1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * encoder's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, the CRTC is also 19 * responsible for writing the display list for the HVS channel that 20 * the CRTC will use. 21 * 22 * The 2835 has 3 different pixel valves. pv0 in the audio power 23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 24 * image domain can feed either HDMI or the SDTV controller. The 25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 26 * SDTV, etc.) according to which output type is chosen in the mux. 27 * 28 * For power management, the pixel valve's registers are all clocked 29 * by the AXI clock, while the timings and FIFOs make use of the 30 * output-specific clock. Since the encoders also directly consume 31 * the CPRMAN clocks, and know what timings they need, they are the 32 * ones that set the clock. 33 */ 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_probe_helper.h> 39 #include <linux/clk.h> 40 #include <drm/drm_fb_cma_helper.h> 41 #include <linux/component.h> 42 #include <linux/of_device.h> 43 #include "vc4_drv.h" 44 #include "vc4_regs.h" 45 46 struct vc4_crtc_state { 47 struct drm_crtc_state base; 48 /* Dlist area for this CRTC configuration. */ 49 struct drm_mm_node mm; 50 bool feed_txp; 51 bool txp_armed; 52 53 struct { 54 unsigned int left; 55 unsigned int right; 56 unsigned int top; 57 unsigned int bottom; 58 } margins; 59 }; 60 61 static inline struct vc4_crtc_state * 62 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 63 { 64 return (struct vc4_crtc_state *)crtc_state; 65 } 66 67 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 68 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 69 70 #define CRTC_REG(reg) { reg, #reg } 71 static const struct { 72 u32 reg; 73 const char *name; 74 } crtc_regs[] = { 75 CRTC_REG(PV_CONTROL), 76 CRTC_REG(PV_V_CONTROL), 77 CRTC_REG(PV_VSYNCD_EVEN), 78 CRTC_REG(PV_HORZA), 79 CRTC_REG(PV_HORZB), 80 CRTC_REG(PV_VERTA), 81 CRTC_REG(PV_VERTB), 82 CRTC_REG(PV_VERTA_EVEN), 83 CRTC_REG(PV_VERTB_EVEN), 84 CRTC_REG(PV_INTEN), 85 CRTC_REG(PV_INTSTAT), 86 CRTC_REG(PV_STAT), 87 CRTC_REG(PV_HACT_ACT), 88 }; 89 90 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 91 { 92 int i; 93 94 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 95 DRM_INFO("0x%04x (%s): 0x%08x\n", 96 crtc_regs[i].reg, crtc_regs[i].name, 97 CRTC_READ(crtc_regs[i].reg)); 98 } 99 } 100 101 #ifdef CONFIG_DEBUG_FS 102 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 103 { 104 struct drm_info_node *node = (struct drm_info_node *)m->private; 105 struct drm_device *dev = node->minor->dev; 106 int crtc_index = (uintptr_t)node->info_ent->data; 107 struct drm_crtc *crtc; 108 struct vc4_crtc *vc4_crtc; 109 int i; 110 111 i = 0; 112 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 113 if (i == crtc_index) 114 break; 115 i++; 116 } 117 if (!crtc) 118 return 0; 119 vc4_crtc = to_vc4_crtc(crtc); 120 121 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 122 seq_printf(m, "%s (0x%04x): 0x%08x\n", 123 crtc_regs[i].name, crtc_regs[i].reg, 124 CRTC_READ(crtc_regs[i].reg)); 125 } 126 127 return 0; 128 } 129 #endif 130 131 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 132 bool in_vblank_irq, int *vpos, int *hpos, 133 ktime_t *stime, ktime_t *etime, 134 const struct drm_display_mode *mode) 135 { 136 struct vc4_dev *vc4 = to_vc4_dev(dev); 137 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 138 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 139 u32 val; 140 int fifo_lines; 141 int vblank_lines; 142 bool ret = false; 143 144 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 145 146 /* Get optional system timestamp before query. */ 147 if (stime) 148 *stime = ktime_get(); 149 150 /* 151 * Read vertical scanline which is currently composed for our 152 * pixelvalve by the HVS, and also the scaler status. 153 */ 154 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 155 156 /* Get optional system timestamp after query. */ 157 if (etime) 158 *etime = ktime_get(); 159 160 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 161 162 /* Vertical position of hvs composed scanline. */ 163 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 164 *hpos = 0; 165 166 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 167 *vpos /= 2; 168 169 /* Use hpos to correct for field offset in interlaced mode. */ 170 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 171 *hpos += mode->crtc_htotal / 2; 172 } 173 174 /* This is the offset we need for translating hvs -> pv scanout pos. */ 175 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 176 177 if (fifo_lines > 0) 178 ret = true; 179 180 /* HVS more than fifo_lines into frame for compositing? */ 181 if (*vpos > fifo_lines) { 182 /* 183 * We are in active scanout and can get some meaningful results 184 * from HVS. The actual PV scanout can not trail behind more 185 * than fifo_lines as that is the fifo's capacity. Assume that 186 * in active scanout the HVS and PV work in lockstep wrt. HVS 187 * refilling the fifo and PV consuming from the fifo, ie. 188 * whenever the PV consumes and frees up a scanline in the 189 * fifo, the HVS will immediately refill it, therefore 190 * incrementing vpos. Therefore we choose HVS read position - 191 * fifo size in scanlines as a estimate of the real scanout 192 * position of the PV. 193 */ 194 *vpos -= fifo_lines + 1; 195 196 return ret; 197 } 198 199 /* 200 * Less: This happens when we are in vblank and the HVS, after getting 201 * the VSTART restart signal from the PV, just started refilling its 202 * fifo with new lines from the top-most lines of the new framebuffers. 