1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * output's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, this file also manages 19 * setup of the VC4 HVS's display elements on the CRTC. 20 * 21 * The 2835 has 3 different pixel valves. pv0 in the audio power 22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 23 * image domain can feed either HDMI or the SDTV controller. The 24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 25 * SDTV, etc.) according to which output type is chosen in the mux. 26 * 27 * For power management, the pixel valve's registers are all clocked 28 * by the AXI clock, while the timings and FIFOs make use of the 29 * output-specific clock. Since the encoders also directly consume 30 * the CPRMAN clocks, and know what timings they need, they are the 31 * ones that set the clock. 32 */ 33 34 #include "drm_atomic.h" 35 #include "drm_atomic_helper.h" 36 #include "drm_crtc_helper.h" 37 #include "linux/clk.h" 38 #include "drm_fb_cma_helper.h" 39 #include "linux/component.h" 40 #include "linux/of_device.h" 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 struct vc4_crtc { 45 struct drm_crtc base; 46 const struct vc4_crtc_data *data; 47 void __iomem *regs; 48 49 /* Timestamp at start of vblank irq - unaffected by lock delays. */ 50 ktime_t t_vblank; 51 52 /* Which HVS channel we're using for our CRTC. */ 53 int channel; 54 55 u8 lut_r[256]; 56 u8 lut_g[256]; 57 u8 lut_b[256]; 58 /* Size in pixels of the COB memory allocated to this CRTC. */ 59 u32 cob_size; 60 61 struct drm_pending_vblank_event *event; 62 }; 63 64 struct vc4_crtc_state { 65 struct drm_crtc_state base; 66 /* Dlist area for this CRTC configuration. */ 67 struct drm_mm_node mm; 68 }; 69 70 static inline struct vc4_crtc * 71 to_vc4_crtc(struct drm_crtc *crtc) 72 { 73 return (struct vc4_crtc *)crtc; 74 } 75 76 static inline struct vc4_crtc_state * 77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 78 { 79 return (struct vc4_crtc_state *)crtc_state; 80 } 81 82 struct vc4_crtc_data { 83 /* Which channel of the HVS this pixelvalve sources from. */ 84 int hvs_channel; 85 86 enum vc4_encoder_type encoder0_type; 87 enum vc4_encoder_type encoder1_type; 88 }; 89 90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 92 93 #define CRTC_REG(reg) { reg, #reg } 94 static const struct { 95 u32 reg; 96 const char *name; 97 } crtc_regs[] = { 98 CRTC_REG(PV_CONTROL), 99 CRTC_REG(PV_V_CONTROL), 100 CRTC_REG(PV_VSYNCD_EVEN), 101 CRTC_REG(PV_HORZA), 102 CRTC_REG(PV_HORZB), 103 CRTC_REG(PV_VERTA), 104 CRTC_REG(PV_VERTB), 105 CRTC_REG(PV_VERTA_EVEN), 106 CRTC_REG(PV_VERTB_EVEN), 107 CRTC_REG(PV_INTEN), 108 CRTC_REG(PV_INTSTAT), 109 CRTC_REG(PV_STAT), 110 CRTC_REG(PV_HACT_ACT), 111 }; 112 113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 114 { 115 int i; 116 117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 118 DRM_INFO("0x%04x (%s): 0x%08x\n", 119 crtc_regs[i].reg, crtc_regs[i].name, 120 CRTC_READ(crtc_regs[i].reg)); 121 } 122 } 123 124 #ifdef CONFIG_DEBUG_FS 125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 126 { 127 struct drm_info_node *node = (struct drm_info_node *)m->private; 128 struct drm_device *dev = node->minor->dev; 129 int crtc_index = (uintptr_t)node->info_ent->data; 130 struct drm_crtc *crtc; 131 struct vc4_crtc *vc4_crtc; 132 int i; 133 134 i = 0; 135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 136 if (i == crtc_index) 137 break; 138 i++; 139 } 140 if (!crtc) 141 return 0; 142 vc4_crtc = to_vc4_crtc(crtc); 143 144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 145 seq_printf(m, "%s (0x%04x): 0x%08x\n", 146 crtc_regs[i].name, crtc_regs[i].reg, 147 CRTC_READ(crtc_regs[i].reg)); 148 } 149 150 return 0; 151 } 152 #endif 153 154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 155 unsigned int flags, int *vpos, int *hpos, 156 ktime_t *stime, ktime_t *etime, 157 const struct drm_display_mode *mode) 158 { 159 struct vc4_dev *vc4 = to_vc4_dev(dev); 160 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 161 u32 val; 162 int fifo_lines; 163 int vblank_lines; 164 int ret = 0; 165 166 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 167 168 /* Get optional system timestamp before query. */ 169 if (stime) 170 *stime = ktime_get(); 171 172 /* 173 * Read vertical scanline which is currently composed for our 174 * pixelvalve by the HVS, and also the scaler status. 