xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43 
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46 
47 struct vc4_crtc_state {
48 	struct drm_crtc_state base;
49 	/* Dlist area for this CRTC configuration. */
50 	struct drm_mm_node mm;
51 	bool feed_txp;
52 	bool txp_armed;
53 
54 	struct {
55 		unsigned int left;
56 		unsigned int right;
57 		unsigned int top;
58 		unsigned int bottom;
59 	} margins;
60 };
61 
62 static inline struct vc4_crtc_state *
63 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
64 {
65 	return (struct vc4_crtc_state *)crtc_state;
66 }
67 
68 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
69 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
70 
71 static const struct debugfs_reg32 crtc_regs[] = {
72 	VC4_REG32(PV_CONTROL),
73 	VC4_REG32(PV_V_CONTROL),
74 	VC4_REG32(PV_VSYNCD_EVEN),
75 	VC4_REG32(PV_HORZA),
76 	VC4_REG32(PV_HORZB),
77 	VC4_REG32(PV_VERTA),
78 	VC4_REG32(PV_VERTB),
79 	VC4_REG32(PV_VERTA_EVEN),
80 	VC4_REG32(PV_VERTB_EVEN),
81 	VC4_REG32(PV_INTEN),
82 	VC4_REG32(PV_INTSTAT),
83 	VC4_REG32(PV_STAT),
84 	VC4_REG32(PV_HACT_ACT),
85 };
86 
87 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
88 			     bool in_vblank_irq, int *vpos, int *hpos,
89 			     ktime_t *stime, ktime_t *etime,
90 			     const struct drm_display_mode *mode)
91 {
92 	struct vc4_dev *vc4 = to_vc4_dev(dev);
93 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
94 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95 	u32 val;
96 	int fifo_lines;
97 	int vblank_lines;
98 	bool ret = false;
99 
100 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
101 
102 	/* Get optional system timestamp before query. */
103 	if (stime)
104 		*stime = ktime_get();
105 
106 	/*
107 	 * Read vertical scanline which is currently composed for our
108 	 * pixelvalve by the HVS, and also the scaler status.
109 	 */
110 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
111 
112 	/* Get optional system timestamp after query. */
113 	if (etime)
114 		*etime = ktime_get();
115 
116 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
117 
118 	/* Vertical position of hvs composed scanline. */
119 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120 	*hpos = 0;
121 
122 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123 		*vpos /= 2;
124 
125 		/* Use hpos to correct for field offset in interlaced mode. */
126 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
127 			*hpos += mode->crtc_htotal / 2;
128 	}
129 
130 	/* This is the offset we need for translating hvs -> pv scanout pos. */
131 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
132 
133 	if (fifo_lines > 0)
134 		ret = true;
135 
136 	/* HVS more than fifo_lines into frame for compositing? */
137 	if (*vpos > fifo_lines) {
138 		/*
139 		 * We are in active scanout and can get some meaningful results
140 		 * from HVS. The actual PV scanout can not trail behind more
141 		 * than fifo_lines as that is the fifo's capacity. Assume that
142 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
143 		 * refilling the fifo and PV consuming from the fifo, ie.
144 		 * whenever the PV consumes and frees up a scanline in the
145 		 * fifo, the HVS will immediately refill it, therefore
146 		 * incrementing vpos. Therefore we choose HVS read position -
147 		 * fifo size in scanlines as a estimate of the real scanout
148 		 * position of the PV.
149 		 */
150 		*vpos -= fifo_lines + 1;
151 
152 		return ret;
153 	}
154 
155 	/*
156 	 * Less: This happens when we are in vblank and the HVS, after getting
157 	 * the VSTART restart signal from the PV, just started refilling its
158 	 * fifo with new lines from the top-most lines of the new framebuffers.
159 	 * The PV does not scan out in vblank, so does not remove lines from
160 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
161 	 * We can't get meaningful readings wrt. scanline position of the PV
162 	 * and need to make things up in a approximative but consistent way.
163 	 */
164 	vblank_lines = mode->vtotal - mode->vdisplay;
165 
166 	if (in_vblank_irq) {
167 		/*
168 		 * Assume the irq handler got called close to first
169 		 * line of vblank, so PV has about a full vblank
170 		 * scanlines to go, and as a base timestamp use the
171 		 * one taken at entry into vblank irq handler, so it
172 		 * is not affected by random delays due to lock
173 		 * contention on event_lock or vblank_time lock in
174 		 * the core.
175 		 */
176 		*vpos = -vblank_lines;
177 
178 		if (stime)
179 			*stime = vc4_crtc->t_vblank;
180 		if (etime)
181 			*etime = vc4_crtc->t_vblank;
182 
183 		/*
184 		 * If the HVS fifo is not yet full then we know for certain
185 		 * we are at the very beginning of vblank, as the hvs just
186 		 * started refilling, and the stime and etime timestamps
187 		 * truly correspond to start of vblank.
