xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision de2bdb3d)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33 
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43 
44 struct vc4_crtc {
45 	struct drm_crtc base;
46 	const struct vc4_crtc_data *data;
47 	void __iomem *regs;
48 
49 	/* Timestamp at start of vblank irq - unaffected by lock delays. */
50 	ktime_t t_vblank;
51 
52 	/* Which HVS channel we're using for our CRTC. */
53 	int channel;
54 
55 	u8 lut_r[256];
56 	u8 lut_g[256];
57 	u8 lut_b[256];
58 	/* Size in pixels of the COB memory allocated to this CRTC. */
59 	u32 cob_size;
60 
61 	struct drm_pending_vblank_event *event;
62 };
63 
64 struct vc4_crtc_state {
65 	struct drm_crtc_state base;
66 	/* Dlist area for this CRTC configuration. */
67 	struct drm_mm_node mm;
68 };
69 
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73 	return (struct vc4_crtc *)crtc;
74 }
75 
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79 	return (struct vc4_crtc_state *)crtc_state;
80 }
81 
82 struct vc4_crtc_data {
83 	/* Which channel of the HVS this pixelvalve sources from. */
84 	int hvs_channel;
85 
86 	enum vc4_encoder_type encoder0_type;
87 	enum vc4_encoder_type encoder1_type;
88 };
89 
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92 
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 	u32 reg;
96 	const char *name;
97 } crtc_regs[] = {
98 	CRTC_REG(PV_CONTROL),
99 	CRTC_REG(PV_V_CONTROL),
100 	CRTC_REG(PV_VSYNCD_EVEN),
101 	CRTC_REG(PV_HORZA),
102 	CRTC_REG(PV_HORZB),
103 	CRTC_REG(PV_VERTA),
104 	CRTC_REG(PV_VERTB),
105 	CRTC_REG(PV_VERTA_EVEN),
106 	CRTC_REG(PV_VERTB_EVEN),
107 	CRTC_REG(PV_INTEN),
108 	CRTC_REG(PV_INTSTAT),
109 	CRTC_REG(PV_STAT),
110 	CRTC_REG(PV_HACT_ACT),
111 };
112 
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115 	int i;
116 
117 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 		DRM_INFO("0x%04x (%s): 0x%08x\n",
119 			 crtc_regs[i].reg, crtc_regs[i].name,
120 			 CRTC_READ(crtc_regs[i].reg));
121 	}
122 }
123 
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127 	struct drm_info_node *node = (struct drm_info_node *)m->private;
128 	struct drm_device *dev = node->minor->dev;
129 	int crtc_index = (uintptr_t)node->info_ent->data;
130 	struct drm_crtc *crtc;
131 	struct vc4_crtc *vc4_crtc;
132 	int i;
133 
134 	i = 0;
135 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 		if (i == crtc_index)
137 			break;
138 		i++;
139 	}
140 	if (!crtc)
141 		return 0;
142 	vc4_crtc = to_vc4_crtc(crtc);
143 
144 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 			   crtc_regs[i].name, crtc_regs[i].reg,
147 			   CRTC_READ(crtc_regs[i].reg));
148 	}
149 
150 	return 0;
151 }
152 #endif
153 
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 			    unsigned int flags, int *vpos, int *hpos,
156 			    ktime_t *stime, ktime_t *etime,
157 			    const struct drm_display_mode *mode)
158 {
159 	struct vc4_dev *vc4 = to_vc4_dev(dev);
160 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
161 	u32 val;
162 	int fifo_lines;
163 	int vblank_lines;
164 	int ret = 0;
165 
166 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167 
168 	/* Get optional system timestamp before query. */
169 	if (stime)
170 		*stime = ktime_get();
171 
172 	/*
173 	 * Read vertical scanline which is currently composed for our
174 	 * pixelvalve by the HVS, and also the scaler status.
