1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * encoder's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, the CRTC is also 19 * responsible for writing the display list for the HVS channel that 20 * the CRTC will use. 21 * 22 * The 2835 has 3 different pixel valves. pv0 in the audio power 23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 24 * image domain can feed either HDMI or the SDTV controller. The 25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 26 * SDTV, etc.) according to which output type is chosen in the mux. 27 * 28 * For power management, the pixel valve's registers are all clocked 29 * by the AXI clock, while the timings and FIFOs make use of the 30 * output-specific clock. Since the encoders also directly consume 31 * the CPRMAN clocks, and know what timings they need, they are the 32 * ones that set the clock. 33 */ 34 35 #include "drm_atomic.h" 36 #include "drm_atomic_helper.h" 37 #include "drm_crtc_helper.h" 38 #include "linux/clk.h" 39 #include "drm_fb_cma_helper.h" 40 #include "linux/component.h" 41 #include "linux/of_device.h" 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 struct vc4_crtc { 46 struct drm_crtc base; 47 const struct vc4_crtc_data *data; 48 void __iomem *regs; 49 50 /* Timestamp at start of vblank irq - unaffected by lock delays. */ 51 ktime_t t_vblank; 52 53 /* Which HVS channel we're using for our CRTC. */ 54 int channel; 55 56 u8 lut_r[256]; 57 u8 lut_g[256]; 58 u8 lut_b[256]; 59 /* Size in pixels of the COB memory allocated to this CRTC. */ 60 u32 cob_size; 61 62 struct drm_pending_vblank_event *event; 63 }; 64 65 struct vc4_crtc_state { 66 struct drm_crtc_state base; 67 /* Dlist area for this CRTC configuration. */ 68 struct drm_mm_node mm; 69 }; 70 71 static inline struct vc4_crtc * 72 to_vc4_crtc(struct drm_crtc *crtc) 73 { 74 return (struct vc4_crtc *)crtc; 75 } 76 77 static inline struct vc4_crtc_state * 78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 79 { 80 return (struct vc4_crtc_state *)crtc_state; 81 } 82 83 struct vc4_crtc_data { 84 /* Which channel of the HVS this pixelvalve sources from. */ 85 int hvs_channel; 86 87 enum vc4_encoder_type encoder_types[4]; 88 }; 89 90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 92 93 #define CRTC_REG(reg) { reg, #reg } 94 static const struct { 95 u32 reg; 96 const char *name; 97 } crtc_regs[] = { 98 CRTC_REG(PV_CONTROL), 99 CRTC_REG(PV_V_CONTROL), 100 CRTC_REG(PV_VSYNCD_EVEN), 101 CRTC_REG(PV_HORZA), 102 CRTC_REG(PV_HORZB), 103 CRTC_REG(PV_VERTA), 104 CRTC_REG(PV_VERTB), 105 CRTC_REG(PV_VERTA_EVEN), 106 CRTC_REG(PV_VERTB_EVEN), 107 CRTC_REG(PV_INTEN), 108 CRTC_REG(PV_INTSTAT), 109 CRTC_REG(PV_STAT), 110 CRTC_REG(PV_HACT_ACT), 111 }; 112 113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 114 { 115 int i; 116 117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 118 DRM_INFO("0x%04x (%s): 0x%08x\n", 119 crtc_regs[i].reg, crtc_regs[i].name, 120 CRTC_READ(crtc_regs[i].reg)); 121 } 122 } 123 124 #ifdef CONFIG_DEBUG_FS 125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 126 { 127 struct drm_info_node *node = (struct drm_info_node *)m->private; 128 struct drm_device *dev = node->minor->dev; 129 int crtc_index = (uintptr_t)node->info_ent->data; 130 struct drm_crtc *crtc; 131 struct vc4_crtc *vc4_crtc; 132 int i; 133 134 i = 0; 135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 136 if (i == crtc_index) 137 break; 138 i++; 139 } 140 if (!crtc) 141 return 0; 142 vc4_crtc = to_vc4_crtc(crtc); 143 144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 145 seq_printf(m, "%s (0x%04x): 0x%08x\n", 146 crtc_regs[i].name, crtc_regs[i].reg, 147 CRTC_READ(crtc_regs[i].reg)); 148 } 149 150 return 0; 151 } 152 #endif 153 154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 155 unsigned int flags, int *vpos, int *hpos, 156 ktime_t *stime, ktime_t *etime, 157 const struct drm_display_mode *mode) 158 { 159 struct vc4_dev *vc4 = to_vc4_dev(dev); 160 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 161 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 162 u32 val; 163 int fifo_lines; 164 int vblank_lines; 165 int ret = 0; 166 167 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 168 169 /* Get optional system timestamp before query. */ 170 if (stime) 171 *stime = ktime_get(); 172 173 /* 174 * Read vertical scanline which is currently composed for our 175 * pixelvalve by the HVS, and also the scaler status. 