188 		 *
189 		 * Unfortunately there's no way to report this to upper levels
190 		 * and make it more useful.
191 		 */
192 	} else {
193 		/*
194 		 * No clue where we are inside vblank. Return a vpos of zero,
195 		 * which will cause calling code to just return the etime
196 		 * timestamp uncorrected. At least this is no worse than the
197 		 * standard fallback.
198 		 */
199 		*vpos = 0;
200 	}
201 
202 	return ret;
203 }
204 
205 static void vc4_crtc_destroy(struct drm_crtc *crtc)
206 {
207 	drm_crtc_cleanup(crtc);
208 }
209 
210 static void
211 vc4_crtc_lut_load(struct drm_crtc *crtc)
212 {
213 	struct drm_device *dev = crtc->dev;
214 	struct vc4_dev *vc4 = to_vc4_dev(dev);
215 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
216 	u32 i;
217 
218 	/* The LUT memory is laid out with each HVS channel in order,
219 	 * each of which takes 256 writes for R, 256 for G, then 256
220 	 * for B.
221 	 */
222 	HVS_WRITE(SCALER_GAMADDR,
223 		  SCALER_GAMADDR_AUTOINC |
224 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
225 
226 	for (i = 0; i < crtc->gamma_size; i++)
227 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
228 	for (i = 0; i < crtc->gamma_size; i++)
229 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
230 	for (i = 0; i < crtc->gamma_size; i++)
231 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
232 }
233 
234 static void
235 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
236 {
237 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
239 	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
240 	u32 i;
241 
242 	for (i = 0; i < length; i++) {
243 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
244 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
245 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
246 	}
247 
248 	vc4_crtc_lut_load(crtc);
249 }
250 
251 static u32 vc4_get_fifo_full_level(u32 format)
252 {
253 	static const u32 fifo_len_bytes = 64;
254 	static const u32 hvs_latency_pix = 6;
255 
256 	switch (format) {
257 	case PV_CONTROL_FORMAT_DSIV_16:
258 	case PV_CONTROL_FORMAT_DSIC_16:
259 		return fifo_len_bytes - 2 * hvs_latency_pix;
260 	case PV_CONTROL_FORMAT_DSIV_18:
261 		return fifo_len_bytes - 14;
262 	case PV_CONTROL_FORMAT_24:
263 	case PV_CONTROL_FORMAT_DSIV_24:
264 	default:
265 		return fifo_len_bytes - 3 * hvs_latency_pix;
266 	}
267 }
268 
269 /*
270  * Returns the encoder attached to the CRTC.
271  *
272  * VC4 can only scan out to one encoder at a time, while the DRM core
273  * allows drivers to push pixels to more than one encoder from the
274  * same CRTC.
275  */
276 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
277 {
278 	struct drm_connector *connector;
279 	struct drm_connector_list_iter conn_iter;
280 
281 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
282 	drm_for_each_connector_iter(connector, &conn_iter) {
283 		if (connector->state->crtc == crtc) {
284 			drm_connector_list_iter_end(&conn_iter);
285 			return connector->encoder;
286 		}
287 	}
288 	drm_connector_list_iter_end(&conn_iter);
289 
290 	return NULL;
291 }
292 
293 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
294 {
295 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
296 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 	struct drm_crtc_state *state = crtc->state;
299 	struct drm_display_mode *mode = &state->adjusted_mode;
300 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
301 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
302 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
303 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
304 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
305 
306 	/* Reset the PV fifo. */
307 	CRTC_WRITE(PV_CONTROL, 0);
308 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
309 	CRTC_WRITE(PV_CONTROL, 0);
310 
311 	CRTC_WRITE(PV_HORZA,
312 		   VC4_SET_FIELD((mode->htotal -
313 				  mode->hsync_end) * pixel_rep,
314 				 PV_HORZA_HBP) |
315 		   VC4_SET_FIELD((mode->hsync_end -
316 				  mode->hsync_start) * pixel_rep,
317 				 PV_HORZA_HSYNC));
318 	CRTC_WRITE(PV_HORZB,
319 		   VC4_SET_FIELD((mode->hsync_start -
320 				  mode->hdisplay) * pixel_rep,
321 				 PV_HORZB_HFP) |
322 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
323 
324 	CRTC_WRITE(PV_VERTA,
325 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
326 				 PV_VERTA_VBP) |
327 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
328 				 PV_VERTA_VSYNC));
329 	CRTC_WRITE(PV_VERTB,
330 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
331 				 PV_VERTB_VFP) |
332 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
333 
334 	if (interlace) {
335 		CRTC_WRITE(PV_VERTA_EVEN,
336 			   VC4_SET_FIELD(mode->crtc_vtotal -
337 					 mode->crtc_vsync_end - 1,
338 					 PV_VERTA_VBP) |
339 			   VC4_SET_FIELD(mode->crtc_vsync_end -
340 					 mode->crtc_vsync_start,
341 					 PV_VERTA_VSYNC));
342 		CRTC_WRITE(PV_VERTB_EVEN,
343 			   VC4_SET_FIELD(mode->crtc_vsync_start -
344 					 mode->crtc_vdisplay,
345 					 PV_VERTB_VFP) |
346 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
347 
348 		/* We set up first field even mode for HDMI.  VEC's
349 		 * NTSC mode would want first field odd instead, once
350 		 * we support it (to do so, set ODD_FIRST and put the
351 		 * delay in VSYNCD_EVEN instead).