175 	 */
176 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177 
178 	/* Get optional system timestamp after query. */
179 	if (etime)
180 		*etime = ktime_get();
181 
182 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183 
184 	/* Vertical position of hvs composed scanline. */
185 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
186 	*hpos = 0;
187 
188 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189 		*vpos /= 2;
190 
191 		/* Use hpos to correct for field offset in interlaced mode. */
192 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193 			*hpos += mode->crtc_htotal / 2;
194 	}
195 
196 	/* This is the offset we need for translating hvs -> pv scanout pos. */
197 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198 
199 	if (fifo_lines > 0)
200 		ret |= DRM_SCANOUTPOS_VALID;
201 
202 	/* HVS more than fifo_lines into frame for compositing? */
203 	if (*vpos > fifo_lines) {
204 		/*
205 		 * We are in active scanout and can get some meaningful results
206 		 * from HVS. The actual PV scanout can not trail behind more
207 		 * than fifo_lines as that is the fifo's capacity. Assume that
208 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
209 		 * refilling the fifo and PV consuming from the fifo, ie.
210 		 * whenever the PV consumes and frees up a scanline in the
211 		 * fifo, the HVS will immediately refill it, therefore
212 		 * incrementing vpos. Therefore we choose HVS read position -
213 		 * fifo size in scanlines as a estimate of the real scanout
214 		 * position of the PV.
215 		 */
216 		*vpos -= fifo_lines + 1;
217 
218 		ret |= DRM_SCANOUTPOS_ACCURATE;
219 		return ret;
220 	}
221 
222 	/*
223 	 * Less: This happens when we are in vblank and the HVS, after getting
224 	 * the VSTART restart signal from the PV, just started refilling its
225 	 * fifo with new lines from the top-most lines of the new framebuffers.
226 	 * The PV does not scan out in vblank, so does not remove lines from
227 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 	 * We can't get meaningful readings wrt. scanline position of the PV
229 	 * and need to make things up in a approximative but consistent way.
230 	 */
231 	ret |= DRM_SCANOUTPOS_IN_VBLANK;
232 	vblank_lines = mode->vtotal - mode->vdisplay;
233 
234 	if (flags & DRM_CALLED_FROM_VBLIRQ) {
235 		/*
236 		 * Assume the irq handler got called close to first
237 		 * line of vblank, so PV has about a full vblank
238 		 * scanlines to go, and as a base timestamp use the
239 		 * one taken at entry into vblank irq handler, so it
240 		 * is not affected by random delays due to lock
241 		 * contention on event_lock or vblank_time lock in
242 		 * the core.
243 		 */
244 		*vpos = -vblank_lines;
245 
246 		if (stime)
247 			*stime = vc4_crtc->t_vblank;
248 		if (etime)
249 			*etime = vc4_crtc->t_vblank;
250 
251 		/*
252 		 * If the HVS fifo is not yet full then we know for certain
253 		 * we are at the very beginning of vblank, as the hvs just
254 		 * started refilling, and the stime and etime timestamps
255 		 * truly correspond to start of vblank.
256 		 */
257 		if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258 			ret |= DRM_SCANOUTPOS_ACCURATE;
259 	} else {
260 		/*
261 		 * No clue where we are inside vblank. Return a vpos of zero,
262 		 * which will cause calling code to just return the etime
263 		 * timestamp uncorrected. At least this is no worse than the
264 		 * standard fallback.
265 		 */
266 		*vpos = 0;
267 	}
268 
269 	return ret;
270 }
271 
272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273 				  int *max_error, struct timeval *vblank_time,
274 				  unsigned flags)
275 {
276 	struct vc4_dev *vc4 = to_vc4_dev(dev);
277 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
278 	struct drm_crtc *crtc = &vc4_crtc->base;
279 	struct drm_crtc_state *state = crtc->state;
280 
281 	/* Helper routine in DRM core does all the work: */
282 	return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
283 						     vblank_time, flags,
284 						     &state->adjusted_mode);
285 }
286 
287 static void vc4_crtc_destroy(struct drm_crtc *crtc)
288 {
289 	drm_crtc_cleanup(crtc);
290 }
291 
292 static void
293 vc4_crtc_lut_load(struct drm_crtc *crtc)
294 {
295 	struct drm_device *dev = crtc->dev;
296 	struct vc4_dev *vc4 = to_vc4_dev(dev);
297 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 	u32 i;
299 
300 	/* The LUT memory is laid out with each HVS channel in order,
301 	 * each of which takes 256 writes for R, 256 for G, then 256
302 	 * for B.
