xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision d236d361)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34 
35 #include "drm_atomic.h"
36 #include "drm_atomic_helper.h"
37 #include "drm_crtc_helper.h"
38 #include "linux/clk.h"
39 #include "drm_fb_cma_helper.h"
40 #include "linux/component.h"
41 #include "linux/of_device.h"
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 struct vc4_crtc {
46 	struct drm_crtc base;
47 	const struct vc4_crtc_data *data;
48 	void __iomem *regs;
49 
50 	/* Timestamp at start of vblank irq - unaffected by lock delays. */
51 	ktime_t t_vblank;
52 
53 	/* Which HVS channel we're using for our CRTC. */
54 	int channel;
55 
56 	u8 lut_r[256];
57 	u8 lut_g[256];
58 	u8 lut_b[256];
59 	/* Size in pixels of the COB memory allocated to this CRTC. */
60 	u32 cob_size;
61 
62 	struct drm_pending_vblank_event *event;
63 };
64 
65 struct vc4_crtc_state {
66 	struct drm_crtc_state base;
67 	/* Dlist area for this CRTC configuration. */
68 	struct drm_mm_node mm;
69 };
70 
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74 	return (struct vc4_crtc *)crtc;
75 }
76 
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80 	return (struct vc4_crtc_state *)crtc_state;
81 }
82 
83 struct vc4_crtc_data {
84 	/* Which channel of the HVS this pixelvalve sources from. */
85 	int hvs_channel;
86 
87 	enum vc4_encoder_type encoder_types[4];
88 };
89 
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92 
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 	u32 reg;
96 	const char *name;
97 } crtc_regs[] = {
98 	CRTC_REG(PV_CONTROL),
99 	CRTC_REG(PV_V_CONTROL),
100 	CRTC_REG(PV_VSYNCD_EVEN),
101 	CRTC_REG(PV_HORZA),
102 	CRTC_REG(PV_HORZB),
103 	CRTC_REG(PV_VERTA),
104 	CRTC_REG(PV_VERTB),
105 	CRTC_REG(PV_VERTA_EVEN),
106 	CRTC_REG(PV_VERTB_EVEN),
107 	CRTC_REG(PV_INTEN),
108 	CRTC_REG(PV_INTSTAT),
109 	CRTC_REG(PV_STAT),
110 	CRTC_REG(PV_HACT_ACT),
111 };
112 
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115 	int i;
116 
117 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 		DRM_INFO("0x%04x (%s): 0x%08x\n",
119 			 crtc_regs[i].reg, crtc_regs[i].name,
120 			 CRTC_READ(crtc_regs[i].reg));
121 	}
122 }
123 
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127 	struct drm_info_node *node = (struct drm_info_node *)m->private;
128 	struct drm_device *dev = node->minor->dev;
129 	int crtc_index = (uintptr_t)node->info_ent->data;
130 	struct drm_crtc *crtc;
131 	struct vc4_crtc *vc4_crtc;
132 	int i;
133 
134 	i = 0;
135 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 		if (i == crtc_index)
137 			break;
138 		i++;
139 	}
140 	if (!crtc)
141 		return 0;
142 	vc4_crtc = to_vc4_crtc(crtc);
143 
144 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 			   crtc_regs[i].name, crtc_regs[i].reg,
147 			   CRTC_READ(crtc_regs[i].reg));
148 	}
149 
150 	return 0;
151 }
152 #endif
153 
154 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 			    unsigned int flags, int *vpos, int *hpos,
156 			    ktime_t *stime, ktime_t *etime,
157 			    const struct drm_display_mode *mode)
158 {
159 	struct vc4_dev *vc4 = to_vc4_dev(dev);
160 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 	u32 val;
163 	int fifo_lines;
164 	int vblank_lines;
165 	int ret = 0;
166 
167 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168 
169 	/* Get optional system timestamp before query. */
170 	if (stime)
171 		*stime = ktime_get();
172 
173 	/*
174 	 * Read vertical scanline which is currently composed for our
175 	 * pixelvalve by the HVS, and also the scaler status.