352 		 */
353 		CRTC_WRITE(PV_V_CONTROL,
354 			   PV_VCONTROL_CONTINUOUS |
355 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
356 			   PV_VCONTROL_INTERLACE |
357 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
358 					 PV_VCONTROL_ODD_DELAY));
359 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
360 	} else {
361 		CRTC_WRITE(PV_V_CONTROL,
362 			   PV_VCONTROL_CONTINUOUS |
363 			   (is_dsi ? PV_VCONTROL_DSI : 0));
364 	}
365 
366 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
367 
368 	CRTC_WRITE(PV_CONTROL,
369 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
370 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
371 				 PV_CONTROL_FIFO_LEVEL) |
372 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
373 		   PV_CONTROL_CLR_AT_START |
374 		   PV_CONTROL_TRIGGER_UNDERFLOW |
375 		   PV_CONTROL_WAIT_HSTART |
376 		   VC4_SET_FIELD(vc4_encoder->clock_select,
377 				 PV_CONTROL_CLK_SELECT) |
378 		   PV_CONTROL_FIFO_CLR |
379 		   PV_CONTROL_EN);
380 }
381 
382 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
383 {
384 	struct drm_device *dev = crtc->dev;
385 	struct vc4_dev *vc4 = to_vc4_dev(dev);
386 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
387 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
388 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
389 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
390 	bool debug_dump_regs = false;
391 
392 	if (debug_dump_regs) {
393 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
394 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
395 			 drm_crtc_index(crtc));
396 		drm_print_regset32(&p, &vc4_crtc->regset);
397 	}
398 
399 	if (vc4_crtc->channel == 2) {
400 		u32 dispctrl;
401 		u32 dsp3_mux;
402 
403 		/*
404 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
405 		 * FIFO X'.
406 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
407 		 *
408 		 * DSP3 is connected to FIFO2 unless the transposer is
409 		 * enabled. In this case, FIFO 2 is directly accessed by the
410 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
411 		 * route.
412 		 */
413 		if (vc4_state->feed_txp)
414 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
415 		else
416 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
417 
418 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
419 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
420 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
421 	}
422 
423 	if (!vc4_state->feed_txp)
424 		vc4_crtc_config_pv(crtc);
425 
426 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
427 		  SCALER_DISPBKGND_AUTOHS |
428 		  SCALER_DISPBKGND_GAMMA |
429 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
430 
431 	/* Reload the LUT, since the SRAMs would have been disabled if
432 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
433 	 */
434 	vc4_crtc_lut_load(crtc);
435 
436 	if (debug_dump_regs) {
437 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
438 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
439 			 drm_crtc_index(crtc));
440 		drm_print_regset32(&p, &vc4_crtc->regset);
441 	}
442 }
443 
444 static void require_hvs_enabled(struct drm_device *dev)
445 {
446 	struct vc4_dev *vc4 = to_vc4_dev(dev);
447 
448 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
449 		     SCALER_DISPCTRL_ENABLE);
450 }
451 
452 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
453 				    struct drm_crtc_state *old_state)
454 {
455 	struct drm_device *dev = crtc->dev;
456 	struct vc4_dev *vc4 = to_vc4_dev(dev);
457 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
458 	u32 chan = vc4_crtc->channel;
459 	int ret;
460 	require_hvs_enabled(dev);
461 
462 	/* Disable vblank irq handling before crtc is disabled. */
463 	drm_crtc_vblank_off(crtc);
464 
465 	CRTC_WRITE(PV_V_CONTROL,
466 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
467 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
468 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
469 
470 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
471 	    SCALER_DISPCTRLX_ENABLE) {
472 		HVS_WRITE(SCALER_DISPCTRLX(chan),
473 			  SCALER_DISPCTRLX_RESET);
474 
475 		/* While the docs say that reset is self-clearing, it
476 		 * seems it doesn't actually.
477 		 */
478 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
479 	}
480 
481 	/* Once we leave, the scaler should be disabled and its fifo empty. */
482 
483 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
484 
485 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
486 				   SCALER_DISPSTATX_MODE) !=
487 		     SCALER_DISPSTATX_MODE_DISABLED);
488 
489 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
490 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
491 		     SCALER_DISPSTATX_EMPTY);
492 
493 	/*
494 	 * Make sure we issue a vblank event after disabling the CRTC if
495 	 * someone was waiting it.