203 * The PV does not scan out in vblank, so does not remove lines from 204 * the fifo, so the fifo will be full quickly and the HVS has to pause. 205 * We can't get meaningful readings wrt. scanline position of the PV 206 * and need to make things up in a approximative but consistent way. 207 */ 208 vblank_lines = mode->vtotal - mode->vdisplay; 209 210 if (in_vblank_irq) { 211 /* 212 * Assume the irq handler got called close to first 213 * line of vblank, so PV has about a full vblank 214 * scanlines to go, and as a base timestamp use the 215 * one taken at entry into vblank irq handler, so it 216 * is not affected by random delays due to lock 217 * contention on event_lock or vblank_time lock in 218 * the core. 219 */ 220 *vpos = -vblank_lines; 221 222 if (stime) 223 *stime = vc4_crtc->t_vblank; 224 if (etime) 225 *etime = vc4_crtc->t_vblank; 226 227 /* 228 * If the HVS fifo is not yet full then we know for certain 229 * we are at the very beginning of vblank, as the hvs just 230 * started refilling, and the stime and etime timestamps 231 * truly correspond to start of vblank. 232 * 233 * Unfortunately there's no way to report this to upper levels 234 * and make it more useful. 235 */ 236 } else { 237 /* 238 * No clue where we are inside vblank. Return a vpos of zero, 239 * which will cause calling code to just return the etime 240 * timestamp uncorrected. At least this is no worse than the 241 * standard fallback. 242 */ 243 *vpos = 0; 244 } 245 246 return ret; 247 } 248 249 static void vc4_crtc_destroy(struct drm_crtc *crtc) 250 { 251 drm_crtc_cleanup(crtc); 252 } 253 254 static void 255 vc4_crtc_lut_load(struct drm_crtc *crtc) 256 { 257 struct drm_device *dev = crtc->dev; 258 struct vc4_dev *vc4 = to_vc4_dev(dev); 259 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 260 u32 i; 261 262 /* The LUT memory is laid out with each HVS channel in order, 263 * each of which takes 256 writes for R, 256 for G, then 256 264 * for B. 265 */ 266 HVS_WRITE(SCALER_GAMADDR, 267 SCALER_GAMADDR_AUTOINC | 268 (vc4_crtc->channel * 3 * crtc->gamma_size)); 269 270 for (i = 0; i < crtc->gamma_size; i++) 271 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 272 for (i = 0; i < crtc->gamma_size; i++) 273 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 274 for (i = 0; i < crtc->gamma_size; i++) 275 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 276 } 277 278 static void 279 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc) 280 { 281 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 282 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 283 u32 length = drm_color_lut_size(crtc->state->gamma_lut); 284 u32 i; 285 286 for (i = 0; i < length; i++) { 287 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); 288 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); 289 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); 290 } 291 292 vc4_crtc_lut_load(crtc); 293 } 294 295 static u32 vc4_get_fifo_full_level(u32 format) 296 { 297 static const u32 fifo_len_bytes = 64; 298 static const u32 hvs_latency_pix = 6; 299 300 switch (format) { 301 case PV_CONTROL_FORMAT_DSIV_16: 302 case PV_CONTROL_FORMAT_DSIC_16: 303 return fifo_len_bytes - 2 * hvs_latency_pix; 304 case PV_CONTROL_FORMAT_DSIV_18: 305 return fifo_len_bytes - 14; 306 case PV_CONTROL_FORMAT_24: 307 case PV_CONTROL_FORMAT_DSIV_24: 308 default: 309 return fifo_len_bytes - 3 * hvs_latency_pix; 310 } 311 } 312 313 /* 314 * Returns the encoder attached to the CRTC. 315 * 316 * VC4 can only scan out to one encoder at a time, while the DRM core 317 * allows drivers to push pixels to more than one encoder from the 318 * same CRTC. 319 */ 320 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 321 { 322 struct drm_connector *connector; 323 struct drm_connector_list_iter conn_iter; 324 325 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 326 drm_for_each_connector_iter(connector, &conn_iter) { 327 if (connector->state->crtc == crtc) { 328 drm_connector_list_iter_end(&conn_iter); 329 return connector->encoder; 330 } 331 } 332 drm_connector_list_iter_end(&conn_iter); 333 334 return NULL; 335 } 336 337 static void vc4_crtc_config_pv(struct drm_crtc *crtc) 338 { 339 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 340 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 341 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 342 struct drm_crtc_state *state = crtc->state; 343 struct drm_display_mode *mode = &state->adjusted_mode; 344 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 345 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 346 