175 */ 176 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 177 178 /* Get optional system timestamp after query. */ 179 if (etime) 180 *etime = ktime_get(); 181 182 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 183 184 /* Vertical position of hvs composed scanline. */ 185 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 186 *hpos = 0; 187 188 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 189 *vpos /= 2; 190 191 /* Use hpos to correct for field offset in interlaced mode. */ 192 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 193 *hpos += mode->crtc_htotal / 2; 194 } 195 196 /* This is the offset we need for translating hvs -> pv scanout pos. */ 197 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 198 199 if (fifo_lines > 0) 200 ret |= DRM_SCANOUTPOS_VALID; 201 202 /* HVS more than fifo_lines into frame for compositing? */ 203 if (*vpos > fifo_lines) { 204 /* 205 * We are in active scanout and can get some meaningful results 206 * from HVS. The actual PV scanout can not trail behind more 207 * than fifo_lines as that is the fifo's capacity. Assume that 208 * in active scanout the HVS and PV work in lockstep wrt. HVS 209 * refilling the fifo and PV consuming from the fifo, ie. 210 * whenever the PV consumes and frees up a scanline in the 211 * fifo, the HVS will immediately refill it, therefore 212 * incrementing vpos. Therefore we choose HVS read position - 213 * fifo size in scanlines as a estimate of the real scanout 214 * position of the PV. 215 */ 216 *vpos -= fifo_lines + 1; 217 218 ret |= DRM_SCANOUTPOS_ACCURATE; 219 return ret; 220 } 221 222 /* 223 * Less: This happens when we are in vblank and the HVS, after getting 224 * the VSTART restart signal from the PV, just started refilling its 225 * fifo with new lines from the top-most lines of the new framebuffers. 226 * The PV does not scan out in vblank, so does not remove lines from 227 * the fifo, so the fifo will be full quickly and the HVS has to pause. 228 * We can't get meaningful readings wrt. scanline position of the PV 229 * and need to make things up in a approximative but consistent way. 230 */ 231 ret |= DRM_SCANOUTPOS_IN_VBLANK; 232 vblank_lines = mode->vtotal - mode->vdisplay; 233 234 if (flags & DRM_CALLED_FROM_VBLIRQ) { 235 /* 236 * Assume the irq handler got called close to first 237 * line of vblank, so PV has about a full vblank 238 * scanlines to go, and as a base timestamp use the 239 * one taken at entry into vblank irq handler, so it 240 * is not affected by random delays due to lock 241 * contention on event_lock or vblank_time lock in 242 * the core. 243 */ 244 *vpos = -vblank_lines; 245 246 if (stime) 247 *stime = vc4_crtc->t_vblank; 248 if (etime) 249 *etime = vc4_crtc->t_vblank; 250 251 /* 252 * If the HVS fifo is not yet full then we know for certain 253 * we are at the very beginning of vblank, as the hvs just 254 * started refilling, and the stime and etime timestamps 255 * truly correspond to start of vblank. 256 */ 257 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL) 258 ret |= DRM_SCANOUTPOS_ACCURATE; 259 } else { 260 /* 261 * No clue where we are inside vblank. Return a vpos of zero, 262 * which will cause calling code to just return the etime 263 * timestamp uncorrected. At least this is no worse than the 264 * standard fallback. 