176 */ 177 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 178 179 /* Get optional system timestamp after query. */ 180 if (etime) 181 *etime = ktime_get(); 182 183 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 184 185 /* Vertical position of hvs composed scanline. */ 186 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 187 *hpos = 0; 188 189 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 190 *vpos /= 2; 191 192 /* Use hpos to correct for field offset in interlaced mode. */ 193 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 194 *hpos += mode->crtc_htotal / 2; 195 } 196 197 /* This is the offset we need for translating hvs -> pv scanout pos. */ 198 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 199 200 if (fifo_lines > 0) 201 ret |= DRM_SCANOUTPOS_VALID; 202 203 /* HVS more than fifo_lines into frame for compositing? */ 204 if (*vpos > fifo_lines) { 205 /* 206 * We are in active scanout and can get some meaningful results 207 * from HVS. The actual PV scanout can not trail behind more 208 * than fifo_lines as that is the fifo's capacity. Assume that 209 * in active scanout the HVS and PV work in lockstep wrt. HVS 210 * refilling the fifo and PV consuming from the fifo, ie. 211 * whenever the PV consumes and frees up a scanline in the 212 * fifo, the HVS will immediately refill it, therefore 213 * incrementing vpos. Therefore we choose HVS read position - 214 * fifo size in scanlines as a estimate of the real scanout 215 * position of the PV. 216 */ 217 *vpos -= fifo_lines + 1; 218 219 ret |= DRM_SCANOUTPOS_ACCURATE; 220 return ret; 221 } 222 223 /* 224 * Less: This happens when we are in vblank and the HVS, after getting 225 * the VSTART restart signal from the PV, just started refilling its 226 * fifo with new lines from the top-most lines of the new framebuffers. 227 * The PV does not scan out in vblank, so does not remove lines from 228 * the fifo, so the fifo will be full quickly and the HVS has to pause. 229 * We can't get meaningful readings wrt. scanline position of the PV 230 * and need to make things up in a approximative but consistent way. 231 */ 232 ret |= DRM_SCANOUTPOS_IN_VBLANK; 233 vblank_lines = mode->vtotal - mode->vdisplay; 234 235 if (flags & DRM_CALLED_FROM_VBLIRQ) { 236 /* 237 * Assume the irq handler got called close to first 238 * line of vblank, so PV has about a full vblank 239 * scanlines to go, and as a base timestamp use the 240 * one taken at entry into vblank irq handler, so it 241 * is not affected by random delays due to lock 242 * contention on event_lock or vblank_time lock in 243 * the core. 244 */ 245 *vpos = -vblank_lines; 246 247 if (stime) 248 *stime = vc4_crtc->t_vblank; 249 if (etime) 250 *etime = vc4_crtc->t_vblank; 251 252 /* 253 * If the HVS fifo is not yet full then we know for certain 254 * we are at the very beginning of vblank, as the hvs just 255 * started refilling, and the stime and etime timestamps 256 * truly correspond to start of vblank. 257 */ 258 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL) 259 ret |= DRM_SCANOUTPOS_ACCURATE; 260 } else { 261 /* 262 * No clue where we are inside vblank. Return a vpos of zero, 263 * which will cause calling code to just return the etime 264 * timestamp uncorrected. At least this is no worse than the 265 * standard fallback. 