496 	 */
497 	if (crtc->state->event) {
498 		unsigned long flags;
499 
500 		spin_lock_irqsave(&dev->event_lock, flags);
501 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
502 		crtc->state->event = NULL;
503 		spin_unlock_irqrestore(&dev->event_lock, flags);
504 	}
505 }
506 
507 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
508 {
509 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
510 
511 	vc4_state->txp_armed = true;
512 }
513 
514 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
515 {
516 	struct drm_device *dev = crtc->dev;
517 	struct vc4_dev *vc4 = to_vc4_dev(dev);
518 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
519 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
520 
521 	if (crtc->state->event) {
522 		unsigned long flags;
523 
524 		crtc->state->event->pipe = drm_crtc_index(crtc);
525 
526 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
527 
528 		spin_lock_irqsave(&dev->event_lock, flags);
529 
530 		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
531 			vc4_crtc->event = crtc->state->event;
532 			crtc->state->event = NULL;
533 		}
534 
535 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
536 			  vc4_state->mm.start);
537 
538 		spin_unlock_irqrestore(&dev->event_lock, flags);
539 	} else {
540 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
541 			  vc4_state->mm.start);
542 	}
543 }
544 
545 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
546 				   struct drm_crtc_state *old_state)
547 {
548 	struct drm_device *dev = crtc->dev;
549 	struct vc4_dev *vc4 = to_vc4_dev(dev);
550 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
551 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
552 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
553 
554 	require_hvs_enabled(dev);
555 
556 	/* Enable vblank irq handling before crtc is started otherwise
557 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
558 	 */
559 	drm_crtc_vblank_on(crtc);
560 	vc4_crtc_update_dlist(crtc);
561 
562 	/* Turn on the scaler, which will wait for vstart to start
563 	 * compositing.
564 	 * When feeding the transposer, we should operate in oneshot
565 	 * mode.
566 	 */
567 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
568 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
569 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
570 		  SCALER_DISPCTRLX_ENABLE |
571 		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
572 
573 	/* When feeding the transposer block the pixelvalve is unneeded and
574 	 * should not be enabled.
575 	 */
576 	if (!vc4_state->feed_txp)
577 		CRTC_WRITE(PV_V_CONTROL,
578 			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
579 }
580 
581 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
582 						const struct drm_display_mode *mode)
583 {
584 	/* Do not allow doublescan modes from user space */
585 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
586 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
587 			      crtc->base.id);
588 		return MODE_NO_DBLESCAN;
589 	}
590 
591 	return MODE_OK;
592 }
593 
594 void vc4_crtc_get_margins(struct drm_crtc_state *state,
595 			  unsigned int *left, unsigned int *right,
596 			  unsigned int *top, unsigned int *bottom)
597 {
598 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
599 	struct drm_connector_state *conn_state;
600 	struct drm_connector *conn;
601 	int i;
602 
603 	*left = vc4_state->margins.left;
604 	*right = vc4_state->margins.right;
605 	*top = vc4_state->margins.top;
606 	*bottom = vc4_state->margins.bottom;
607 
608 	/* We have to interate over all new connector states because
609 	 * vc4_crtc_get_margins() might be called before
610 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
611 	 * might be outdated.
612 	 */
613 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
614 		if (conn_state->crtc != state->crtc)
615 			continue;
616 
617 		*left = conn_state->tv.margins.left;
618 		*right = conn_state->tv.margins.right;
619 		*top = conn_state->tv.margins.top;
620 		*bottom = conn_state->tv.margins.bottom;
621 		break;
622 	}
623 }
624 
625 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
626 				 struct drm_crtc_state *state)
627 {
628 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
629 	struct drm_device *dev = crtc->dev;
630 	struct vc4_dev *vc4 = to_vc4_dev(dev);
631 	struct drm_plane *plane;
632 	unsigned long flags;
633 	const struct drm_plane_state *plane_state;
634 	struct drm_connector *conn;
635 	struct drm_connector_state *conn_state;
636 	u32 dlist_count = 0;
637 	int ret, i;
638 
639 	/* The pixelvalve can only feed one encoder (and encoders are
640 	 * 1:1 with connectors.)
641 	 */
642 	if (hweight32(state->connector_mask) > 1)
643 		return -EINVAL;
644 
645 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
646 		dlist_count += vc4_plane_dlist_size(plane_state);
647 
648 	dlist_count++; /* Account for SCALER_CTL0_END. */
649 
650 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
651 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
652 				 dlist_count);
653 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
654 	if (ret)
655 		return ret;
656 
657 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
658 		if (conn_state->crtc != crtc)
659 			continue;
660 
661 		/* The writeback connector is implemented using the transposer
662 		 * block which is directly taking its data from the HVS FIFO.