303 	 */
304 	HVS_WRITE(SCALER_GAMADDR,
305 		  SCALER_GAMADDR_AUTOINC |
306 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
307 
308 	for (i = 0; i < crtc->gamma_size; i++)
309 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
310 	for (i = 0; i < crtc->gamma_size; i++)
311 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
312 	for (i = 0; i < crtc->gamma_size; i++)
313 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
314 }
315 
316 static int
317 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
318 		   uint32_t size)
319 {
320 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
321 	u32 i;
322 
323 	for (i = 0; i < size; i++) {
324 		vc4_crtc->lut_r[i] = r[i] >> 8;
325 		vc4_crtc->lut_g[i] = g[i] >> 8;
326 		vc4_crtc->lut_b[i] = b[i] >> 8;
327 	}
328 
329 	vc4_crtc_lut_load(crtc);
330 
331 	return 0;
332 }
333 
334 static u32 vc4_get_fifo_full_level(u32 format)
335 {
336 	static const u32 fifo_len_bytes = 64;
337 	static const u32 hvs_latency_pix = 6;
338 
339 	switch (format) {
340 	case PV_CONTROL_FORMAT_DSIV_16:
341 	case PV_CONTROL_FORMAT_DSIC_16:
342 		return fifo_len_bytes - 2 * hvs_latency_pix;
343 	case PV_CONTROL_FORMAT_DSIV_18:
344 		return fifo_len_bytes - 14;
345 	case PV_CONTROL_FORMAT_24:
346 	case PV_CONTROL_FORMAT_DSIV_24:
347 	default:
348 		return fifo_len_bytes - 3 * hvs_latency_pix;
349 	}
350 }
351 
352 /*
353  * Returns the clock select bit for the connector attached to the
354  * CRTC.
355  */
356 static int vc4_get_clock_select(struct drm_crtc *crtc)
357 {
358 	struct drm_connector *connector;
359 
360 	drm_for_each_connector(connector, crtc->dev) {
361 		if (connector->state->crtc == crtc) {
362 			struct drm_encoder *encoder = connector->encoder;
363 			struct vc4_encoder *vc4_encoder =
364 				to_vc4_encoder(encoder);
365 
366 			return vc4_encoder->clock_select;
367 		}
368 	}
369 
370 	return -1;
371 }
372 
373 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
374 {
375 	struct drm_device *dev = crtc->dev;
376 	struct vc4_dev *vc4 = to_vc4_dev(dev);
377 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
378 	struct drm_crtc_state *state = crtc->state;
379 	struct drm_display_mode *mode = &state->adjusted_mode;
380 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
381 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
382 	u32 format = PV_CONTROL_FORMAT_24;
383 	bool debug_dump_regs = false;
384 	int clock_select = vc4_get_clock_select(crtc);
385 
386 	if (debug_dump_regs) {
387 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
388 		vc4_crtc_dump_regs(vc4_crtc);
389 	}
390 
391 	/* Reset the PV fifo. */
392 	CRTC_WRITE(PV_CONTROL, 0);
393 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
394 	CRTC_WRITE(PV_CONTROL, 0);
395 
396 	CRTC_WRITE(PV_HORZA,
397 		   VC4_SET_FIELD((mode->htotal -
398 				  mode->hsync_end) * pixel_rep,
399 				 PV_HORZA_HBP) |
400 		   VC4_SET_FIELD((mode->hsync_end -
401 				  mode->hsync_start) * pixel_rep,
402 				 PV_HORZA_HSYNC));
403 	CRTC_WRITE(PV_HORZB,
404 		   VC4_SET_FIELD((mode->hsync_start -
405 				  mode->hdisplay) * pixel_rep,
406 				 PV_HORZB_HFP) |
407 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
408 
409 	CRTC_WRITE(PV_VERTA,
410 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
411 				 PV_VERTA_VBP) |
412 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
413 				 PV_VERTA_VSYNC));
414 	CRTC_WRITE(PV_VERTB,
415 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
416 				 PV_VERTB_VFP) |
417 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
418 
419 	if (interlace) {
420 		CRTC_WRITE(PV_VERTA_EVEN,
421 			   VC4_SET_FIELD(mode->crtc_vtotal -
422 					 mode->crtc_vsync_end - 1,
423 					 PV_VERTA_VBP) |
424 			   VC4_SET_FIELD(mode->crtc_vsync_end -
425 					 mode->crtc_vsync_start,
426 					 PV_VERTA_VSYNC));
427 		CRTC_WRITE(PV_VERTB_EVEN,
428 			   VC4_SET_FIELD(mode->crtc_vsync_start -
429 					 mode->crtc_vdisplay,
430 					 PV_VERTB_VFP) |
431 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
432 
433 		/* We set up first field even mode for HDMI.  VEC's
434 		 * NTSC mode would want first field odd instead, once
435 		 * we support it (to do so, set ODD_FIRST and put the
436 		 * delay in VSYNCD_EVEN instead).