265 */ 266 *vpos = 0; 267 } 268 269 return ret; 270 } 271 272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id, 273 int *max_error, struct timeval *vblank_time, 274 unsigned flags) 275 { 276 struct vc4_dev *vc4 = to_vc4_dev(dev); 277 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 278 struct drm_crtc *crtc = &vc4_crtc->base; 279 struct drm_crtc_state *state = crtc->state; 280 281 /* Helper routine in DRM core does all the work: */ 282 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error, 283 vblank_time, flags, 284 &state->adjusted_mode); 285 } 286 287 static void vc4_crtc_destroy(struct drm_crtc *crtc) 288 { 289 drm_crtc_cleanup(crtc); 290 } 291 292 static void 293 vc4_crtc_lut_load(struct drm_crtc *crtc) 294 { 295 struct drm_device *dev = crtc->dev; 296 struct vc4_dev *vc4 = to_vc4_dev(dev); 297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 298 u32 i; 299 300 /* The LUT memory is laid out with each HVS channel in order, 301 * each of which takes 256 writes for R, 256 for G, then 256 302 * for B. 303 */ 304 HVS_WRITE(SCALER_GAMADDR, 305 SCALER_GAMADDR_AUTOINC | 306 (vc4_crtc->channel * 3 * crtc->gamma_size)); 307 308 for (i = 0; i < crtc->gamma_size; i++) 309 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 310 for (i = 0; i < crtc->gamma_size; i++) 311 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 312 for (i = 0; i < crtc->gamma_size; i++) 313 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 314 } 315 316 static int 317 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 318 uint32_t size) 319 { 320 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 321 u32 i; 322 323 for (i = 0; i < size; i++) { 324 vc4_crtc->lut_r[i] = r[i] >> 8; 325 vc4_crtc->lut_g[i] = g[i] >> 8; 326 vc4_crtc->lut_b[i] = b[i] >> 8; 327 } 328 329 vc4_crtc_lut_load(crtc); 330 331 return 0; 332 } 333 334 static u32 vc4_get_fifo_full_level(u32 format) 335 { 336 static const u32 fifo_len_bytes = 64; 337 static const u32 hvs_latency_pix = 6; 338 339 switch (format) { 340 case PV_CONTROL_FORMAT_DSIV_16: 341 case PV_CONTROL_FORMAT_DSIC_16: 342 return fifo_len_bytes - 2 * hvs_latency_pix; 343 case PV_CONTROL_FORMAT_DSIV_18: 344 return fifo_len_bytes - 14; 345 case PV_CONTROL_FORMAT_24: 346 case PV_CONTROL_FORMAT_DSIV_24: 347 default: 348 return fifo_len_bytes - 3 * hvs_latency_pix; 349 } 350 } 351 352 /* 353 * Returns the clock select bit for the connector attached to the 354 * CRTC. 355 */ 356 static int vc4_get_clock_select(struct drm_crtc *crtc) 357 { 358 struct drm_connector *connector; 359 360 drm_for_each_connector(connector, crtc->dev) { 361 if (connector->state->crtc == crtc) { 362 struct drm_encoder *encoder = connector->encoder; 363 struct vc4_encoder *vc4_encoder = 364 to_vc4_encoder(encoder); 365 366 return vc4_encoder->clock_select; 367 } 368 } 369 370 return -1; 371 } 372 373 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 374 { 375 struct drm_device *dev = crtc->dev; 376 struct vc4_dev *vc4 = to_vc4_dev(dev); 377 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 378 struct drm_crtc_state *state = crtc->state; 379 struct drm_display_mode *mode = &state->adjusted_mode; 380 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 381 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 382 u32 format = PV_CONTROL_FORMAT_24; 383 bool debug_dump_regs = false; 384 int clock_select = vc4_get_clock_select(crtc); 385 386 if (debug_dump_regs) { 387 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 388 vc4_crtc_dump_regs(vc4_crtc); 389 } 390 391 /* Reset the PV fifo. */ 392 CRTC_WRITE(PV_CONTROL, 0); 393 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 394 CRTC_WRITE(PV_CONTROL, 0); 395 396 CRTC_WRITE(PV_HORZA, 397 VC4_SET_FIELD((mode->htotal - 398 mode->hsync_end) * pixel_rep, 399 PV_HORZA_HBP) | 400 VC4_SET_FIELD((mode->hsync_end - 401 mode->hsync_start) * pixel_rep, 402 PV_HORZA_HSYNC)); 403 CRTC_WRITE(PV_HORZB, 404 VC4_SET_FIELD((mode->hsync_start - 405 mode->hdisplay) * pixel_rep, 406 PV_HORZB_HFP) | 407 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 408 409 CRTC_WRITE(PV_VERTA, 410 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 411 PV_VERTA_VBP) | 412 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 413 PV_VERTA_VSYNC)); 414 CRTC_WRITE(PV_VERTB, 415 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 416 PV_VERTB_VFP) | 417 