176 	 */
177 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178 
179 	/* Get optional system timestamp after query. */
180 	if (etime)
181 		*etime = ktime_get();
182 
183 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184 
185 	/* Vertical position of hvs composed scanline. */
186 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 	*hpos = 0;
188 
189 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190 		*vpos /= 2;
191 
192 		/* Use hpos to correct for field offset in interlaced mode. */
193 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194 			*hpos += mode->crtc_htotal / 2;
195 	}
196 
197 	/* This is the offset we need for translating hvs -> pv scanout pos. */
198 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199 
200 	if (fifo_lines > 0)
201 		ret |= DRM_SCANOUTPOS_VALID;
202 
203 	/* HVS more than fifo_lines into frame for compositing? */
204 	if (*vpos > fifo_lines) {
205 		/*
206 		 * We are in active scanout and can get some meaningful results
207 		 * from HVS. The actual PV scanout can not trail behind more
208 		 * than fifo_lines as that is the fifo's capacity. Assume that
209 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
210 		 * refilling the fifo and PV consuming from the fifo, ie.
211 		 * whenever the PV consumes and frees up a scanline in the
212 		 * fifo, the HVS will immediately refill it, therefore
213 		 * incrementing vpos. Therefore we choose HVS read position -
214 		 * fifo size in scanlines as a estimate of the real scanout
215 		 * position of the PV.
216 		 */
217 		*vpos -= fifo_lines + 1;
218 
219 		ret |= DRM_SCANOUTPOS_ACCURATE;
220 		return ret;
221 	}
222 
223 	/*
224 	 * Less: This happens when we are in vblank and the HVS, after getting
225 	 * the VSTART restart signal from the PV, just started refilling its
226 	 * fifo with new lines from the top-most lines of the new framebuffers.
227 	 * The PV does not scan out in vblank, so does not remove lines from
228 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
229 	 * We can't get meaningful readings wrt. scanline position of the PV
230 	 * and need to make things up in a approximative but consistent way.
231 	 */
232 	ret |= DRM_SCANOUTPOS_IN_VBLANK;
233 	vblank_lines = mode->vtotal - mode->vdisplay;
234 
235 	if (flags & DRM_CALLED_FROM_VBLIRQ) {
236 		/*
237 		 * Assume the irq handler got called close to first
238 		 * line of vblank, so PV has about a full vblank
239 		 * scanlines to go, and as a base timestamp use the
240 		 * one taken at entry into vblank irq handler, so it
241 		 * is not affected by random delays due to lock
242 		 * contention on event_lock or vblank_time lock in
243 		 * the core.
244 		 */
245 		*vpos = -vblank_lines;
246 
247 		if (stime)
248 			*stime = vc4_crtc->t_vblank;
249 		if (etime)
250 			*etime = vc4_crtc->t_vblank;
251 
252 		/*
253 		 * If the HVS fifo is not yet full then we know for certain
254 		 * we are at the very beginning of vblank, as the hvs just
255 		 * started refilling, and the stime and etime timestamps
256 		 * truly correspond to start of vblank.
257 		 */
258 		if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
259 			ret |= DRM_SCANOUTPOS_ACCURATE;
260 	} else {
261 		/*
262 		 * No clue where we are inside vblank. Return a vpos of zero,
263 		 * which will cause calling code to just return the etime
264 		 * timestamp uncorrected. At least this is no worse than the
265 		 * standard fallback.