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 347 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 348 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 349 350 /* Reset the PV fifo. */ 351 CRTC_WRITE(PV_CONTROL, 0); 352 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 353 CRTC_WRITE(PV_CONTROL, 0); 354 355 CRTC_WRITE(PV_HORZA, 356 VC4_SET_FIELD((mode->htotal - 357 mode->hsync_end) * pixel_rep, 358 PV_HORZA_HBP) | 359 VC4_SET_FIELD((mode->hsync_end - 360 mode->hsync_start) * pixel_rep, 361 PV_HORZA_HSYNC)); 362 CRTC_WRITE(PV_HORZB, 363 VC4_SET_FIELD((mode->hsync_start - 364 mode->hdisplay) * pixel_rep, 365 PV_HORZB_HFP) | 366 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 367 368 CRTC_WRITE(PV_VERTA, 369 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 370 PV_VERTA_VBP) | 371 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 372 PV_VERTA_VSYNC)); 373 CRTC_WRITE(PV_VERTB, 374 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 375 PV_VERTB_VFP) | 376 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 377 378 if (interlace) { 379 CRTC_WRITE(PV_VERTA_EVEN, 380 VC4_SET_FIELD(mode->crtc_vtotal - 381 mode->crtc_vsync_end - 1, 382 PV_VERTA_VBP) | 383 VC4_SET_FIELD(mode->crtc_vsync_end - 384 mode->crtc_vsync_start, 385 PV_VERTA_VSYNC)); 386 CRTC_WRITE(PV_VERTB_EVEN, 387 VC4_SET_FIELD(mode->crtc_vsync_start - 388 mode->crtc_vdisplay, 389 PV_VERTB_VFP) | 390 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 391 392 /* We set up first field even mode for HDMI. VEC's 393 * NTSC mode would want first field odd instead, once 394 * we support it (to do so, set ODD_FIRST and put the 395 * delay in VSYNCD_EVEN instead). 396 */ 397 CRTC_WRITE(PV_V_CONTROL, 398 PV_VCONTROL_CONTINUOUS | 399 (is_dsi ? PV_VCONTROL_DSI : 0) | 400 PV_VCONTROL_INTERLACE | 401 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 402 PV_VCONTROL_ODD_DELAY)); 403 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 404 } else { 405 CRTC_WRITE(PV_V_CONTROL, 406 PV_VCONTROL_CONTINUOUS | 407 (is_dsi ? PV_VCONTROL_DSI : 0)); 408 } 409 410 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 411 412 CRTC_WRITE(PV_CONTROL, 413 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 414 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 415 PV_CONTROL_FIFO_LEVEL) | 416 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 417 PV_CONTROL_CLR_AT_START | 418 PV_CONTROL_TRIGGER_UNDERFLOW | 419 PV_CONTROL_WAIT_HSTART | 420 VC4_SET_FIELD(vc4_encoder->clock_select, 421 PV_CONTROL_CLK_SELECT) | 422 PV_CONTROL_FIFO_CLR | 423 PV_CONTROL_EN); 424 } 425 426 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 427 { 428 struct drm_device *dev = crtc->dev; 429 struct vc4_dev *vc4 = to_vc4_dev(dev); 430 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 431 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 432 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 433 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 434 bool debug_dump_regs = false; 435 436 if (debug_dump_regs) { 437 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 438 vc4_crtc_dump_regs(vc4_crtc); 439 } 440 441 if (vc4_crtc->channel == 2) { 442 u32 dispctrl; 443 u32 dsp3_mux; 444 445 /* 446 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 447 * FIFO X'. 448 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 449 * 450 * DSP3 is connected to FIFO2 unless the transposer is 451 * enabled. In this case, FIFO 2 is directly accessed by the 452 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 453 * route. 454 */ 455 if (vc4_state->feed_txp) 456 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 457 else 458 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 459 460 dispctrl = HVS_READ(SCALER_DISPCTRL) & 461 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 462 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 463 } 464 465 if (!vc4_state->feed_txp) 466 vc4_crtc_config_pv(crtc); 467 468 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 469 SCALER_DISPBKGND_AUTOHS | 470 SCALER_DISPBKGND_GAMMA | 471 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 472 473 /* Reload the LUT, since the SRAMs would have been disabled if 474 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 475 */ 476 vc4_crtc_lut_load(crtc); 477 478 if (debug_dump_regs) { 479 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 480 vc4_crtc_dump_regs(vc4_crtc); 481 } 482 } 483 484 static void require_hvs_enabled(struct drm_device *dev) 485 { 486 struct vc4_dev *vc4 = to_vc4_dev(dev); 487 488 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 489 SCALER_DISPCTRL_ENABLE); 490 } 491 492 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 493 struct drm_crtc_state *old_state) 494 { 495 struct drm_device *dev = crtc->dev; 496 struct vc4_dev *vc4 = to_vc4_dev(dev); 497 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 498 u32 chan = vc4_crtc->channel; 499 int ret; 500 require_hvs_enabled(dev); 501 502 /* Disable vblank irq handling before crtc is disabled. */ 503 drm_crtc_vblank_off(crtc); 504 505 CRTC_WRITE(PV_V_CONTROL, 506 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 507 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 508 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 509 510 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 511 SCALER_DISPCTRLX_ENABLE) { 512 HVS_WRITE(SCALER_DISPCTRLX(chan), 513 SCALER_DISPCTRLX_RESET); 514 515 /* While the docs say that reset is self-clearing, it 516 * seems it doesn't actually. 