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 418 419 if (interlace) { 420 CRTC_WRITE(PV_VERTA_EVEN, 421 VC4_SET_FIELD(mode->crtc_vtotal - 422 mode->crtc_vsync_end - 1, 423 PV_VERTA_VBP) | 424 VC4_SET_FIELD(mode->crtc_vsync_end - 425 mode->crtc_vsync_start, 426 PV_VERTA_VSYNC)); 427 CRTC_WRITE(PV_VERTB_EVEN, 428 VC4_SET_FIELD(mode->crtc_vsync_start - 429 mode->crtc_vdisplay, 430 PV_VERTB_VFP) | 431 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 432 433 /* We set up first field even mode for HDMI. VEC's 434 * NTSC mode would want first field odd instead, once 435 * we support it (to do so, set ODD_FIRST and put the 436 * delay in VSYNCD_EVEN instead). 437 */ 438 CRTC_WRITE(PV_V_CONTROL, 439 PV_VCONTROL_CONTINUOUS | 440 PV_VCONTROL_INTERLACE | 441 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 442 PV_VCONTROL_ODD_DELAY)); 443 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 444 } else { 445 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS); 446 } 447 448 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 449 450 451 CRTC_WRITE(PV_CONTROL, 452 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 453 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 454 PV_CONTROL_FIFO_LEVEL) | 455 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 456 PV_CONTROL_CLR_AT_START | 457 PV_CONTROL_TRIGGER_UNDERFLOW | 458 PV_CONTROL_WAIT_HSTART | 459 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | 460 PV_CONTROL_FIFO_CLR | 461 PV_CONTROL_EN); 462 463 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 464 SCALER_DISPBKGND_AUTOHS | 465 SCALER_DISPBKGND_GAMMA | 466 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 467 468 /* Reload the LUT, since the SRAMs would have been disabled if 469 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 470 */ 471 vc4_crtc_lut_load(crtc); 472 473 if (debug_dump_regs) { 474 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 475 vc4_crtc_dump_regs(vc4_crtc); 476 } 477 } 478 479 static void require_hvs_enabled(struct drm_device *dev) 480 { 481 struct vc4_dev *vc4 = to_vc4_dev(dev); 482 483 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 484 SCALER_DISPCTRL_ENABLE); 485 } 486 487 static void vc4_crtc_disable(struct drm_crtc *crtc) 488 { 489 struct drm_device *dev = crtc->dev; 490 struct vc4_dev *vc4 = to_vc4_dev(dev); 491 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 492 u32 chan = vc4_crtc->channel; 493 int ret; 494 require_hvs_enabled(dev); 495 496 /* Disable vblank irq handling before crtc is disabled. */ 497 drm_crtc_vblank_off(crtc); 498 499 CRTC_WRITE(PV_V_CONTROL, 500 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 501 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 502 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 503 504 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 505 SCALER_DISPCTRLX_ENABLE) { 506 HVS_WRITE(SCALER_DISPCTRLX(chan), 507 SCALER_DISPCTRLX_RESET); 508 509 /* While the docs say that reset is self-clearing, it 510 * seems it doesn't actually. 511 */ 512 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 513 } 514 515 /* Once we leave, the scaler should be disabled and its fifo empty. */ 516 517 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 518 519 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 520 SCALER_DISPSTATX_MODE) != 521 SCALER_DISPSTATX_MODE_DISABLED); 522 523 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 524 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 525 SCALER_DISPSTATX_EMPTY); 526 } 527 528 static void vc4_crtc_enable(struct drm_crtc *crtc) 529 { 530 struct drm_device *dev = crtc->dev; 531 struct vc4_dev *vc4 = to_vc4_dev(dev); 532 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 533 struct drm_crtc_state *state = crtc->state; 534 struct drm_display_mode *mode = &state->adjusted_mode; 535 536 require_hvs_enabled(dev); 537 538 /* Turn on the scaler, which will wait for vstart to start 539 * compositing. 