266 		 */
267 		*vpos = 0;
268 	}
269 
270 	return ret;
271 }
272 
273 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
274 				  int *max_error, struct timeval *vblank_time,
275 				  unsigned flags)
276 {
277 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
278 	struct drm_crtc_state *state = crtc->state;
279 
280 	/* Helper routine in DRM core does all the work: */
281 	return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
282 						     vblank_time, flags,
283 						     &state->adjusted_mode);
284 }
285 
286 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 {
288 	drm_crtc_cleanup(crtc);
289 }
290 
291 static void
292 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 {
294 	struct drm_device *dev = crtc->dev;
295 	struct vc4_dev *vc4 = to_vc4_dev(dev);
296 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
297 	u32 i;
298 
299 	/* The LUT memory is laid out with each HVS channel in order,
300 	 * each of which takes 256 writes for R, 256 for G, then 256
301 	 * for B.
302 	 */
303 	HVS_WRITE(SCALER_GAMADDR,
304 		  SCALER_GAMADDR_AUTOINC |
305 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
306 
307 	for (i = 0; i < crtc->gamma_size; i++)
308 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
309 	for (i = 0; i < crtc->gamma_size; i++)
310 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
311 	for (i = 0; i < crtc->gamma_size; i++)
312 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
313 }
314 
315 static int
316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
317 		   uint32_t size,
318 		   struct drm_modeset_acquire_ctx *ctx)
319 {
320 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
321 	u32 i;
322 
323 	for (i = 0; i < size; i++) {
324 		vc4_crtc->lut_r[i] = r[i] >> 8;
325 		vc4_crtc->lut_g[i] = g[i] >> 8;
326 		vc4_crtc->lut_b[i] = b[i] >> 8;
327 	}
328 
329 	vc4_crtc_lut_load(crtc);
330 
331 	return 0;
332 }
333 
334 static u32 vc4_get_fifo_full_level(u32 format)
335 {
336 	static const u32 fifo_len_bytes = 64;
337 	static const u32 hvs_latency_pix = 6;
338 
339 	switch (format) {
340 	case PV_CONTROL_FORMAT_DSIV_16:
341 	case PV_CONTROL_FORMAT_DSIC_16:
342 		return fifo_len_bytes - 2 * hvs_latency_pix;
343 	case PV_CONTROL_FORMAT_DSIV_18:
344 		return fifo_len_bytes - 14;
345 	case PV_CONTROL_FORMAT_24:
346 	case PV_CONTROL_FORMAT_DSIV_24:
347 	default:
348 		return fifo_len_bytes - 3 * hvs_latency_pix;
349 	}
350 }
351 
352 /*
353  * Returns the encoder attached to the CRTC.
354  *
355  * VC4 can only scan out to one encoder at a time, while the DRM core
356  * allows drivers to push pixels to more than one encoder from the
357  * same CRTC.
358  */
359 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
360 {
361 	struct drm_connector *connector;
362 
363 	drm_for_each_connector(connector, crtc->dev) {
364 		if (connector->state->crtc == crtc) {
365 			return connector->encoder;
366 		}
367 	}
368 
369 	return NULL;
370 }
371 
372 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
373 {
374 	struct drm_device *dev = crtc->dev;
375 	struct vc4_dev *vc4 = to_vc4_dev(dev);
376 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
377 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
378 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
379 	struct drm_crtc_state *state = crtc->state;
380 	struct drm_display_mode *mode = &state->adjusted_mode;
381 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
382 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
383 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
384 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
385 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
386 	bool debug_dump_regs = false;
387 
388 	if (debug_dump_regs) {
389 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
390 		vc4_crtc_dump_regs(vc4_crtc);
391 	}
392 
393 	/* Reset the PV fifo. */
394 	CRTC_WRITE(PV_CONTROL, 0);
395 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
396 	CRTC_WRITE(PV_CONTROL, 0);
397 
398 	CRTC_WRITE(PV_HORZA,