517 */ 518 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 519 } 520 521 /* Once we leave, the scaler should be disabled and its fifo empty. */ 522 523 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 524 525 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 526 SCALER_DISPSTATX_MODE) != 527 SCALER_DISPSTATX_MODE_DISABLED); 528 529 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 530 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 531 SCALER_DISPSTATX_EMPTY); 532 533 /* 534 * Make sure we issue a vblank event after disabling the CRTC if 535 * someone was waiting it. 536 */ 537 if (crtc->state->event) { 538 unsigned long flags; 539 540 spin_lock_irqsave(&dev->event_lock, flags); 541 drm_crtc_send_vblank_event(crtc, crtc->state->event); 542 crtc->state->event = NULL; 543 spin_unlock_irqrestore(&dev->event_lock, flags); 544 } 545 } 546 547 void vc4_crtc_txp_armed(struct drm_crtc_state *state) 548 { 549 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 550 551 vc4_state->txp_armed = true; 552 } 553 554 static void vc4_crtc_update_dlist(struct drm_crtc *crtc) 555 { 556 struct drm_device *dev = crtc->dev; 557 struct vc4_dev *vc4 = to_vc4_dev(dev); 558 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 559 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 560 561 if (crtc->state->event) { 562 unsigned long flags; 563 564 crtc->state->event->pipe = drm_crtc_index(crtc); 565 566 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 567 568 spin_lock_irqsave(&dev->event_lock, flags); 569 570 if (!vc4_state->feed_txp || vc4_state->txp_armed) { 571 vc4_crtc->event = crtc->state->event; 572 crtc->state->event = NULL; 573 } 574 575 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 576 vc4_state->mm.start); 577 578 spin_unlock_irqrestore(&dev->event_lock, flags); 579 } else { 580 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 581 vc4_state->mm.start); 582 } 583 } 584 585 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 586 struct drm_crtc_state *old_state) 587 { 588 struct drm_device *dev = crtc->dev; 589 struct vc4_dev *vc4 = to_vc4_dev(dev); 590 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 591 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 592 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 593 594 require_hvs_enabled(dev); 595 596 /* Enable vblank irq handling before crtc is started otherwise 597 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 598 */ 599 drm_crtc_vblank_on(crtc); 600 vc4_crtc_update_dlist(crtc); 601 602 /* Turn on the scaler, which will wait for vstart to start 603 * compositing. 604 * When feeding the transposer, we should operate in oneshot 605 * mode. 606 */ 607 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 608 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 609 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 610 SCALER_DISPCTRLX_ENABLE | 611 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0)); 612 613 /* When feeding the transposer block the pixelvalve is unneeded and 614 * should not be enabled. 615 */ 616 if (!vc4_state->feed_txp) 617 CRTC_WRITE(PV_V_CONTROL, 618 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 619 } 620 621 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 622 const struct drm_display_mode *mode) 623 { 624 /* Do not allow doublescan modes from user space */ 625 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 626 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 627 crtc->base.id); 628 return MODE_NO_DBLESCAN; 629 } 630 631 return MODE_OK; 632 } 633 634 void vc4_crtc_get_margins(struct drm_crtc_state *state, 635 unsigned int *left, unsigned int *right, 636 unsigned int *top, unsigned int *bottom) 637 { 638 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 639 struct drm_connector_state *conn_state; 640 struct drm_connector *conn; 641 int i; 642 643 *left = vc4_state->margins.left; 644 *right = vc4_state->margins.right; 645 *top = vc4_state->margins.top; 646 *bottom = vc4_state->margins.bottom; 647 648 /* We have to interate over all new connector states because 649 * vc4_crtc_get_margins() might be called before 650 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 651 * might be outdated. 652 */ 653 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 654 if (conn_state->crtc != state->crtc) 655 continue; 656 657 *left = conn_state->tv.margins.left; 658 *right = conn_state->tv.margins.right; 659 *top = conn_state->tv.margins.top; 660 *bottom = conn_state->tv.margins.bottom; 661 break; 662 } 663 } 664 665 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 666 struct drm_crtc_state *state) 667 { 668 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 669 struct drm_device *dev = crtc->dev; 670 struct vc4_dev *vc4 = to_vc4_dev(dev); 671 struct drm_plane *plane; 672 unsigned long flags; 673 const struct drm_plane_state *plane_state; 674 struct drm_connector *conn; 675 struct drm_connector_state *conn_state; 676 u32 dlist_count = 0; 677 int ret, i; 678 679 /* The pixelvalve can only feed one encoder (and encoders are 680 * 1:1 with connectors.) 