437 		 */
438 		CRTC_WRITE(PV_V_CONTROL,
439 			   PV_VCONTROL_CONTINUOUS |
440 			   PV_VCONTROL_INTERLACE |
441 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
442 					 PV_VCONTROL_ODD_DELAY));
443 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
444 	} else {
445 		CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
446 	}
447 
448 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
449 
450 
451 	CRTC_WRITE(PV_CONTROL,
452 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
453 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
454 				 PV_CONTROL_FIFO_LEVEL) |
455 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
456 		   PV_CONTROL_CLR_AT_START |
457 		   PV_CONTROL_TRIGGER_UNDERFLOW |
458 		   PV_CONTROL_WAIT_HSTART |
459 		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
460 		   PV_CONTROL_FIFO_CLR |
461 		   PV_CONTROL_EN);
462 
463 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
464 		  SCALER_DISPBKGND_AUTOHS |
465 		  SCALER_DISPBKGND_GAMMA |
466 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
467 
468 	/* Reload the LUT, since the SRAMs would have been disabled if
469 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
470 	 */
471 	vc4_crtc_lut_load(crtc);
472 
473 	if (debug_dump_regs) {
474 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
475 		vc4_crtc_dump_regs(vc4_crtc);
476 	}
477 }
478 
479 static void require_hvs_enabled(struct drm_device *dev)
480 {
481 	struct vc4_dev *vc4 = to_vc4_dev(dev);
482 
483 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
484 		     SCALER_DISPCTRL_ENABLE);
485 }
486 
487 static void vc4_crtc_disable(struct drm_crtc *crtc)
488 {
489 	struct drm_device *dev = crtc->dev;
490 	struct vc4_dev *vc4 = to_vc4_dev(dev);
491 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
492 	u32 chan = vc4_crtc->channel;
493 	int ret;
494 	require_hvs_enabled(dev);
495 
496 	/* Disable vblank irq handling before crtc is disabled. */
497 	drm_crtc_vblank_off(crtc);
498 
499 	CRTC_WRITE(PV_V_CONTROL,
500 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
501 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
502 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
503 
504 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
505 	    SCALER_DISPCTRLX_ENABLE) {
506 		HVS_WRITE(SCALER_DISPCTRLX(chan),
507 			  SCALER_DISPCTRLX_RESET);
508 
509 		/* While the docs say that reset is self-clearing, it
510 		 * seems it doesn't actually.
511 		 */
512 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
513 	}
514 
515 	/* Once we leave, the scaler should be disabled and its fifo empty. */
516 
517 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
518 
519 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
520 				   SCALER_DISPSTATX_MODE) !=
521 		     SCALER_DISPSTATX_MODE_DISABLED);
522 
523 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
524 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
525 		     SCALER_DISPSTATX_EMPTY);
526 }
527 
528 static void vc4_crtc_enable(struct drm_crtc *crtc)
529 {
530 	struct drm_device *dev = crtc->dev;
531 	struct vc4_dev *vc4 = to_vc4_dev(dev);
532 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
533 	struct drm_crtc_state *state = crtc->state;
534 	struct drm_display_mode *mode = &state->adjusted_mode;
535 
536 	require_hvs_enabled(dev);
537 
538 	/* Turn on the scaler, which will wait for vstart to start
539 	 * compositing.