663 		 */
664 		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
665 			state->no_vblank = true;
666 			vc4_state->feed_txp = true;
667 		} else {
668 			state->no_vblank = false;
669 			vc4_state->feed_txp = false;
670 		}
671 
672 		vc4_state->margins.left = conn_state->tv.margins.left;
673 		vc4_state->margins.right = conn_state->tv.margins.right;
674 		vc4_state->margins.top = conn_state->tv.margins.top;
675 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
676 		break;
677 	}
678 
679 	return 0;
680 }
681 
682 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
683 				  struct drm_crtc_state *old_state)
684 {
685 	struct drm_device *dev = crtc->dev;
686 	struct vc4_dev *vc4 = to_vc4_dev(dev);
687 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
688 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689 	struct drm_plane *plane;
690 	struct vc4_plane_state *vc4_plane_state;
691 	bool debug_dump_regs = false;
692 	bool enable_bg_fill = false;
693 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
694 	u32 __iomem *dlist_next = dlist_start;
695 
696 	if (debug_dump_regs) {
697 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
698 		vc4_hvs_dump_state(dev);
699 	}
700 
701 	/* Copy all the active planes' dlist contents to the hardware dlist. */
702 	drm_atomic_crtc_for_each_plane(plane, crtc) {
703 		/* Is this the first active plane? */
704 		if (dlist_next == dlist_start) {
705 			/* We need to enable background fill when a plane
706 			 * could be alpha blending from the background, i.e.
707 			 * where no other plane is underneath. It suffices to
708 			 * consider the first active plane here since we set
709 			 * needs_bg_fill such that either the first plane
710 			 * already needs it or all planes on top blend from
711 			 * the first or a lower plane.
712 			 */
713 			vc4_plane_state = to_vc4_plane_state(plane->state);
714 			enable_bg_fill = vc4_plane_state->needs_bg_fill;
715 		}
716 
717 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
718 	}
719 
720 	writel(SCALER_CTL0_END, dlist_next);
721 	dlist_next++;
722 
723 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
724 
725 	if (enable_bg_fill)
726 		/* This sets a black background color fill, as is the case
727 		 * with other DRM drivers.
728 		 */
729 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
730 			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
731 			  SCALER_DISPBKGND_FILL);
732 
733 	/* Only update DISPLIST if the CRTC was already running and is not
734 	 * being disabled.
735 	 * vc4_crtc_enable() takes care of updating the dlist just after
736 	 * re-enabling VBLANK interrupts and before enabling the engine.
737 	 * If the CRTC is being disabled, there's no point in updating this
738 	 * information.
739 	 */
740 	if (crtc->state->active && old_state->active)
741 		vc4_crtc_update_dlist(crtc);
742 
743 	if (crtc->state->color_mgmt_changed) {
744 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
745 
746 		if (crtc->state->gamma_lut) {
747 			vc4_crtc_update_gamma_lut(crtc);
748 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
749 		} else {
750 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
751 			 * in hardware, which is the same as a linear lut that
752 			 * DRM expects us to use in absence of a user lut.
753 			 */
754 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
755 		}
756 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
757 	}
758 
759 	if (debug_dump_regs) {
760 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
761 		vc4_hvs_dump_state(dev);
762 	}
763 }
764 
765 static int vc4_enable_vblank(struct drm_crtc *crtc)
766 {
767 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
768 
769 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
770 
771 	return 0;
772 }
773 
774 static void vc4_disable_vblank(struct drm_crtc *crtc)
775 {
776 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
777 
778 	CRTC_WRITE(PV_INTEN, 0);
779 }
780 
781 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
782 {
783 	struct drm_crtc *crtc = &vc4_crtc->base;
784 	struct drm_device *dev = crtc->dev;
785 	struct vc4_dev *vc4 = to_vc4_dev(dev);
786 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
787 	u32 chan = vc4_crtc->channel;
788 	unsigned long flags;
789 
790 	spin_lock_irqsave(&dev->event_lock, flags);
791 	if (vc4_crtc->event &&
792 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
793 	     vc4_state->feed_txp)) {
794 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
795 		vc4_crtc->event = NULL;
796 		drm_crtc_vblank_put(crtc);
797 
798 		/* Wait for the page flip to unmask the underrun to ensure that
799 		 * the display list was updated by the hardware. Before that
800 		 * happens, the HVS will be using the previous display list with
801 		 * the CRTC and encoder already reconfigured, leading to
802 		 * underruns. This can be seen when reconfiguring the CRTC.