681 */ 682 if (hweight32(state->connector_mask) > 1) 683 return -EINVAL; 684 685 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 686 dlist_count += vc4_plane_dlist_size(plane_state); 687 688 dlist_count++; /* Account for SCALER_CTL0_END. */ 689 690 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 691 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 692 dlist_count); 693 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 694 if (ret) 695 return ret; 696 697 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 698 if (conn_state->crtc != crtc) 699 continue; 700 701 /* The writeback connector is implemented using the transposer 702 * block which is directly taking its data from the HVS FIFO. 703 */ 704 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) { 705 state->no_vblank = true; 706 vc4_state->feed_txp = true; 707 } else { 708 state->no_vblank = false; 709 vc4_state->feed_txp = false; 710 } 711 712 vc4_state->margins.left = conn_state->tv.margins.left; 713 vc4_state->margins.right = conn_state->tv.margins.right; 714 vc4_state->margins.top = conn_state->tv.margins.top; 715 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 716 break; 717 } 718 719 return 0; 720 } 721 722 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 723 struct drm_crtc_state *old_state) 724 { 725 struct drm_device *dev = crtc->dev; 726 struct vc4_dev *vc4 = to_vc4_dev(dev); 727 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 728 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 729 struct drm_plane *plane; 730 struct vc4_plane_state *vc4_plane_state; 731 bool debug_dump_regs = false; 732 bool enable_bg_fill = false; 733 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 734 u32 __iomem *dlist_next = dlist_start; 735 736 if (debug_dump_regs) { 737 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 738 vc4_hvs_dump_state(dev); 739 } 740 741 /* Copy all the active planes' dlist contents to the hardware dlist. */ 742 drm_atomic_crtc_for_each_plane(plane, crtc) { 743 /* Is this the first active plane? */ 744 if (dlist_next == dlist_start) { 745 /* We need to enable background fill when a plane 746 * could be alpha blending from the background, i.e. 747 * where no other plane is underneath. It suffices to 748 * consider the first active plane here since we set 749 * needs_bg_fill such that either the first plane 750 * already needs it or all planes on top blend from 751 * the first or a lower plane. 752 */ 753 vc4_plane_state = to_vc4_plane_state(plane->state); 754 enable_bg_fill = vc4_plane_state->needs_bg_fill; 755 } 756 757 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 758 } 759 760 writel(SCALER_CTL0_END, dlist_next); 761 dlist_next++; 762 763 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 764 765 if (enable_bg_fill) 766 /* This sets a black background color fill, as is the case 767 * with other DRM drivers. 768 */ 769 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 770 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) | 771 SCALER_DISPBKGND_FILL); 772 773 /* Only update DISPLIST if the CRTC was already running and is not 774 * being disabled. 775 * vc4_crtc_enable() takes care of updating the dlist just after 776 * re-enabling VBLANK interrupts and before enabling the engine. 777 * If the CRTC is being disabled, there's no point in updating this 778 * information. 779 */ 780 if (crtc->state->active && old_state->active) 781 vc4_crtc_update_dlist(crtc); 782 783 if (crtc->state->color_mgmt_changed) { 784 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)); 785 786 if (crtc->state->gamma_lut) { 787 vc4_crtc_update_gamma_lut(crtc); 788 dispbkgndx |= SCALER_DISPBKGND_GAMMA; 789 } else { 790 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step 791 * in hardware, which is the same as a linear lut that 792 * DRM expects us to use in absence of a user lut. 793 */ 794 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 795 } 796 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx); 797 } 798 799 if (debug_dump_regs) { 800 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 801 vc4_hvs_dump_state(dev); 802 } 803 } 804 805 static int vc4_enable_vblank(struct drm_crtc *crtc) 806 { 807 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 808 809 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 810 811 return 0; 812 } 813 814 static void vc4_disable_vblank(struct drm_crtc *crtc) 815 { 816 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 817 818 CRTC_WRITE(PV_INTEN, 0); 819 } 820 821 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 822 { 823 struct drm_crtc *crtc = &vc4_crtc->base; 824 struct drm_device *dev = crtc->dev; 825 struct vc4_dev *vc4 = to_vc4_dev(dev); 826 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 827 u32 chan = vc4_crtc->channel; 