540 	 */
541 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
542 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
543 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
544 		  SCALER_DISPCTRLX_ENABLE);
545 
546 	/* Turn on the pixel valve, which will emit the vstart signal. */
547 	CRTC_WRITE(PV_V_CONTROL,
548 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
549 
550 	/* Enable vblank irq handling after crtc is started. */
551 	drm_crtc_vblank_on(crtc);
552 }
553 
554 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
555 				const struct drm_display_mode *mode,
556 				struct drm_display_mode *adjusted_mode)
557 {
558 	/* Do not allow doublescan modes from user space */
559 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
560 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
561 			      crtc->base.id);
562 		return false;
563 	}
564 
565 	return true;
566 }
567 
568 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
569 				 struct drm_crtc_state *state)
570 {
571 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
572 	struct drm_device *dev = crtc->dev;
573 	struct vc4_dev *vc4 = to_vc4_dev(dev);
574 	struct drm_plane *plane;
575 	unsigned long flags;
576 	const struct drm_plane_state *plane_state;
577 	u32 dlist_count = 0;
578 	int ret;
579 
580 	/* The pixelvalve can only feed one encoder (and encoders are
581 	 * 1:1 with connectors.)
582 	 */
583 	if (hweight32(state->connector_mask) > 1)
584 		return -EINVAL;
585 
586 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
587 		dlist_count += vc4_plane_dlist_size(plane_state);
588 
589 	dlist_count++; /* Account for SCALER_CTL0_END. */
590 
591 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
592 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
593 				 dlist_count, 1, 0);
594 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
595 	if (ret)
596 		return ret;
597 
598 	return 0;
599 }
600 
601 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
602 				  struct drm_crtc_state *old_state)
603 {
604 	struct drm_device *dev = crtc->dev;
605 	struct vc4_dev *vc4 = to_vc4_dev(dev);
606 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
607 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
608 	struct drm_plane *plane;
609 	bool debug_dump_regs = false;
610 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
611 	u32 __iomem *dlist_next = dlist_start;
612 
613 	if (debug_dump_regs) {
614 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
615 		vc4_hvs_dump_state(dev);
616 	}
617 
618 	/* Copy all the active planes' dlist contents to the hardware dlist. */
619 	drm_atomic_crtc_for_each_plane(plane, crtc) {
620 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
621 	}
622 
623 	writel(SCALER_CTL0_END, dlist_next);
624 	dlist_next++;
625 
626 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
627 
628 	if (crtc->state->event) {
629 		unsigned long flags;
630 
631 		crtc->state->event->pipe = drm_crtc_index(crtc);
632 
633 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
634 
635 		spin_lock_irqsave(&dev->event_lock, flags);
636 		vc4_crtc->event = crtc->state->event;
637 		crtc->state->event = NULL;
638 
639 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
640 			  vc4_state->mm.start);
641 
642 		spin_unlock_irqrestore(&dev->event_lock, flags);
643 	} else {
644 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
645 			  vc4_state->mm.start);
646 	}
647 
648 	if (debug_dump_regs) {
649 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
650 		vc4_hvs_dump_state(dev);
651 	}
652 }
653 
654 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
655 {
656 	struct vc4_dev *vc4 = to_vc4_dev(dev);
657 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
658 
659 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
660 
661 	return 0;
662 }
663 
664 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
665 {
666 	struct vc4_dev *vc4 = to_vc4_dev(dev);
667 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
668 
669 	CRTC_WRITE(PV_INTEN, 0);
670 }
671 
672 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
673 {
674 	struct drm_crtc *crtc = &vc4_crtc->base;
675 	struct drm_device *dev = crtc->dev;
676 	struct vc4_dev *vc4 = to_vc4_dev(dev);
677 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
678 	u32 chan = vc4_crtc->channel;
679 	unsigned long flags;
680 
681 	spin_lock_irqsave(&dev->event_lock, flags);
682 	if (vc4_crtc->event &&
683 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
684 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
685 		vc4_crtc->event = NULL;
686 		drm_crtc_vblank_put(crtc);
687 	}
688 	spin_unlock_irqrestore(&dev->event_lock, flags);
689 }
690 
691 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
692 {
693 	struct vc4_crtc *vc4_crtc = data;
694 	u32 stat = CRTC_READ(PV_INTSTAT);
695 	irqreturn_t ret = IRQ_NONE;
696 
697 	if (stat & PV_INT_VFP_START) {
698 		vc4_crtc->t_vblank = ktime_get();
699 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
700 		drm_crtc_handle_vblank(&vc4_crtc->base);
701 		vc4_crtc_handle_page_flip(vc4_crtc);
702 		ret = IRQ_HANDLED;
703 	}
704 
705 	return ret;
706 }
707 
708 struct vc4_async_flip_state {
709 	struct drm_crtc *crtc;
710 	struct drm_framebuffer *fb;
711 	struct drm_pending_vblank_event *event;
712 
713 	struct vc4_seqno_cb cb;
714 };
715 
716 /* Called when the V3D execution for the BO being flipped to is done, so that
717  * we can actually update the plane's address to point to it.