266 */ 267 *vpos = 0; 268 } 269 270 return ret; 271 } 272 273 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id, 274 int *max_error, struct timeval *vblank_time, 275 unsigned flags) 276 { 277 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 278 struct drm_crtc_state *state = crtc->state; 279 280 /* Helper routine in DRM core does all the work: */ 281 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error, 282 vblank_time, flags, 283 &state->adjusted_mode); 284 } 285 286 static void vc4_crtc_destroy(struct drm_crtc *crtc) 287 { 288 drm_crtc_cleanup(crtc); 289 } 290 291 static void 292 vc4_crtc_lut_load(struct drm_crtc *crtc) 293 { 294 struct drm_device *dev = crtc->dev; 295 struct vc4_dev *vc4 = to_vc4_dev(dev); 296 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 297 u32 i; 298 299 /* The LUT memory is laid out with each HVS channel in order, 300 * each of which takes 256 writes for R, 256 for G, then 256 301 * for B. 302 */ 303 HVS_WRITE(SCALER_GAMADDR, 304 SCALER_GAMADDR_AUTOINC | 305 (vc4_crtc->channel * 3 * crtc->gamma_size)); 306 307 for (i = 0; i < crtc->gamma_size; i++) 308 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 309 for (i = 0; i < crtc->gamma_size; i++) 310 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 311 for (i = 0; i < crtc->gamma_size; i++) 312 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 313 } 314 315 static int 316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 317 uint32_t size, 318 struct drm_modeset_acquire_ctx *ctx) 319 { 320 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 321 u32 i; 322 323 for (i = 0; i < size; i++) { 324 vc4_crtc->lut_r[i] = r[i] >> 8; 325 vc4_crtc->lut_g[i] = g[i] >> 8; 326 vc4_crtc->lut_b[i] = b[i] >> 8; 327 } 328 329 vc4_crtc_lut_load(crtc); 330 331 return 0; 332 } 333 334 static u32 vc4_get_fifo_full_level(u32 format) 335 { 336 static const u32 fifo_len_bytes = 64; 337 static const u32 hvs_latency_pix = 6; 338 339 switch (format) { 340 case PV_CONTROL_FORMAT_DSIV_16: 341 case PV_CONTROL_FORMAT_DSIC_16: 342 return fifo_len_bytes - 2 * hvs_latency_pix; 343 case PV_CONTROL_FORMAT_DSIV_18: 344 return fifo_len_bytes - 14; 345 case PV_CONTROL_FORMAT_24: 346 case PV_CONTROL_FORMAT_DSIV_24: 347 default: 348 return fifo_len_bytes - 3 * hvs_latency_pix; 349 } 350 } 351 352 /* 353 * Returns the encoder attached to the CRTC. 354 * 355 * VC4 can only scan out to one encoder at a time, while the DRM core 356 * allows drivers to push pixels to more than one encoder from the 357 * same CRTC. 358 */ 359 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 360 { 361 struct drm_connector *connector; 362 363 drm_for_each_connector(connector, crtc->dev) { 364 if (connector->state->crtc == crtc) { 365 return connector->encoder; 366 } 367 } 368 369 return NULL; 370 } 371 372 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 373 { 374 struct drm_device *dev = crtc->dev; 375 struct vc4_dev *vc4 = to_vc4_dev(dev); 376 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 377 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 378 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 379 struct drm_crtc_state *state = crtc->state; 380 struct drm_display_mode *mode = &state->adjusted_mode; 381 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 382 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 383 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 384 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 385 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 386 bool debug_dump_regs = false; 387 388 if (debug_dump_regs) { 389 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 390 vc4_crtc_dump_regs(vc4_crtc); 391 } 392 393 /* Reset the PV fifo. */ 394 CRTC_WRITE(PV_CONTROL, 0); 395 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 396 CRTC_WRITE(PV_CONTROL, 0); 397 398 CRTC_WRITE(PV_HORZA, 399 VC4_SET_FIELD((mode->htotal - 400 mode->hsync_end) * pixel_rep, 401 PV_HORZA_HBP) | 402 VC4_SET_FIELD((mode->hsync_end - 403 mode->hsync_start) * pixel_rep, 404 PV_HORZA_HSYNC)); 405 CRTC_WRITE(PV_HORZB, 406 VC4_SET_FIELD((mode->hsync_start - 407 mode->hdisplay) * pixel_rep, 408 PV_HORZB_HFP) | 409 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 410 411 CRTC_WRITE(PV_VERTA, 412 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 413 PV_VERTA_VBP) | 414 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 415 PV_VERTA_VSYNC)); 416 CRTC_WRITE(PV_VERTB, 417 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 418 PV_VERTB_VFP) | 419 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 420 421 if (interlace) { 422 CRTC_WRITE(PV_VERTA_EVEN, 423 VC4_SET_FIELD(mode->crtc_vtotal - 424 mode->crtc_vsync_end - 1, 425 PV_VERTA_VBP) | 426 VC4_SET_FIELD(mode->crtc_vsync_end - 427 mode->crtc_vsync_start, 428 PV_VERTA_VSYNC)); 429 CRTC_WRITE(PV_VERTB_EVEN, 430 VC4_SET_FIELD(mode->crtc_vsync_start - 431 mode->crtc_vdisplay, 432 PV_VERTB_VFP) | 433 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 434 435 /* We set up first field even mode for HDMI. VEC's 436 * NTSC mode would want first field odd instead, once 437 * we support it (to do so, set ODD_FIRST and put the 438 * delay in VSYNCD_EVEN instead). 