828 unsigned long flags; 829 830 spin_lock_irqsave(&dev->event_lock, flags); 831 if (vc4_crtc->event && 832 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 833 vc4_state->feed_txp)) { 834 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 835 vc4_crtc->event = NULL; 836 drm_crtc_vblank_put(crtc); 837 838 /* Wait for the page flip to unmask the underrun to ensure that 839 * the display list was updated by the hardware. Before that 840 * happens, the HVS will be using the previous display list with 841 * the CRTC and encoder already reconfigured, leading to 842 * underruns. This can be seen when reconfiguring the CRTC. 843 */ 844 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel); 845 } 846 spin_unlock_irqrestore(&dev->event_lock, flags); 847 } 848 849 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 850 { 851 crtc->t_vblank = ktime_get(); 852 drm_crtc_handle_vblank(&crtc->base); 853 vc4_crtc_handle_page_flip(crtc); 854 } 855 856 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 857 { 858 struct vc4_crtc *vc4_crtc = data; 859 u32 stat = CRTC_READ(PV_INTSTAT); 860 irqreturn_t ret = IRQ_NONE; 861 862 if (stat & PV_INT_VFP_START) { 863 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 864 vc4_crtc_handle_vblank(vc4_crtc); 865 ret = IRQ_HANDLED; 866 } 867 868 return ret; 869 } 870 871 struct vc4_async_flip_state { 872 struct drm_crtc *crtc; 873 struct drm_framebuffer *fb; 874 struct drm_framebuffer *old_fb; 875 struct drm_pending_vblank_event *event; 876 877 struct vc4_seqno_cb cb; 878 }; 879 880 /* Called when the V3D execution for the BO being flipped to is done, so that 881 * we can actually update the plane's address to point to it. 882 */ 883 static void 884 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 885 { 886 struct vc4_async_flip_state *flip_state = 887 container_of(cb, struct vc4_async_flip_state, cb); 888 struct drm_crtc *crtc = flip_state->crtc; 889 struct drm_device *dev = crtc->dev; 890 struct vc4_dev *vc4 = to_vc4_dev(dev); 891 struct drm_plane *plane = crtc->primary; 892 893 vc4_plane_async_set_fb(plane, flip_state->fb); 894 if (flip_state->event) { 895 unsigned long flags; 896 897 spin_lock_irqsave(&dev->event_lock, flags); 898 drm_crtc_send_vblank_event(crtc, flip_state->event); 899 spin_unlock_irqrestore(&dev->event_lock, flags); 900 } 901 902 drm_crtc_vblank_put(crtc); 903 drm_framebuffer_put(flip_state->fb); 904 905 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 906 * when the planes are updated through the async update path. 907 * FIXME: we should move to generic async-page-flip when it's 908 * available, so that we can get rid of this hand-made cleanup_fb() 909 * logic. 910 */ 911 if (flip_state->old_fb) { 912 struct drm_gem_cma_object *cma_bo; 913 struct vc4_bo *bo; 914 915 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 916 bo = to_vc4_bo(&cma_bo->base); 917 vc4_bo_dec_usecnt(bo); 918 drm_framebuffer_put(flip_state->old_fb); 919 } 920 921 kfree(flip_state); 922 923 up(&vc4->async_modeset); 924 } 925 926 /* Implements async (non-vblank-synced) page flips. 927 * 928 * The page flip ioctl needs to return immediately, so we grab the 929 * modeset semaphore on the pipe, and queue the address update for 930 * when V3D is done with the BO being flipped to. 931 */ 932 static int vc4_async_page_flip(struct drm_crtc *crtc, 933 struct drm_framebuffer *fb, 934 struct drm_pending_vblank_event *event, 935 uint32_t flags) 936 { 937 struct drm_device *dev = crtc->dev; 938 struct vc4_dev *vc4 = to_vc4_dev(dev); 939 struct drm_plane *plane = crtc->primary; 940 int ret = 0; 941 struct vc4_async_flip_state *flip_state; 942 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 943 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 944 945 /* Increment the BO usecnt here, so that we never end up with an 946 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 947 * plane is later updated through the non-async path. 948 * FIXME: we should move to generic async-page-flip when it's 949 * available, so that we can get rid of this hand-made prepare_fb() 950 * logic. 951 */ 952 ret = vc4_bo_inc_usecnt(bo); 953 if (ret) 954 return ret; 955 956 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 957 if (!flip_state) { 958 vc4_bo_dec_usecnt(bo); 959 return -ENOMEM; 960 } 961 962 drm_framebuffer_get(fb); 963 flip_state->fb = fb; 964 flip_state->crtc = crtc; 965 flip_state->event = event; 966 967 /* Make sure all other async modesetes have landed. */ 968 ret = down_interruptible(&vc4->async_modeset); 969 if (ret) { 970 drm_framebuffer_put(fb); 971 vc4_bo_dec_usecnt(bo); 972 kfree(flip_state); 973 return ret; 974 } 975 976 /* Save the current FB before it's replaced by the new one in 977 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 978 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 979 * it consistent. 980 * FIXME: we should move to generic async-page-flip when it's 981 * available, so that we can get rid of this hand-made cleanup_fb() 982 * logic. 