399 		   VC4_SET_FIELD((mode->htotal -
400 				  mode->hsync_end) * pixel_rep,
401 				 PV_HORZA_HBP) |
402 		   VC4_SET_FIELD((mode->hsync_end -
403 				  mode->hsync_start) * pixel_rep,
404 				 PV_HORZA_HSYNC));
405 	CRTC_WRITE(PV_HORZB,
406 		   VC4_SET_FIELD((mode->hsync_start -
407 				  mode->hdisplay) * pixel_rep,
408 				 PV_HORZB_HFP) |
409 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
410 
411 	CRTC_WRITE(PV_VERTA,
412 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
413 				 PV_VERTA_VBP) |
414 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
415 				 PV_VERTA_VSYNC));
416 	CRTC_WRITE(PV_VERTB,
417 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
418 				 PV_VERTB_VFP) |
419 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
420 
421 	if (interlace) {
422 		CRTC_WRITE(PV_VERTA_EVEN,
423 			   VC4_SET_FIELD(mode->crtc_vtotal -
424 					 mode->crtc_vsync_end - 1,
425 					 PV_VERTA_VBP) |
426 			   VC4_SET_FIELD(mode->crtc_vsync_end -
427 					 mode->crtc_vsync_start,
428 					 PV_VERTA_VSYNC));
429 		CRTC_WRITE(PV_VERTB_EVEN,
430 			   VC4_SET_FIELD(mode->crtc_vsync_start -
431 					 mode->crtc_vdisplay,
432 					 PV_VERTB_VFP) |
433 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
434 
435 		/* We set up first field even mode for HDMI.  VEC's
436 		 * NTSC mode would want first field odd instead, once
437 		 * we support it (to do so, set ODD_FIRST and put the
438 		 * delay in VSYNCD_EVEN instead).
439 		 */
440 		CRTC_WRITE(PV_V_CONTROL,
441 			   PV_VCONTROL_CONTINUOUS |
442 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
443 			   PV_VCONTROL_INTERLACE |
444 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
445 					 PV_VCONTROL_ODD_DELAY));
446 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
447 	} else {
448 		CRTC_WRITE(PV_V_CONTROL,
449 			   PV_VCONTROL_CONTINUOUS |
450 			   (is_dsi ? PV_VCONTROL_DSI : 0));
451 	}
452 
453 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
454 
455 	CRTC_WRITE(PV_CONTROL,
456 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
457 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
458 				 PV_CONTROL_FIFO_LEVEL) |
459 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
460 		   PV_CONTROL_CLR_AT_START |
461 		   PV_CONTROL_TRIGGER_UNDERFLOW |
462 		   PV_CONTROL_WAIT_HSTART |
463 		   VC4_SET_FIELD(vc4_encoder->clock_select,
464 				 PV_CONTROL_CLK_SELECT) |
465 		   PV_CONTROL_FIFO_CLR |
466 		   PV_CONTROL_EN);
467 
468 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
469 		  SCALER_DISPBKGND_AUTOHS |
470 		  SCALER_DISPBKGND_GAMMA |
471 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
472 
473 	/* Reload the LUT, since the SRAMs would have been disabled if
474 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
475 	 */
476 	vc4_crtc_lut_load(crtc);
477 
478 	if (debug_dump_regs) {
479 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
480 		vc4_crtc_dump_regs(vc4_crtc);
481 	}
482 }
483 
484 static void require_hvs_enabled(struct drm_device *dev)
485 {
486 	struct vc4_dev *vc4 = to_vc4_dev(dev);
487 
488 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
489 		     SCALER_DISPCTRL_ENABLE);
490 }
491 
492 static void vc4_crtc_disable(struct drm_crtc *crtc)
493 {
494 	struct drm_device *dev = crtc->dev;
495 	struct vc4_dev *vc4 = to_vc4_dev(dev);
496 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
497 	u32 chan = vc4_crtc->channel;
498 	int ret;
499 	require_hvs_enabled(dev);
500 
501 	/* Disable vblank irq handling before crtc is disabled. */
502 	drm_crtc_vblank_off(crtc);
503 
504 	CRTC_WRITE(PV_V_CONTROL,
505 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
506 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
507 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
508 
509 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
510 	    SCALER_DISPCTRLX_ENABLE) {
511 		HVS_WRITE(SCALER_DISPCTRLX(chan),
512 			  SCALER_DISPCTRLX_RESET);
513 
514 		/* While the docs say that reset is self-clearing, it
515 		 * seems it doesn't actually.
