc4_crtc->regset.regs = crtc_regs;
907 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
908 
909 	ret = vc4_crtc_init(drm, vc4_crtc,
910 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
911 	if (ret)
912 		return ret;
913 	vc4_set_crtc_possible_masks(drm, crtc);
914 
915 	CRTC_WRITE(PV_INTEN, 0);
916 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
917 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
918 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
919 	if (ret)
920 		goto err_destroy_planes;
921 
922 	platform_set_drvdata(pdev, vc4_crtc);
923 
924 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
925 				 &vc4_crtc->regset);
926 
927 	return 0;
928 
929 err_destroy_planes:
930 	list_for_each_entry_safe(destroy_plane, temp,
931 				 &drm->mode_config.plane_list, head) {
932 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
933 		    destroy_plane->funcs->destroy(destroy_plane);
934 	}
935 
936 	return ret;
937 }
938 
939 static void vc4_crtc_unbind(struct device *dev, struct device *master,
940 			    void *data)
941 {
942 	struct platform_device *pdev = to_platform_device(dev);
943 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
944 
945 	vc4_crtc_destroy(&vc4_crtc->base);
946 
947 	CRTC_WRITE(PV_INTEN, 0);
948 
949 	platform_set_drvdata(pdev, NULL);
950 }
951 
952 static const struct component_ops vc4_crtc_ops = {
953 	.bind   = vc4_crtc_bind,
954 	.unbind = vc4_crtc_unbind,
955 };
956 
957 static int vc4_crtc_dev_probe(struct platform_device *pdev)
958 {
959 	return component_add(&pdev->dev, &vc4_crtc_ops);
960 }
961 
962 static int vc4_crtc_dev_remove(struct platform_device *pdev)
963 {
964 	component_del(&pdev->dev, &vc4_crtc_ops);
965 	return 0;
966 }
967 
968 struct platform_driver vc4_crtc_driver = {
969 	.probe = vc4_crtc_dev_probe,
970 	.remove = vc4_crtc_dev_remove,
971 	.driver = {
972 		.name = "vc4_crtc",
973 		.of_match_table = vc4_crtc_dt_match,
974 	},
975 };
976