439 */ 440 CRTC_WRITE(PV_V_CONTROL, 441 PV_VCONTROL_CONTINUOUS | 442 (is_dsi ? PV_VCONTROL_DSI : 0) | 443 PV_VCONTROL_INTERLACE | 444 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 445 PV_VCONTROL_ODD_DELAY)); 446 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 447 } else { 448 CRTC_WRITE(PV_V_CONTROL, 449 PV_VCONTROL_CONTINUOUS | 450 (is_dsi ? PV_VCONTROL_DSI : 0)); 451 } 452 453 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 454 455 CRTC_WRITE(PV_CONTROL, 456 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 457 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 458 PV_CONTROL_FIFO_LEVEL) | 459 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 460 PV_CONTROL_CLR_AT_START | 461 PV_CONTROL_TRIGGER_UNDERFLOW | 462 PV_CONTROL_WAIT_HSTART | 463 VC4_SET_FIELD(vc4_encoder->clock_select, 464 PV_CONTROL_CLK_SELECT) | 465 PV_CONTROL_FIFO_CLR | 466 PV_CONTROL_EN); 467 468 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 469 SCALER_DISPBKGND_AUTOHS | 470 SCALER_DISPBKGND_GAMMA | 471 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 472 473 /* Reload the LUT, since the SRAMs would have been disabled if 474 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 475 */ 476 vc4_crtc_lut_load(crtc); 477 478 if (debug_dump_regs) { 479 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 480 vc4_crtc_dump_regs(vc4_crtc); 481 } 482 } 483 484 static void require_hvs_enabled(struct drm_device *dev) 485 { 486 struct vc4_dev *vc4 = to_vc4_dev(dev); 487 488 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 489 SCALER_DISPCTRL_ENABLE); 490 } 491 492 static void vc4_crtc_disable(struct drm_crtc *crtc) 493 { 494 struct drm_device *dev = crtc->dev; 495 struct vc4_dev *vc4 = to_vc4_dev(dev); 496 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 497 u32 chan = vc4_crtc->channel; 498 int ret; 499 require_hvs_enabled(dev); 500 501 /* Disable vblank irq handling before crtc is disabled. */ 502 drm_crtc_vblank_off(crtc); 503 504 CRTC_WRITE(PV_V_CONTROL, 505 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 506 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 507 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 508 509 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 510 SCALER_DISPCTRLX_ENABLE) { 511 HVS_WRITE(SCALER_DISPCTRLX(chan), 512 SCALER_DISPCTRLX_RESET); 513 514 /* While the docs say that reset is self-clearing, it 515 * seems it doesn't actually. 516 */ 517 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 518 } 519 520 /* Once we leave, the scaler should be disabled and its fifo empty. */ 521 522 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 523 524 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 525 SCALER_DISPSTATX_MODE) != 526 SCALER_DISPSTATX_MODE_DISABLED); 527 528 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 529 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 530 SCALER_DISPSTATX_EMPTY); 531 } 532 533 static void vc4_crtc_enable(struct drm_crtc *crtc) 534 { 535 struct drm_device *dev = crtc->dev; 536 struct vc4_dev *vc4 = to_vc4_dev(dev); 537 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 538 struct drm_crtc_state *state = crtc->state; 539 struct drm_display_mode *mode = &state->adjusted_mode; 540 541 require_hvs_enabled(dev); 542 543 /* Turn on the scaler, which will wait for vstart to start 544 * compositing. 