540 */ 541 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 542 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 543 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 544 SCALER_DISPCTRLX_ENABLE); 545 546 /* Turn on the pixel valve, which will emit the vstart signal. */ 547 CRTC_WRITE(PV_V_CONTROL, 548 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 549 550 /* Enable vblank irq handling after crtc is started. */ 551 drm_crtc_vblank_on(crtc); 552 } 553 554 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc, 555 const struct drm_display_mode *mode, 556 struct drm_display_mode *adjusted_mode) 557 { 558 /* Do not allow doublescan modes from user space */ 559 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) { 560 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 561 crtc->base.id); 562 return false; 563 } 564 565 return true; 566 } 567 568 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 569 struct drm_crtc_state *state) 570 { 571 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 572 struct drm_device *dev = crtc->dev; 573 struct vc4_dev *vc4 = to_vc4_dev(dev); 574 struct drm_plane *plane; 575 unsigned long flags; 576 const struct drm_plane_state *plane_state; 577 u32 dlist_count = 0; 578 int ret; 579 580 /* The pixelvalve can only feed one encoder (and encoders are 581 * 1:1 with connectors.) 582 */ 583 if (hweight32(state->connector_mask) > 1) 584 return -EINVAL; 585 586 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 587 dlist_count += vc4_plane_dlist_size(plane_state); 588 589 dlist_count++; /* Account for SCALER_CTL0_END. */ 590 591 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 592 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 593 dlist_count, 1, 0); 594 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 595 if (ret) 596 return ret; 597 598 return 0; 599 } 600 601 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 602 struct drm_crtc_state *old_state) 603 { 604 struct drm_device *dev = crtc->dev; 605 struct vc4_dev *vc4 = to_vc4_dev(dev); 606 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 607 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 608 struct drm_plane *plane; 609 bool debug_dump_regs = false; 610 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 611 u32 __iomem *dlist_next = dlist_start; 612 613 if (debug_dump_regs) { 614 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 615 vc4_hvs_dump_state(dev); 616 } 617 618 /* Copy all the active planes' dlist contents to the hardware dlist. */ 619 drm_atomic_crtc_for_each_plane(plane, crtc) { 620 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 621 } 622 623 writel(SCALER_CTL0_END, dlist_next); 624 dlist_next++; 625 626 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 627 628 if (crtc->state->event) { 629 unsigned long flags; 630 631 crtc->state->event->pipe = drm_crtc_index(crtc); 632 633 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 634 635 spin_lock_irqsave(&dev->event_lock, flags); 636 vc4_crtc->event = crtc->state->event; 637 crtc->state->event = NULL; 638 639 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 640 vc4_state->mm.start); 641 642 spin_unlock_irqrestore(&dev->event_lock, flags); 643 } else { 644 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 645 vc4_state->mm.start); 646 } 647 648 if (debug_dump_regs) { 649 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 650 vc4_hvs_dump_state(dev); 651 } 652 } 653 654 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) 655 { 656 struct vc4_dev *vc4 = to_vc4_dev(dev); 657 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 658 659 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 660 661 return 0; 662 } 663 664 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) 665 { 666 struct vc4_dev *vc4 = to_vc4_dev(dev); 667 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 668 669 CRTC_WRITE(PV_INTEN, 0); 670 } 671 672 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 673 { 674 struct drm_crtc *crtc = &vc4_crtc->base; 675 struct drm_device *dev = crtc->dev; 676 struct vc4_dev *vc4 = to_vc4_dev(dev); 677 