803 		 */
804 		vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
805 	}
806 	spin_unlock_irqrestore(&dev->event_lock, flags);
807 }
808 
809 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
810 {
811 	crtc->t_vblank = ktime_get();
812 	drm_crtc_handle_vblank(&crtc->base);
813 	vc4_crtc_handle_page_flip(crtc);
814 }
815 
816 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
817 {
818 	struct vc4_crtc *vc4_crtc = data;
819 	u32 stat = CRTC_READ(PV_INTSTAT);
820 	irqreturn_t ret = IRQ_NONE;
821 
822 	if (stat & PV_INT_VFP_START) {
823 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
824 		vc4_crtc_handle_vblank(vc4_crtc);
825 		ret = IRQ_HANDLED;
826 	}
827 
828 	return ret;
829 }
830 
831 struct vc4_async_flip_state {
832 	struct drm_crtc *crtc;
833 	struct drm_framebuffer *fb;
834 	struct drm_framebuffer *old_fb;
835 	struct drm_pending_vblank_event *event;
836 
837 	struct vc4_seqno_cb cb;
838 };
839 
840 /* Called when the V3D execution for the BO being flipped to is done, so that
841  * we can actually update the plane's address to point to it.
842  */
843 static void
844 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
845 {
846 	struct vc4_async_flip_state *flip_state =
847 		container_of(cb, struct vc4_async_flip_state, cb);
848 	struct drm_crtc *crtc = flip_state->crtc;
849 	struct drm_device *dev = crtc->dev;
850 	struct vc4_dev *vc4 = to_vc4_dev(dev);
851 	struct drm_plane *plane = crtc->primary;
852 
853 	vc4_plane_async_set_fb(plane, flip_state->fb);
854 	if (flip_state->event) {
855 		unsigned long flags;
856 
857 		spin_lock_irqsave(&dev->event_lock, flags);
858 		drm_crtc_send_vblank_event(crtc, flip_state->event);
859 		spin_unlock_irqrestore(&dev->event_lock, flags);
860 	}
861 
862 	drm_crtc_vblank_put(crtc);
863 	drm_framebuffer_put(flip_state->fb);
864 
865 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
866 	 * when the planes are updated through the async update path.
867 	 * FIXME: we should move to generic async-page-flip when it's
868 	 * available, so that we can get rid of this hand-made cleanup_fb()
869 	 * logic.
870 	 */
871 	if (flip_state->old_fb) {
872 		struct drm_gem_cma_object *cma_bo;
873 		struct vc4_bo *bo;
874 
875 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
876 		bo = to_vc4_bo(&cma_bo->base);
877 		vc4_bo_dec_usecnt(bo);
878 		drm_framebuffer_put(flip_state->old_fb);
879 	}
880 
881 	kfree(flip_state);
882 
883 	up(&vc4->async_modeset);
884 }
885 
886 /* Implements async (non-vblank-synced) page flips.
887  *
888  * The page flip ioctl needs to return immediately, so we grab the
889  * modeset semaphore on the pipe, and queue the address update for
890  * when V3D is done with the BO being flipped to.
891  */
892 static int vc4_async_page_flip(struct drm_crtc *crtc,
893 			       struct drm_framebuffer *fb,
894 			       struct drm_pending_vblank_event *event,
895 			       uint32_t flags)
896 {
897 	struct drm_device *dev = crtc->dev;
898 	struct vc4_dev *vc4 = to_vc4_dev(dev);
899 	struct drm_plane *plane = crtc->primary;
900 	int ret = 0;
901 	struct vc4_async_flip_state *flip_state;
902 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
903 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
904 
905 	/* Increment the BO usecnt here, so that we never end up with an
906 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
907 	 * plane is later updated through the non-async path.
908 	 * FIXME: we should move to generic async-page-flip when it's
909 	 * available, so that we can get rid of this hand-made prepare_fb()
910 	 * logic.
911 	 */
912 	ret = vc4_bo_inc_usecnt(bo);
913 	if (ret)
914 		return ret;
915 
916 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
917 	if (!flip_state) {
918 		vc4_bo_dec_usecnt(bo);
919 		return -ENOMEM;
920 	}
921 
922 	drm_framebuffer_get(fb);
923 	flip_state->fb = fb;
924 	flip_state->crtc = crtc;
925 	flip_state->event = event;
926 
927 	/* Make sure all other async modesetes have landed. */
928 	ret = down_interruptible(&vc4->async_modeset);
929 	if (ret) {
930 		drm_framebuffer_put(fb);
931 		vc4_bo_dec_usecnt(bo);
932 		kfree(flip_state);
933 		return ret;
934 	}
935 
936 	/* Save the current FB before it's replaced by the new one in
937 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
938 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
939 	 * it consistent.
940 	 * FIXME: we should move to generic async-page-flip when it's
941 	 * available, so that we can get rid of this hand-made cleanup_fb()
942 	 * logic.
943 	 */
944 	flip_state->old_fb = plane->state->fb;
945 	if (flip_state->old_fb)
946 		drm_framebuffer_get(flip_state->old_fb);
947 
948 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
949 
950 	/* Immediately update the plane's legacy fb pointer, so that later
951 	 * modeset prep sees the state that will be present when the semaphore
952 	 * is released.