718  */
719 static void
720 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
721 {
722 	struct vc4_async_flip_state *flip_state =
723 		container_of(cb, struct vc4_async_flip_state, cb);
724 	struct drm_crtc *crtc = flip_state->crtc;
725 	struct drm_device *dev = crtc->dev;
726 	struct vc4_dev *vc4 = to_vc4_dev(dev);
727 	struct drm_plane *plane = crtc->primary;
728 
729 	vc4_plane_async_set_fb(plane, flip_state->fb);
730 	if (flip_state->event) {
731 		unsigned long flags;
732 
733 		spin_lock_irqsave(&dev->event_lock, flags);
734 		drm_crtc_send_vblank_event(crtc, flip_state->event);
735 		spin_unlock_irqrestore(&dev->event_lock, flags);
736 	}
737 
738 	drm_crtc_vblank_put(crtc);
739 	drm_framebuffer_unreference(flip_state->fb);
740 	kfree(flip_state);
741 
742 	up(&vc4->async_modeset);
743 }
744 
745 /* Implements async (non-vblank-synced) page flips.
746  *
747  * The page flip ioctl needs to return immediately, so we grab the
748  * modeset semaphore on the pipe, and queue the address update for
749  * when V3D is done with the BO being flipped to.
750  */
751 static int vc4_async_page_flip(struct drm_crtc *crtc,
752 			       struct drm_framebuffer *fb,
753 			       struct drm_pending_vblank_event *event,
754 			       uint32_t flags)
755 {
756 	struct drm_device *dev = crtc->dev;
757 	struct vc4_dev *vc4 = to_vc4_dev(dev);
758 	struct drm_plane *plane = crtc->primary;
759 	int ret = 0;
760 	struct vc4_async_flip_state *flip_state;
761 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
762 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
763 
764 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
765 	if (!flip_state)
766 		return -ENOMEM;
767 
768 	drm_framebuffer_reference(fb);
769 	flip_state->fb = fb;
770 	flip_state->crtc = crtc;
771 	flip_state->event = event;
772 
773 	/* Make sure all other async modesetes have landed. */
774 	ret = down_interruptible(&vc4->async_modeset);
775 	if (ret) {
776 		drm_framebuffer_unreference(fb);
777 		kfree(flip_state);
778 		return ret;
779 	}
780 
781 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
782 
783 	/* Immediately update the plane's legacy fb pointer, so that later
784 	 * modeset prep sees the state that will be present when the semaphore
785 	 * is released.