545 */ 546 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 547 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 548 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 549 SCALER_DISPCTRLX_ENABLE); 550 551 /* Turn on the pixel valve, which will emit the vstart signal. */ 552 CRTC_WRITE(PV_V_CONTROL, 553 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 554 555 /* Enable vblank irq handling after crtc is started. */ 556 drm_crtc_vblank_on(crtc); 557 } 558 559 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc, 560 const struct drm_display_mode *mode, 561 struct drm_display_mode *adjusted_mode) 562 { 563 /* Do not allow doublescan modes from user space */ 564 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) { 565 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 566 crtc->base.id); 567 return false; 568 } 569 570 return true; 571 } 572 573 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 574 struct drm_crtc_state *state) 575 { 576 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 577 struct drm_device *dev = crtc->dev; 578 struct vc4_dev *vc4 = to_vc4_dev(dev); 579 struct drm_plane *plane; 580 unsigned long flags; 581 const struct drm_plane_state *plane_state; 582 u32 dlist_count = 0; 583 int ret; 584 585 /* The pixelvalve can only feed one encoder (and encoders are 586 * 1:1 with connectors.) 587 */ 588 if (hweight32(state->connector_mask) > 1) 589 return -EINVAL; 590 591 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 592 dlist_count += vc4_plane_dlist_size(plane_state); 593 594 dlist_count++; /* Account for SCALER_CTL0_END. */ 595 596 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 597 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 598 dlist_count); 599 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 600 if (ret) 601 return ret; 602 603 return 0; 604 } 605 606 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 607 struct drm_crtc_state *old_state) 608 { 609 struct drm_device *dev = crtc->dev; 610 struct vc4_dev *vc4 = to_vc4_dev(dev); 611 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 612 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 613 struct drm_plane *plane; 614 bool debug_dump_regs = false; 615 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 616 u32 __iomem *dlist_next = dlist_start; 617 618 if (debug_dump_regs) { 619 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 620 vc4_hvs_dump_state(dev); 621 } 622 623 /* Copy all the active planes' dlist contents to the hardware dlist. */ 624 drm_atomic_crtc_for_each_plane(plane, crtc) { 625 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 626 } 627 628 writel(SCALER_CTL0_END, dlist_next); 629 dlist_next++; 630 631 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 632 633 if (crtc->state->event) { 634 unsigned long flags; 635 636 crtc->state->event->pipe = drm_crtc_index(crtc); 637 638 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 639 640 spin_lock_irqsave(&dev->event_lock, flags); 641 vc4_crtc->event = crtc->state->event; 642 crtc->state->event = NULL; 643 644 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 645 vc4_state->mm.start); 646 647 spin_unlock_irqrestore(&dev->event_lock, flags); 648 } else { 649 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 650 vc4_state->mm.start); 651 } 652 653 if (debug_dump_regs) { 654 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 655 vc4_hvs_dump_state(dev); 656 } 657 } 658 659 static int vc4_enable_vblank(struct drm_crtc *crtc) 660 { 661 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 662 663 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 664 665 return 0; 666 } 667 668 static void vc4_disable_vblank(struct drm_crtc *crtc) 669 { 670 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 671 672 CRTC_WRITE(PV_INTEN, 0); 673 } 674 675 /* Must be called with the event lock held */ 676 bool vc4_event_pending(struct drm_crtc *crtc) 677 { 678 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 679 680 return !!vc4_crtc->event; 681 } 682 683 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 684 { 685 struct drm_crtc *crtc = &vc4_crtc->base; 686 struct drm_device *dev = crtc->dev; 687 struct vc4_dev *vc4 = to_vc4_dev(dev); 688 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 689 u32 chan = vc4_crtc->channel; 690 unsigned long flags; 691 692 spin_lock_irqsave(&dev->event_lock, flags); 693 if (vc4_crtc->event && 694 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { 695 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 696 vc4_crtc->event = NULL; 697 drm_crtc_vblank_put(crtc); 698 } 699 spin_unlock_irqrestore(&dev->event_lock, flags); 700 } 701 702 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 703 { 704 struct vc4_crtc *vc4_crtc = data; 705 u32 stat = CRTC_READ(PV_INTSTAT); 706 irqreturn_t ret = IRQ_NONE; 707 708 if (stat & PV_INT_VFP_START) { 709 vc4_crtc->t_vblank = ktime_get(); 710 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 711 drm_crtc_handle_vblank(&vc4_crtc->base); 712 vc4_crtc_handle_page_flip(vc4_crtc); 713 ret = IRQ_HANDLED; 714 } 715 716 return ret; 717 } 718 719 struct vc4_async_flip_state { 720 struct drm_crtc *crtc; 721 struct drm_framebuffer *fb; 722 struct drm_pending_vblank_event *event; 723 724 struct vc4_seqno_cb cb; 725 }; 726 727 /* Called when the V3D execution for the BO being flipped to is done, so that 728 * we can actually update the plane's address to point to it. 729 */ 730 static void 731 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 732 { 733 struct vc4_async_flip_state *flip_state = 734 container_of(cb, struct vc4_async_flip_state, cb); 735 struct drm_crtc *crtc = flip_state->crtc; 736 struct drm_device *dev = crtc->dev; 737 struct vc4_dev *vc4 = to_vc4_dev(dev); 738 struct drm_plane *plane = crtc->primary; 739 740 vc4_plane_async_set_fb(plane, flip_state->fb); 741 if (flip_state->event) { 742 unsigned long flags; 743 744 spin_lock_irqsave(&dev->event_lock, flags); 745 drm_crtc_send_vblank_event(crtc, flip_state->event); 746 spin_unlock_irqrestore(&dev->event_lock, flags); 747 } 748 749 drm_crtc_vblank_put(crtc); 750 drm_framebuffer_unreference(flip_state->fb); 751 kfree(flip_state); 752 753 up(&vc4->async_modeset); 754 } 755 756 /* Implements async (non-vblank-synced) page flips. 757 * 758 * The page flip ioctl needs to return immediately, so we grab the 759 * modeset semaphore on the pipe, and queue the address update for 760 * when V3D is done with the BO being flipped to. 761 */ 762 static int vc4_async_page_flip(struct drm_crtc *crtc, 763 struct drm_framebuffer *fb, 764 struct drm_pending_vblank_event *event, 765 uint32_t flags) 766 { 767 struct drm_device *dev = crtc->dev; 768 struct vc4_dev *vc4 = to_vc4_dev(dev); 769 struct drm_plane *plane = crtc->primary; 770 int ret = 0; 771 struct vc4_async_flip_state *flip_state; 772 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 773 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 774 775 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 776 if (!flip_state) 777 return -ENOMEM; 778 779 drm_framebuffer_reference(fb); 780 flip_state->fb = fb; 781 flip_state->crtc = crtc; 782 flip_state->event = event; 783 784 /* Make sure all other async modesetes have landed. */ 785 ret = down_interruptible(&vc4->async_modeset); 786 if (ret) { 787 drm_framebuffer_unreference(fb); 788 kfree(flip_state); 789 return ret; 790 } 791 792 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 793 794 /* Immediately update the plane's legacy fb pointer, so that later 795 * modeset prep sees the state that will be present when the semaphore 796 * is released. 797 */ 798 drm_atomic_set_fb_for_plane(plane->state, fb); 799 plane->fb = fb; 800 801 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 802 vc4_async_page_flip_complete); 803 804 /* Driver takes ownership of state on successful async commit. */ 805 return 0; 806 } 807 808 static int vc4_page_flip(struct drm_crtc *crtc, 809 struct drm_framebuffer *fb, 810 struct drm_pending_vblank_event *event, 811 uint32_t flags, 812 struct drm_modeset_acquire_ctx *ctx) 813 { 814 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 815 return vc4_async_page_flip(crtc, fb, event, flags); 816 else 817 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 818 } 819 820 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 821 { 822 struct vc4_crtc_state *vc4_state; 823 824 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 825 if (!vc4_state) 826 return NULL; 827 828 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 