983 */ 984 flip_state->old_fb = plane->state->fb; 985 if (flip_state->old_fb) 986 drm_framebuffer_get(flip_state->old_fb); 987 988 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 989 990 /* Immediately update the plane's legacy fb pointer, so that later 991 * modeset prep sees the state that will be present when the semaphore 992 * is released. 993 */ 994 drm_atomic_set_fb_for_plane(plane->state, fb); 995 996 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 997 vc4_async_page_flip_complete); 998 999 /* Driver takes ownership of state on successful async commit. */ 1000 return 0; 1001 } 1002 1003 static int vc4_page_flip(struct drm_crtc *crtc, 1004 struct drm_framebuffer *fb, 1005 struct drm_pending_vblank_event *event, 1006 uint32_t flags, 1007 struct drm_modeset_acquire_ctx *ctx) 1008 { 1009 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 1010 return vc4_async_page_flip(crtc, fb, event, flags); 1011 else 1012 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 1013 } 1014 1015 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 1016 { 1017 struct vc4_crtc_state *vc4_state, *old_vc4_state; 1018 1019 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 1020 if (!vc4_state) 1021 return NULL; 1022 1023 old_vc4_state = to_vc4_crtc_state(crtc->state); 1024 vc4_state->feed_txp = old_vc4_state->feed_txp; 1025 vc4_state->margins = old_vc4_state->margins; 1026 1027 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 1028 return &vc4_state->base; 1029 } 1030 1031 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 1032 struct drm_crtc_state *state) 1033 { 1034 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 1035 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 1036 1037 if (vc4_state->mm.allocated) { 1038 unsigned long flags; 1039 1040 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 1041 drm_mm_remove_node(&vc4_state->mm); 1042 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 1043 1044 } 1045 1046 drm_atomic_helper_crtc_destroy_state(crtc, state); 1047 } 1048 1049 static void 1050 vc4_crtc_reset(struct drm_crtc *crtc) 1051 { 1052 if (crtc->state) 1053 __drm_atomic_helper_crtc_destroy_state(crtc->state); 1054 1055 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 1056 if (crtc->state) 1057 crtc->state->crtc = crtc; 1058 } 1059 1060 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1061 .set_config = drm_atomic_helper_set_config, 1062 .destroy = vc4_crtc_destroy, 1063 .page_flip = vc4_page_flip, 1064 .set_property = NULL, 1065 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1066 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1067 .reset = vc4_crtc_reset, 1068 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1069 .atomic_destroy_state = vc4_crtc_destroy_state, 1070 .gamma_set = drm_atomic_helper_legacy_gamma_set, 1071 .enable_vblank = vc4_enable_vblank, 1072 .disable_vblank = vc4_disable_vblank, 1073 }; 1074 1075 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1076 .mode_set_nofb = vc4_crtc_mode_set_nofb, 1077 .mode_valid = vc4_crtc_mode_valid, 1078 .atomic_check = vc4_crtc_atomic_check, 1079 .atomic_flush = vc4_crtc_atomic_flush, 1080 .atomic_enable = vc4_crtc_atomic_enable, 1081 .atomic_disable = vc4_crtc_atomic_disable, 1082 }; 1083 1084 static const struct vc4_crtc_data pv0_data = { 1085 .hvs_channel = 0, 1086 .encoder_types = { 1087 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1088 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1089 }, 1090 }; 1091 1092 static const struct vc4_crtc_data pv1_data = { 1093 .hvs_channel = 2, 1094 .encoder_types = { 1095 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1096 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1097 }, 1098 }; 1099 1100 static const struct vc4_crtc_data pv2_data = { 1101 .hvs_channel = 1, 1102 .encoder_types = { 1103 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 1104 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1105 }, 1106 }; 1107 1108 static const struct of_device_id vc4_crtc_dt_match[] = { 1109 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 1110 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 1111 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 1112 {} 1113 }; 1114 1115 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1116 struct drm_crtc *crtc) 1117 { 1118 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1119 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 1120 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 1121 struct drm_encoder *encoder; 1122 1123 drm_for_each_encoder(encoder, drm) { 1124 struct vc4_encoder *vc4_encoder; 1125 int i; 1126 1127 /* HVS FIFO2 can feed the TXP IP. */ 1128 if (crtc_data->hvs_channel == 2 && 1129 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 1130 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1131 continue; 1132 } 1133 1134 vc4_encoder = to_vc4_encoder(encoder); 1135 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 1136 if (vc4_encoder->type == encoder_types[i]) { 1137 vc4_encoder->clock_select = i; 1138 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1139 break; 1140 } 1141 } 1142 } 1143 } 1144 1145 static void 1146 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 1147 { 1148 struct drm_device *drm = vc4_crtc->base.dev; 1149 struct vc4_dev *vc4 = to_vc4_dev(drm); 1150 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 1151 /* Top/base are supposed to be 4-pixel aligned, but the 1152 * Raspberry Pi firmware fills the low bits (which are 1153 * presumably ignored). 