516 		 */
517 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
518 	}
519 
520 	/* Once we leave, the scaler should be disabled and its fifo empty. */
521 
522 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
523 
524 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
525 				   SCALER_DISPSTATX_MODE) !=
526 		     SCALER_DISPSTATX_MODE_DISABLED);
527 
528 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
529 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
530 		     SCALER_DISPSTATX_EMPTY);
531 }
532 
533 static void vc4_crtc_enable(struct drm_crtc *crtc)
534 {
535 	struct drm_device *dev = crtc->dev;
536 	struct vc4_dev *vc4 = to_vc4_dev(dev);
537 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
538 	struct drm_crtc_state *state = crtc->state;
539 	struct drm_display_mode *mode = &state->adjusted_mode;
540 
541 	require_hvs_enabled(dev);
542 
543 	/* Turn on the scaler, which will wait for vstart to start
544 	 * compositing.
545 	 */
546 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
547 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
548 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
549 		  SCALER_DISPCTRLX_ENABLE);
550 
551 	/* Turn on the pixel valve, which will emit the vstart signal. */
552 	CRTC_WRITE(PV_V_CONTROL,
553 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
554 
555 	/* Enable vblank irq handling after crtc is started. */
556 	drm_crtc_vblank_on(crtc);
557 }
558 
559 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
560 				const struct drm_display_mode *mode,
561 				struct drm_display_mode *adjusted_mode)
562 {
563 	/* Do not allow doublescan modes from user space */
564 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
565 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
566 			      crtc->base.id);
567 		return false;
568 	}
569 
570 	return true;
571 }
572 
573 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
574 				 struct drm_crtc_state *state)
575 {
576 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
577 	struct drm_device *dev = crtc->dev;
578 	struct vc4_dev *vc4 = to_vc4_dev(dev);
579 	struct drm_plane *plane;
580 	unsigned long flags;
581 	const struct drm_plane_state *plane_state;
582 	u32 dlist_count = 0;
583 	int ret;
584 
585 	/* The pixelvalve can only feed one encoder (and encoders are
586 	 * 1:1 with connectors.)
587 	 */
588 	if (hweight32(state->connector_mask) > 1)
589 		return -EINVAL;
590 
591 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
592 		dlist_count += vc4_plane_dlist_size(plane_state);
593 
594 	dlist_count++; /* Account for SCALER_CTL0_END. */
595 
596 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
597 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
598 				 dlist_count);
599 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600 	if (ret)
601 		return ret;
602 
603 	return 0;
604 }
605 
606 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
607 				  struct drm_crtc_state *old_state)
608 {
609 	struct drm_device *dev = crtc->dev;
610 	struct vc4_dev *vc4 = to_vc4_dev(dev);
611 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
612 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
613 	struct drm_plane *plane;
614 	bool debug_dump_regs = false;
615 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
616 	u32 __iomem *dlist_next = dlist_start;
617 
618 	if (debug_dump_regs) {
619 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
620 		vc4_hvs_dump_state(dev);
621 	}
622 
623 	/* Copy all the active planes' dlist contents to the hardware dlist. */
624 	drm_atomic_crtc_for_each_plane(plane, crtc) {
625 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
626 	}
627 
628 	writel(SCALER_CTL0_END, dlist_next);
629 	dlist_next++;
630 
631 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
632 
633 	if (crtc->state->event) {
634 		unsigned long flags;