786 	 */
787 	drm_atomic_set_fb_for_plane(plane->state, fb);
788 	plane->fb = fb;
789 
790 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
791 			   vc4_async_page_flip_complete);
792 
793 	/* Driver takes ownership of state on successful async commit. */
794 	return 0;
795 }
796 
797 static int vc4_page_flip(struct drm_crtc *crtc,
798 			 struct drm_framebuffer *fb,
799 			 struct drm_pending_vblank_event *event,
800 			 uint32_t flags)
801 {
802 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
803 		return vc4_async_page_flip(crtc, fb, event, flags);
804 	else
805 		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
806 }
807 
808 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
809 {
810 	struct vc4_crtc_state *vc4_state;
811 
812 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
813 	if (!vc4_state)
814 		return NULL;
815 
816 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
817 	return &vc4_state->base;
818 }
819 
820 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
821 				   struct drm_crtc_state *state)
822 {
823 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
824 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
825 
826 	if (vc4_state->mm.allocated) {
827 		unsigned long flags;
828 
829 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
830 		drm_mm_remove_node(&vc4_state->mm);
831 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
832 
833 	}
834 
835 	__drm_atomic_helper_crtc_destroy_state(state);
836 }
837 
838 static const struct drm_crtc_funcs vc4_crtc_funcs = {
839 	.set_config = drm_atomic_helper_set_config,
840 	.destroy = vc4_crtc_destroy,
841 	.page_flip = vc4_page_flip,
842 	.set_property = NULL,
843 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
844 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
845 	.reset = drm_atomic_helper_crtc_reset,
846 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
847 	.atomic_destroy_state = vc4_crtc_destroy_state,
848 	.gamma_set = vc4_crtc_gamma_set,
849 };
850 
851 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
852 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
853 	.disable = vc4_crtc_disable,
854 	.enable = vc4_crtc_enable,
855 	.mode_fixup = vc4_crtc_mode_fixup,
856 	.atomic_check = vc4_crtc_atomic_check,
857 	.atomic_flush = vc4_crtc_atomic_flush,
858 };
859 
860 static const struct vc4_crtc_data pv0_data = {
861 	.hvs_channel = 0,
862 	.encoder0_type = VC4_ENCODER_TYPE_DSI0,
863 	.encoder1_type = VC4_ENCODER_TYPE_DPI,
864 };
865 
866 static const struct vc4_crtc_data pv1_data = {
867 	.hvs_channel = 2,
868 	.encoder0_type = VC4_ENCODER_TYPE_DSI1,
869 	.encoder1_type = VC4_ENCODER_TYPE_SMI,
870 };
871 
872 static const struct vc4_crtc_data pv2_data = {
873 	.hvs_channel = 1,
874 	.encoder0_type = VC4_ENCODER_TYPE_VEC,
875 	.encoder1_type = VC4_ENCODER_TYPE_HDMI,
876 };
877 
878 static const struct of_device_id vc4_crtc_dt_match[] = {
879 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
880 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
881 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
882 	{}
883 };
884 
885 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
886 					struct drm_crtc *crtc)
887 {
888 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
889 	struct drm_encoder *encoder;
890 
891 	drm_for_each_encoder(encoder, drm) {
892 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
893 
894 		if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
895 			vc4_encoder->clock_select = 0;
896 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
897 		} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
898 			vc4_encoder->clock_select = 1;
899 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
900 		}
901 	}
902 }
903 
904 static void
905 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
906 {
907 	struct drm_device *drm = vc4_crtc->base.dev;
908 	struct vc4_dev *vc4 = to_vc4_dev(drm);
909 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
910 	/* Top/base are supposed to be 4-pixel aligned, but the
911 	 * Raspberry Pi firmware fills the low bits (which are
912 	 * presumably ignored).
913 	 */
914 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
915 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
916 
917 	vc4_crtc->cob_size = top - base + 4;
918 }
919 
920 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
921 {
922 	struct platform_device *pdev = to_platform_device(dev);
923 	struct drm_device *drm = dev_get_drvdata(master);
924 	struct vc4_dev *vc4 = to_vc4_dev(drm);
925 	struct vc4_crtc *vc4_crtc;
926 	struct drm_crtc *crtc;
927 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
928 	const struct of_device_id *match;
929 	int ret, i;
930 
931 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
932 	if (!vc4_crtc)
933 		return -ENOMEM;
934 	crtc = &vc4_crtc->base;
935 
936 	match = of_match_device(vc4_crtc_dt_match, dev);
937 	if (!match)
938 		return -ENODEV;
939 	vc4_crtc->data = match->data;
940 
941 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
942 	if (IS_ERR(vc4_crtc->regs))
943 		return PTR_ERR(vc4_crtc->regs);
944 
945 	/* For now, we create just the primary and the legacy cursor
946 	 * planes.  We should be able to stack more planes on easily,
947 	 * but to do that we would need to compute the bandwidth
948 	 * requirement of the plane configuration, and reject ones
949 	 * that will take too much.