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 678 u32 chan = vc4_crtc->channel; 679 unsigned long flags; 680 681 spin_lock_irqsave(&dev->event_lock, flags); 682 if (vc4_crtc->event && 683 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { 684 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 685 vc4_crtc->event = NULL; 686 drm_crtc_vblank_put(crtc); 687 } 688 spin_unlock_irqrestore(&dev->event_lock, flags); 689 } 690 691 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 692 { 693 struct vc4_crtc *vc4_crtc = data; 694 u32 stat = CRTC_READ(PV_INTSTAT); 695 irqreturn_t ret = IRQ_NONE; 696 697 if (stat & PV_INT_VFP_START) { 698 vc4_crtc->t_vblank = ktime_get(); 699 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 700 drm_crtc_handle_vblank(&vc4_crtc->base); 701 vc4_crtc_handle_page_flip(vc4_crtc); 702 ret = IRQ_HANDLED; 703 } 704 705 return ret; 706 } 707 708 struct vc4_async_flip_state { 709 struct drm_crtc *crtc; 710 struct drm_framebuffer *fb; 711 struct drm_pending_vblank_event *event; 712 713 struct vc4_seqno_cb cb; 714 }; 715 716 /* Called when the V3D execution for the BO being flipped to is done, so that 717 * we can actually update the plane's address to point to it. 718 */ 719 static void 720 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 721 { 722 struct vc4_async_flip_state *flip_state = 723 container_of(cb, struct vc4_async_flip_state, cb); 724 struct drm_crtc *crtc = flip_state->crtc; 725 struct drm_device *dev = crtc->dev; 726 struct vc4_dev *vc4 = to_vc4_dev(dev); 727 struct drm_plane *plane = crtc->primary; 728 729 vc4_plane_async_set_fb(plane, flip_state->fb); 730 if (flip_state->event) { 731 unsigned long flags; 732 733 spin_lock_irqsave(&dev->event_lock, flags); 734 drm_crtc_send_vblank_event(crtc, flip_state->event); 735 spin_unlock_irqrestore(&dev->event_lock, flags); 736 } 737 738 drm_crtc_vblank_put(crtc); 739 drm_framebuffer_unreference(flip_state->fb); 740 kfree(flip_state); 741 742 up(&vc4->async_modeset); 743 } 744 745 /* Implements async (non-vblank-synced) page flips. 746 * 747 * The page flip ioctl needs to return immediately, so we grab the 748 * modeset semaphore on the pipe, and queue the address update for 749 * when V3D is done with the BO being flipped to. 750 */ 751 static int vc4_async_page_flip(struct drm_crtc *crtc, 752 struct drm_framebuffer *fb, 753 struct drm_pending_vblank_event *event, 754 uint32_t flags) 755 { 756 struct drm_device *dev = crtc->dev; 757 struct vc4_dev *vc4 = to_vc4_dev(dev); 758 struct drm_plane *plane = crtc->primary; 759 int ret = 0; 760 struct vc4_async_flip_state *flip_state; 761 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 762 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 763 764 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 765 if (!flip_state) 766 return -ENOMEM; 767 768 drm_framebuffer_reference(fb); 769 flip_state->fb = fb; 770 flip_state->crtc = crtc; 771 flip_state->event = event; 772 773 /* Make sure all other async modesetes have landed. */ 774 ret = down_interruptible(&vc4->async_modeset); 775 if (ret) { 776 drm_framebuffer_unreference(fb); 777 kfree(flip_state); 778 return ret; 779 } 780 781 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 782 783 /* Immediately update the plane's legacy fb pointer, so that later 784 * modeset prep sees the state that will be present when the semaphore 785 * is released. 786 */ 787 drm_atomic_set_fb_for_plane(plane->state, fb); 788 plane->fb = fb; 789 790 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 791 vc4_async_page_flip_complete); 792 793 /* Driver takes ownership of state on successful async commit. */ 794 return 0; 795 } 796 797 static int vc4_page_flip(struct drm_crtc *crtc, 798 struct drm_framebuffer *fb, 799 struct drm_pending_vblank_event *event, 800 uint32_t flags) 801 { 802 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 803 return vc4_async_page_flip(crtc, fb, event, flags); 804 else 805 return drm_atomic_helper_page_flip(crtc, fb, event, flags); 806 } 807 808 