1154 */ 1155 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 1156 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 1157 1158 vc4_crtc->cob_size = top - base + 4; 1159 } 1160 1161 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1162 { 1163 struct platform_device *pdev = to_platform_device(dev); 1164 struct drm_device *drm = dev_get_drvdata(master); 1165 struct vc4_crtc *vc4_crtc; 1166 struct drm_crtc *crtc; 1167 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 1168 const struct of_device_id *match; 1169 int ret, i; 1170 1171 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1172 if (!vc4_crtc) 1173 return -ENOMEM; 1174 crtc = &vc4_crtc->base; 1175 1176 match = of_match_device(vc4_crtc_dt_match, dev); 1177 if (!match) 1178 return -ENODEV; 1179 vc4_crtc->data = match->data; 1180 1181 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1182 if (IS_ERR(vc4_crtc->regs)) 1183 return PTR_ERR(vc4_crtc->regs); 1184 1185 /* For now, we create just the primary and the legacy cursor 1186 * planes. We should be able to stack more planes on easily, 1187 * but to do that we would need to compute the bandwidth 1188 * requirement of the plane configuration, and reject ones 1189 * that will take too much. 1190 */ 1191 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1192 if (IS_ERR(primary_plane)) { 1193 dev_err(dev, "failed to construct primary plane\n"); 1194 ret = PTR_ERR(primary_plane); 1195 goto err; 1196 } 1197 1198 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1199 &vc4_crtc_funcs, NULL); 1200 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 1201 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 1202 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1203 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1204 1205 /* We support CTM, but only for one CRTC at a time. It's therefore 1206 * implemented as private driver state in vc4_kms, not here. 1207 */ 1208 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1209 1210 /* Set up some arbitrary number of planes. We're not limited 1211 * by a set number of physical registers, just the space in 1212 * the HVS (16k) and how small an plane can be (28 bytes). 1213 * However, each plane we set up takes up some memory, and 1214 * increases the cost of looping over planes, which atomic 1215 * modesetting does quite a bit. As a result, we pick a 1216 * modest number of planes to expose, that should hopefully 1217 * still cover any sane usecase. 1218 */ 1219 for (i = 0; i < 8; i++) { 1220 struct drm_plane *plane = 1221 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1222 1223 if (IS_ERR(plane)) 1224 continue; 1225 1226 plane->possible_crtcs = drm_crtc_mask(crtc); 1227 } 1228 1229 /* Set up the legacy cursor after overlay initialization, 1230 * since we overlay planes on the CRTC in the order they were 1231 * initialized. 1232 */ 1233 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1234 if (!IS_ERR(cursor_plane)) { 1235 cursor_plane->possible_crtcs = drm_crtc_mask(crtc); 1236 crtc->cursor = cursor_plane; 1237 } 1238 1239 vc4_crtc_get_cob_allocation(vc4_crtc); 1240 1241 CRTC_WRITE(PV_INTEN, 0); 1242 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1243 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1244 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1245 if (ret) 1246 goto err_destroy_planes; 1247 1248 vc4_set_crtc_possible_masks(drm, crtc); 1249 1250 for (i = 0; i < crtc->gamma_size; i++) { 1251 vc4_crtc->lut_r[i] = i; 1252 vc4_crtc->lut_g[i] = i; 1253 vc4_crtc->lut_b[i] = i; 1254 } 1255 1256 platform_set_drvdata(pdev, vc4_crtc); 1257 1258 return 0; 1259 1260 err_destroy_planes: 1261 list_for_each_entry_safe(destroy_plane, temp, 1262 &drm->mode_config.plane_list, head) { 1263 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1264 destroy_plane->funcs->destroy(destroy_plane); 1265 } 1266 err: 1267 return ret; 1268 } 1269 1270 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1271 void *data) 1272 { 1273 struct platform_device *pdev = to_platform_device(dev); 1274 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1275 1276 vc4_crtc_destroy(&vc4_crtc->base); 1277 1278 CRTC_WRITE(PV_INTEN, 0); 1279 1280 platform_set_drvdata(pdev, NULL); 1281 } 1282 1283 static const struct component_ops vc4_crtc_ops = { 1284 .bind = vc4_crtc_bind, 1285 .unbind = vc4_crtc_unbind, 1286 }; 1287 1288 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1289 { 1290 return component_add(&pdev->dev, &vc4_crtc_ops); 1291 } 1292 1293 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1294 { 1295 component_del(&pdev->dev, &vc4_crtc_ops); 1296 return 0; 1297 } 1298 1299 struct platform_driver vc4_crtc_driver = { 1300 .probe = vc4_crtc_dev_probe, 1301 .remove = vc4_crtc_dev_remove, 1302 .driver = { 1303 .name = "vc4_crtc", 1304 .of_match_table = vc4_crtc_dt_match, 1305 }, 1306 }; 1307