950 	 */
951 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
952 	if (IS_ERR(primary_plane)) {
953 		dev_err(dev, "failed to construct primary plane\n");
954 		ret = PTR_ERR(primary_plane);
955 		goto err;
956 	}
957 
958 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
959 				  &vc4_crtc_funcs, NULL);
960 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
961 	primary_plane->crtc = crtc;
962 	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
963 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
964 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
965 
966 	/* Set up some arbitrary number of planes.  We're not limited
967 	 * by a set number of physical registers, just the space in
968 	 * the HVS (16k) and how small an plane can be (28 bytes).
969 	 * However, each plane we set up takes up some memory, and
970 	 * increases the cost of looping over planes, which atomic
971 	 * modesetting does quite a bit.  As a result, we pick a
972 	 * modest number of planes to expose, that should hopefully
973 	 * still cover any sane usecase.
974 	 */
975 	for (i = 0; i < 8; i++) {
976 		struct drm_plane *plane =
977 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
978 
979 		if (IS_ERR(plane))
980 			continue;
981 
982 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
983 	}
984 
985 	/* Set up the legacy cursor after overlay initialization,
986 	 * since we overlay planes on the CRTC in the order they were
987 	 * initialized.
988 	 */
989 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
990 	if (!IS_ERR(cursor_plane)) {
991 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
992 		cursor_plane->crtc = crtc;
993 		crtc->cursor = cursor_plane;
994 	}
995 
996 	vc4_crtc_get_cob_allocation(vc4_crtc);
997 
998 	CRTC_WRITE(PV_INTEN, 0);
999 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1000 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1001 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1002 	if (ret)
1003 		goto err_destroy_planes;
1004 
1005 	vc4_set_crtc_possible_masks(drm, crtc);
1006 
1007 	for (i = 0; i < crtc->gamma_size; i++) {
1008 		vc4_crtc->lut_r[i] = i;
1009 		vc4_crtc->lut_g[i] = i;
1010 		vc4_crtc->lut_b[i] = i;
1011 	}
1012 
1013 	platform_set_drvdata(pdev, vc4_crtc);
1014 
1015 	return 0;
1016 
1017 err_destroy_planes:
1018 	list_for_each_entry_safe(destroy_plane, temp,
1019 				 &drm->mode_config.plane_list, head) {
1020 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1021 		    destroy_plane->funcs->destroy(destroy_plane);
1022 	}
1023 err:
1024 	return ret;
1025 }
1026 
1027 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1028 			    void *data)
1029 {
1030 	struct platform_device *pdev = to_platform_device(dev);
1031 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1032 
1033 	vc4_crtc_destroy(&vc4_crtc->base);
1034 
1035 	CRTC_WRITE(PV_INTEN, 0);
1036 
1037 	platform_set_drvdata(pdev, NULL);
1038 }
1039 
1040 static const struct component_ops vc4_crtc_ops = {
1041 	.bind   = vc4_crtc_bind,
1042 	.unbind = vc4_crtc_unbind,
1043 };
1044 
1045 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1046 {
1047 	return component_add(&pdev->dev, &vc4_crtc_ops);
1048 }
1049 
1050 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1051 {
1052 	component_del(&pdev->dev, &vc4_crtc_ops);
1053 	return 0;
1054 }
1055 
1056 struct platform_driver vc4_crtc_driver = {
1057 	.probe = vc4_crtc_dev_probe,
1058 	.remove = vc4_crtc_dev_remove,
1059 	.driver = {
1060 		.name = "vc4_crtc",
1061 		.of_match_table = vc4_crtc_dt_match,
1062 	},
1063 };
1064