829 return &vc4_state->base; 830 } 831 832 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 833 struct drm_crtc_state *state) 834 { 835 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 836 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 837 838 if (vc4_state->mm.allocated) { 839 unsigned long flags; 840 841 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 842 drm_mm_remove_node(&vc4_state->mm); 843 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 844 845 } 846 847 drm_atomic_helper_crtc_destroy_state(crtc, state); 848 } 849 850 static void 851 vc4_crtc_reset(struct drm_crtc *crtc) 852 { 853 if (crtc->state) 854 __drm_atomic_helper_crtc_destroy_state(crtc->state); 855 856 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 857 if (crtc->state) 858 crtc->state->crtc = crtc; 859 } 860 861 static const struct drm_crtc_funcs vc4_crtc_funcs = { 862 .set_config = drm_atomic_helper_set_config, 863 .destroy = vc4_crtc_destroy, 864 .page_flip = vc4_page_flip, 865 .set_property = NULL, 866 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 867 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 868 .reset = vc4_crtc_reset, 869 .atomic_duplicate_state = vc4_crtc_duplicate_state, 870 .atomic_destroy_state = vc4_crtc_destroy_state, 871 .gamma_set = vc4_crtc_gamma_set, 872 .enable_vblank = vc4_enable_vblank, 873 .disable_vblank = vc4_disable_vblank, 874 }; 875 876 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 877 .mode_set_nofb = vc4_crtc_mode_set_nofb, 878 .disable = vc4_crtc_disable, 879 .enable = vc4_crtc_enable, 880 .mode_fixup = vc4_crtc_mode_fixup, 881 .atomic_check = vc4_crtc_atomic_check, 882 .atomic_flush = vc4_crtc_atomic_flush, 883 }; 884 885 static const struct vc4_crtc_data pv0_data = { 886 .hvs_channel = 0, 887 .encoder_types = { 888 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 889 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 890 }, 891 }; 892 893 static const struct vc4_crtc_data pv1_data = { 894 .hvs_channel = 2, 895 .encoder_types = { 896 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 897 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 898 }, 899 }; 900 901 static const struct vc4_crtc_data pv2_data = { 902 .hvs_channel = 1, 903 .encoder_types = { 904 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 905 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 906 }, 907 }; 908 909 static const struct of_device_id vc4_crtc_dt_match[] = { 910 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 911 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 912 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 913 {} 914 }; 915 916 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 917 struct drm_crtc *crtc) 918 { 919 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 920 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 921 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 922 struct drm_encoder *encoder; 923 924 drm_for_each_encoder(encoder, drm) { 925 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 926 int i; 927 928 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 929 if (vc4_encoder->type == encoder_types[i]) { 930 vc4_encoder->clock_select = i; 931 encoder->possible_crtcs |= drm_crtc_mask(crtc); 932 break; 933 } 934 } 935 } 936 } 937 938 static void 939 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 940 { 941 struct drm_device *drm = vc4_crtc->base.dev; 942 struct vc4_dev *vc4 = to_vc4_dev(drm); 943 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 944 /* Top/base are supposed to be 4-pixel aligned, but the 945 * Raspberry Pi firmware fills the low bits (which are 946 * presumably ignored). 