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 809 { 810 struct vc4_crtc_state *vc4_state; 811 812 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 813 if (!vc4_state) 814 return NULL; 815 816 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 817 return &vc4_state->base; 818 } 819 820 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 821 struct drm_crtc_state *state) 822 { 823 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 824 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 825 826 if (vc4_state->mm.allocated) { 827 unsigned long flags; 828 829 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 830 drm_mm_remove_node(&vc4_state->mm); 831 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 832 833 } 834 835 __drm_atomic_helper_crtc_destroy_state(state); 836 } 837 838 static const struct drm_crtc_funcs vc4_crtc_funcs = { 839 .set_config = drm_atomic_helper_set_config, 840 .destroy = vc4_crtc_destroy, 841 .page_flip = vc4_page_flip, 842 .set_property = NULL, 843 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 844 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 845 .reset = drm_atomic_helper_crtc_reset, 846 .atomic_duplicate_state = vc4_crtc_duplicate_state, 847 .atomic_destroy_state = vc4_crtc_destroy_state, 848 .gamma_set = vc4_crtc_gamma_set, 849 }; 850 851 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 852 .mode_set_nofb = vc4_crtc_mode_set_nofb, 853 .disable = vc4_crtc_disable, 854 .enable = vc4_crtc_enable, 855 .mode_fixup = vc4_crtc_mode_fixup, 856 .atomic_check = vc4_crtc_atomic_check, 857 .atomic_flush = vc4_crtc_atomic_flush, 858 }; 859 860 static const struct vc4_crtc_data pv0_data = { 861 .hvs_channel = 0, 862 .encoder0_type = VC4_ENCODER_TYPE_DSI0, 863 .encoder1_type = VC4_ENCODER_TYPE_DPI, 864 }; 865 866 static const struct vc4_crtc_data pv1_data = { 867 .hvs_channel = 2, 868 .encoder0_type = VC4_ENCODER_TYPE_DSI1, 869 .encoder1_type = VC4_ENCODER_TYPE_SMI, 870 }; 871 872 static const struct vc4_crtc_data pv2_data = { 873 .hvs_channel = 1, 874 .encoder0_type = VC4_ENCODER_TYPE_VEC, 875 .encoder1_type = VC4_ENCODER_TYPE_HDMI, 876 }; 877 878 static const struct of_device_id vc4_crtc_dt_match[] = { 879 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 880 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 881 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 882 {} 883 }; 884 885 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 886 struct drm_crtc *crtc) 887 { 888 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 889 struct drm_encoder *encoder; 890 891 drm_for_each_encoder(encoder, drm) { 892 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 893 894 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) { 895 vc4_encoder->clock_select = 0; 896 encoder->possible_crtcs |= drm_crtc_mask(crtc); 897 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) { 898 vc4_encoder->clock_select = 1; 899 encoder->possible_crtcs |= drm_crtc_mask(crtc); 900 } 901 } 902 } 903 904 static void 905 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 906 { 907 struct drm_device *drm = vc4_crtc->base.dev; 908 struct vc4_dev *vc4 = to_vc4_dev(drm); 909 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 910 /* Top/base are supposed to be 4-pixel aligned, but the 911 * Raspberry Pi firmware fills the low bits (which are 912 * presumably ignored). 913 */ 914 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 915 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 916 917 vc4_crtc->cob_size = top - base + 4; 918 } 919 920 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 921 { 922 struct platform_device *pdev = to_platform_device(dev); 923 struct drm_device *drm = dev_get_drvdata(master); 924 struct vc4_dev *vc4 = to_vc4_dev(drm); 925 struct vc4_crtc *vc4_crtc; 926 struct drm_crtc *crtc; 927 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 928 const struct of_device_id *match; 929 int ret, i; 930 931 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 932 if (!vc4_crtc) 933 return -ENOMEM; 934 crtc = &vc4_crtc->base; 935 936 match = of_match_device(vc4_crtc_dt_match, dev); 937 if (!match) 938 return -ENODEV; 939 vc4_crtc->data = match->data; 940 941 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 942 if (IS_ERR(vc4_crtc->regs)) 943 return PTR_ERR(vc4_crtc->regs); 944 945 /* For now, we create just the primary and the legacy cursor 946 * planes. We should be able to stack more planes on easily, 947 * but to do that we would need to compute the bandwidth 948 * requirement of the plane configuration, and reject ones 949 * that will take too much. 950 */ 951 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 952 if (IS_ERR(primary_plane)) { 953 dev_err(dev, "failed to construct primary plane\n"); 954 ret = PTR_ERR(primary_plane); 955 goto err; 956 } 957 958 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 959 &vc4_crtc_funcs, NULL); 960 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 961 primary_plane->crtc = crtc; 962 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; 963 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 964 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 965 966 /* Set up some arbitrary number of planes. We're not limited 967 * by a set number of physical registers, just the space in 968 * the HVS (16k) and how small an plane can be (28 bytes). 969 * However, each plane we set up takes up some memory, and 970 * increases the cost of looping over planes, which atomic 971 * modesetting does quite a bit. As a result, we pick a 972 * modest number of planes to expose, that should hopefully 973 * still cover any sane usecase. 974 */ 975 for (i = 0; i < 8; i++) { 976 struct drm_plane *plane = 977 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 978 979 if (IS_ERR(plane)) 980 continue; 981 982 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 983 } 984 985 /* Set up the legacy cursor after overlay initialization, 986 * since we overlay planes on the CRTC in the order they were 987 * initialized. 988 */ 989 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 990 if (!IS_ERR(cursor_plane)) { 991 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 992 cursor_plane->crtc = crtc; 993 crtc->cursor = cursor_plane; 994 } 995 996 vc4_crtc_get_cob_allocation(vc4_crtc); 997 998 CRTC_WRITE(PV_INTEN, 0); 999 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1000 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1001 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1002 if (ret) 1003 goto err_destroy_planes; 1004 1005 vc4_set_crtc_possible_masks(drm, crtc); 1006 1007 for (i = 0; i < crtc->gamma_size; i++) { 1008 vc4_crtc->lut_r[i] = i; 1009 vc4_crtc->lut_g[i] = i; 1010 vc4_crtc->lut_b[i] = i; 1011 } 1012 1013 platform_set_drvdata(pdev, vc4_crtc); 1014 1015 return 0; 1016 1017 err_destroy_planes: 1018 list_for_each_entry_safe(destroy_plane, temp, 1019 &drm->mode_config.plane_list, head) { 1020 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 1021 destroy_plane->funcs->destroy(destroy_plane); 1022 } 1023 err: 1024 return ret; 1025 } 1026 1027 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1028 void *data) 1029 { 1030 struct platform_device *pdev = to_platform_device(dev); 1031 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1032 1033 vc4_crtc_destroy(&vc4_crtc->base); 1034 1035 CRTC_WRITE(PV_INTEN, 0); 1036 1037 platform_set_drvdata(pdev, NULL); 1038 } 1039 1040 static const struct component_ops vc4_crtc_ops = { 1041 .bind = vc4_crtc_bind, 1042 .unbind = vc4_crtc_unbind, 1043 }; 1044 1045 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1046 { 1047 return component_add(&pdev->dev, &vc4_crtc_ops); 1048 } 1049 1050 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1051 { 1052 component_del(&pdev->dev, &vc4_crtc_ops); 1053 return 0; 1054 } 1055 1056 struct platform_driver vc4_crtc_driver = { 1057 .probe = vc4_crtc_dev_probe, 1058 .remove = vc4_crtc_dev_remove, 1059 .driver = { 1060 .name = "vc4_crtc", 1061 .of_match_table = vc4_crtc_dt_match, 1062 }, 1063 }; 1064