953 	 */
954 	drm_atomic_set_fb_for_plane(plane->state, fb);
955 
956 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
957 			   vc4_async_page_flip_complete);
958 
959 	/* Driver takes ownership of state on successful async commit. */
960 	return 0;
961 }
962 
963 static int vc4_page_flip(struct drm_crtc *crtc,
964 			 struct drm_framebuffer *fb,
965 			 struct drm_pending_vblank_event *event,
966 			 uint32_t flags,
967 			 struct drm_modeset_acquire_ctx *ctx)
968 {
969 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
970 		return vc4_async_page_flip(crtc, fb, event, flags);
971 	else
972 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
973 }
974 
975 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
976 {
977 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
978 
979 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
980 	if (!vc4_state)
981 		return NULL;
982 
983 	old_vc4_state = to_vc4_crtc_state(crtc->state);
984 	vc4_state->feed_txp = old_vc4_state->feed_txp;
985 	vc4_state->margins = old_vc4_state->margins;
986 
987 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
988 	return &vc4_state->base;
989 }
990 
991 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
992 				   struct drm_crtc_state *state)
993 {
994 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
995 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
996 
997 	if (drm_mm_node_allocated(&vc4_state->mm)) {
998 		unsigned long flags;
999 
1000 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1001 		drm_mm_remove_node(&vc4_state->mm);
1002 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1003 
1004 	}
1005 
1006 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1007 }
1008 
1009 static void
1010 vc4_crtc_reset(struct drm_crtc *crtc)
1011 {
1012 	if (crtc->state)
1013 		vc4_crtc_destroy_state(crtc, crtc->state);
1014 
1015 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1016 	if (crtc->state)
1017 		crtc->state->crtc = crtc;
1018 }
1019 
1020 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1021 	.set_config = drm_atomic_helper_set_config,
1022 	.destroy = vc4_crtc_destroy,
1023 	.page_flip = vc4_page_flip,
1024 	.set_property = NULL,
1025 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1026 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1027 	.reset = vc4_crtc_reset,
1028 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1029 	.atomic_destroy_state = vc4_crtc_destroy_state,
1030 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1031 	.enable_vblank = vc4_enable_vblank,
1032 	.disable_vblank = vc4_disable_vblank,
1033 };
1034 
1035 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1036 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
1037 	.mode_valid = vc4_crtc_mode_valid,
1038 	.atomic_check = vc4_crtc_atomic_check,
1039 	.atomic_flush = vc4_crtc_atomic_flush,
1040 	.atomic_enable = vc4_crtc_atomic_enable,
1041 	.atomic_disable = vc4_crtc_atomic_disable,
1042 };
1043 
1044 static const struct vc4_crtc_data pv0_data = {
1045 	.hvs_channel = 0,
1046 	.debugfs_name = "crtc0_regs",
1047 	.encoder_types = {
1048 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1049 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1050 	},
1051 };
1052 
1053 static const struct vc4_crtc_data pv1_data = {
1054 	.hvs_channel = 2,
1055 	.debugfs_name = "crtc1_regs",
1056 	.encoder_types = {
1057 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1058 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1059 	},
1060 };
1061 
1062 static const struct vc4_crtc_data pv2_data = {
1063 	.hvs_channel = 1,
1064 	.debugfs_name = "crtc2_regs",
1065 	.encoder_types = {
1066 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1067 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1068 	},
1069 };
1070 
1071 static const struct of_device_id vc4_crtc_dt_match[] = {
1072 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1073 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1074 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1075 	{}
1076 };
1077 
1078 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1079 					struct drm_crtc *crtc)
1080 {
1081 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1083 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084 	struct drm_encoder *encoder;
1085 
1086 	drm_for_each_encoder(encoder, drm) {
1087 		struct vc4_encoder *vc4_encoder;
1088 		int i;
1089 
1090 		/* HVS FIFO2 can feed the TXP IP. */
1091 		if (crtc_data->hvs_channel == 2 &&
1092 		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1093 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
1094 			continue;
1095 		}
1096 
1097 		vc4_encoder = to_vc4_encoder(encoder);
1098 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1099 			if (vc4_encoder->type == encoder_types[i]) {
1100 				vc4_encoder->clock_select = i;
1101 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1102 				break;
1103 			}
1104 		}
1105 	}
1106 }
1107 
1108 static void
1109 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1110 {
1111 	struct drm_device *drm = vc4_crtc->base.dev;
1112 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1113 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1114 	/* Top/base are supposed to be 4-pixel aligned, but the
1115 	 * Raspberry Pi firmware fills the low bits (which are
1116 	 * presumably ignored).