947 */ 948 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 949 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 950 951 vc4_crtc->cob_size = top - base + 4; 952 } 953 954 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 955 { 956 struct platform_device *pdev = to_platform_device(dev); 957 struct drm_device *drm = dev_get_drvdata(master); 958 struct vc4_crtc *vc4_crtc; 959 struct drm_crtc *crtc; 960 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 961 const struct of_device_id *match; 962 int ret, i; 963 964 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 965 if (!vc4_crtc) 966 return -ENOMEM; 967 crtc = &vc4_crtc->base; 968 969 match = of_match_device(vc4_crtc_dt_match, dev); 970 if (!match) 971 return -ENODEV; 972 vc4_crtc->data = match->data; 973 974 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 975 if (IS_ERR(vc4_crtc->regs)) 976 return PTR_ERR(vc4_crtc->regs); 977 978 /* For now, we create just the primary and the legacy cursor 979 * planes. We should be able to stack more planes on easily, 980 * but to do that we would need to compute the bandwidth 981 * requirement of the plane configuration, and reject ones 982 * that will take too much. 983 */ 984 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 985 if (IS_ERR(primary_plane)) { 986 dev_err(dev, "failed to construct primary plane\n"); 987 ret = PTR_ERR(primary_plane); 988 goto err; 989 } 990 991 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 992 &vc4_crtc_funcs, NULL); 993 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 994 primary_plane->crtc = crtc; 995 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 996 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 997 998 /* Set up some arbitrary number of planes. We're not limited 999 * by a set number of physical registers, just the space in 1000 * the HVS (16k) and how small an plane can be (28 bytes). 1001 * However, each plane we set up takes up some memory, and 1002 * increases the cost of looping over planes, which atomic 1003 * modesetting does quite a bit. As a result, we pick a 1004 * modest number of planes to expose, that should hopefully 1005 * still cover any sane usecase. 1006 */ 1007 for (i = 0; i < 8; i++) { 1008 struct drm_plane *plane = 1009 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1010 1011 if (IS_ERR(plane)) 1012 continue; 1013 1014 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1015 } 1016 1017 /* Set up the legacy cursor after overlay initialization, 1018 * since we overlay planes on the CRTC in the order they were 1019 * initialized. 1020 */ 1021 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1022 if (!IS_ERR(cursor_plane)) { 1023 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1024 cursor_plane->crtc = crtc; 1025 crtc->cursor = cursor_plane; 1026 } 1027 1028 vc4_crtc_get_cob_allocation(vc4_crtc); 1029 1030 CRTC_WRITE(PV_INTEN, 0); 1031 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1032 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1033 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1034 if (ret) 1035 goto err_destroy_planes; 1036 1037 vc4_set_crtc_possible_masks(drm, crtc); 1038 1039 for (i = 0; i < crtc->gamma_size; i++) { 1040 vc4_crtc->lut_r[i] = i; 1041 vc4_crtc->lut_g[i] = i; 1042 vc4_crtc->lut_b[i] = i; 1043 } 1044 1045 platform_set_drvdata(pdev, vc4_crtc); 1046 1047 return 0; 1048 1049 err_destroy_planes: 1050 list_for_each_entry_safe(destroy_plane, temp, 1051 &drm->mode_config.plane_list, head) { 1052 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 1053 destroy_plane->funcs->destroy(destroy_plane); 1054 } 1055 err: 1056 return ret; 1057 } 1058 1059 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1060 void *data) 1061 { 1062 struct platform_device *pdev = to_platform_device(dev); 1063 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1064 1065 vc4_crtc_destroy(&vc4_crtc->base); 1066 1067 CRTC_WRITE(PV_INTEN, 0); 1068 1069 platform_set_drvdata(pdev, NULL); 1070 } 1071 1072 static const struct component_ops vc4_crtc_ops = { 1073 .bind = vc4_crtc_bind, 1074 .unbind = vc4_crtc_unbind, 1075 }; 1076 1077 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1078 { 1079 return component_add(&pdev->dev, &vc4_crtc_ops); 1080 } 1081 1082 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1083 { 1084 component_del(&pdev->dev, &vc4_crtc_ops); 1085 return 0; 1086 } 1087 1088 struct platform_driver vc4_crtc_driver = { 1089 .probe = vc4_crtc_dev_probe, 1090 .remove = vc4_crtc_dev_remove, 1091 .driver = { 1092 .name = "vc4_crtc", 1093 .of_match_table = vc4_crtc_dt_match, 1094 }, 1095 }; 1096