1117 	 */
1118 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1119 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1120 
1121 	vc4_crtc->cob_size = top - base + 4;
1122 }
1123 
1124 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1125 {
1126 	struct platform_device *pdev = to_platform_device(dev);
1127 	struct drm_device *drm = dev_get_drvdata(master);
1128 	struct vc4_crtc *vc4_crtc;
1129 	struct drm_crtc *crtc;
1130 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131 	const struct of_device_id *match;
1132 	int ret, i;
1133 
1134 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1135 	if (!vc4_crtc)
1136 		return -ENOMEM;
1137 	crtc = &vc4_crtc->base;
1138 
1139 	match = of_match_device(vc4_crtc_dt_match, dev);
1140 	if (!match)
1141 		return -ENODEV;
1142 	vc4_crtc->data = match->data;
1143 	vc4_crtc->pdev = pdev;
1144 
1145 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1146 	if (IS_ERR(vc4_crtc->regs))
1147 		return PTR_ERR(vc4_crtc->regs);
1148 
1149 	vc4_crtc->regset.base = vc4_crtc->regs;
1150 	vc4_crtc->regset.regs = crtc_regs;
1151 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1152 
1153 	/* For now, we create just the primary and the legacy cursor
1154 	 * planes.  We should be able to stack more planes on easily,
1155 	 * but to do that we would need to compute the bandwidth
1156 	 * requirement of the plane configuration, and reject ones
1157 	 * that will take too much.
1158 	 */
1159 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160 	if (IS_ERR(primary_plane)) {
1161 		dev_err(dev, "failed to construct primary plane\n");
1162 		ret = PTR_ERR(primary_plane);
1163 		goto err;
1164 	}
1165 
1166 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167 				  &vc4_crtc_funcs, NULL);
1168 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1169 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171 	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172 
1173 	/* We support CTM, but only for one CRTC at a time. It's therefore
1174 	 * implemented as private driver state in vc4_kms, not here.
1175 	 */
1176 	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1177 
1178 	/* Set up some arbitrary number of planes.  We're not limited
1179 	 * by a set number of physical registers, just the space in
1180 	 * the HVS (16k) and how small an plane can be (28 bytes).
1181 	 * However, each plane we set up takes up some memory, and
1182 	 * increases the cost of looping over planes, which atomic
1183 	 * modesetting does quite a bit.  As a result, we pick a
1184 	 * modest number of planes to expose, that should hopefully
1185 	 * still cover any sane usecase.
1186 	 */
1187 	for (i = 0; i < 8; i++) {
1188 		struct drm_plane *plane =
1189 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1190 
1191 		if (IS_ERR(plane))
1192 			continue;
1193 
1194 		plane->possible_crtcs = drm_crtc_mask(crtc);
1195 	}
1196 
1197 	/* Set up the legacy cursor after overlay initialization,
1198 	 * since we overlay planes on the CRTC in the order they were
1199 	 * initialized.
1200 	 */
1201 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1202 	if (!IS_ERR(cursor_plane)) {
1203 		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204 		crtc->cursor = cursor_plane;
1205 	}
1206 
1207 	vc4_crtc_get_cob_allocation(vc4_crtc);
1208 
1209 	CRTC_WRITE(PV_INTEN, 0);
1210 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1211 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1212 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1213 	if (ret)
1214 		goto err_destroy_planes;
1215 
1216 	vc4_set_crtc_possible_masks(drm, crtc);
1217 
1218 	for (i = 0; i < crtc->gamma_size; i++) {
1219 		vc4_crtc->lut_r[i] = i;
1220 		vc4_crtc->lut_g[i] = i;
1221 		vc4_crtc->lut_b[i] = i;
1222 	}
1223 
1224 	platform_set_drvdata(pdev, vc4_crtc);
1225 
1226 	vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1227 				 &vc4_crtc->regset);
1228 
1229 	return 0;
1230 
1231 err_destroy_planes:
1232 	list_for_each_entry_safe(destroy_plane, temp,
1233 				 &drm->mode_config.plane_list, head) {
1234 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235 		    destroy_plane->funcs->destroy(destroy_plane);
1236 	}
1237 err:
1238 	return ret;
1239 }
1240 
1241 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1242 			    void *data)
1243 {
1244 	struct platform_device *pdev = to_platform_device(dev);
1245 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1246 
1247 	vc4_crtc_destroy(&vc4_crtc->base);
1248 
1249 	CRTC_WRITE(PV_INTEN, 0);
1250 
1251 	platform_set_drvdata(pdev, NULL);
1252 }
1253 
1254 static const struct component_ops vc4_crtc_ops = {
1255 	.bind   = vc4_crtc_bind,
1256 	.unbind = vc4_crtc_unbind,
1257 };
1258 
1259 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1260 {
1261 	return component_add(&pdev->dev, &vc4_crtc_ops);
1262 }
1263 
1264 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1265 {
1266 	component_del(&pdev->dev, &vc4_crtc_ops);
1267 	return 0;
1268 }
1269 
1270 struct platform_driver vc4_crtc_driver = {
1271 	.probe = vc4_crtc_dev_probe,
1272 	.remove = vc4_crtc_dev_remove,
1273 	.driver = {
1274 		.name = "vc4_crtc",
1275 		.of_match_table = vc4_crtc_dt_match,
1276 	},
1277 };
1278