635 
636 		crtc->state->event->pipe = drm_crtc_index(crtc);
637 
638 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
639 
640 		spin_lock_irqsave(&dev->event_lock, flags);
641 		vc4_crtc->event = crtc->state->event;
642 		crtc->state->event = NULL;
643 
644 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
645 			  vc4_state->mm.start);
646 
647 		spin_unlock_irqrestore(&dev->event_lock, flags);
648 	} else {
649 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
650 			  vc4_state->mm.start);
651 	}
652 
653 	if (debug_dump_regs) {
654 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
655 		vc4_hvs_dump_state(dev);
656 	}
657 }
658 
659 static int vc4_enable_vblank(struct drm_crtc *crtc)
660 {
661 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
662 
663 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
664 
665 	return 0;
666 }
667 
668 static void vc4_disable_vblank(struct drm_crtc *crtc)
669 {
670 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
671 
672 	CRTC_WRITE(PV_INTEN, 0);
673 }
674 
675 /* Must be called with the event lock held */
676 bool vc4_event_pending(struct drm_crtc *crtc)
677 {
678 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
679 
680 	return !!vc4_crtc->event;
681 }
682 
683 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
684 {
685 	struct drm_crtc *crtc = &vc4_crtc->base;
686 	struct drm_device *dev = crtc->dev;
687 	struct vc4_dev *vc4 = to_vc4_dev(dev);
688 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689 	u32 chan = vc4_crtc->channel;
690 	unsigned long flags;
691 
692 	spin_lock_irqsave(&dev->event_lock, flags);
693 	if (vc4_crtc->event &&
694 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
695 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
696 		vc4_crtc->event = NULL;
697 		drm_crtc_vblank_put(crtc);
698 	}
699 	spin_unlock_irqrestore(&dev->event_lock, flags);
700 }
701 
702 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
703 {
704 	struct vc4_crtc *vc4_crtc = data;
705 	u32 stat = CRTC_READ(PV_INTSTAT);
706 	irqreturn_t ret = IRQ_NONE;
707 
708 	if (stat & PV_INT_VFP_START) {
709 		vc4_crtc->t_vblank = ktime_get();
710 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
711 		drm_crtc_handle_vblank(&vc4_crtc->base);
712 		vc4_crtc_handle_page_flip(vc4_crtc);
713 		ret = IRQ_HANDLED;
714 	}
715 
716 	return ret;
717 }
718 
719 struct vc4_async_flip_state {
720 	struct drm_crtc *crtc;
721 	struct drm_framebuffer *fb;
722 	struct drm_pending_vblank_event *event;
723 
724 	struct vc4_seqno_cb cb;
725 };
726 
727 /* Called when the V3D execution for the BO being flipped to is done, so that
728  * we can actually update the plane's address to point to it.
729  */
730 static void
731 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
732 {
733 	struct vc4_async_flip_state *flip_state =
734 		container_of(cb, struct vc4_async_flip_state, cb);
735 	struct drm_crtc *crtc = flip_state->crtc;
736 	struct drm_device *dev = crtc->dev;
737 	struct vc4_dev *vc4 = to_vc4_dev(dev);
738 	struct drm_plane *plane = crtc->primary;
739 
740 	vc4_plane_async_set_fb(plane, flip_state->fb);
741 	if (flip_state->event) {
742 		unsigned long flags;
743 
744 		spin_lock_irqsave(&dev->event_lock, flags);
745 		drm_crtc_send_vblank_event(crtc, flip_state->event);
746 		spin_unlock_irqrestore(&dev->event_lock, flags);
747 	}
748 
749 	drm_crtc_vblank_put(crtc);
750 	drm_framebuffer_unreference(flip_state->fb);
751 	kfree(flip_state);
752 
753 	up(&vc4->async_modeset);
754 }
755 
756 /* Implements async (non-vblank-synced) page flips.
757  *
758  * The page flip ioctl needs to return immediately, so we grab the
759  * modeset semaphore on the pipe, and queue the address update for
760  * when V3D is done with the BO being flipped to.
761  */
762 static int vc4_async_page_flip(struct drm_crtc *crtc,
763 			       struct drm_framebuffer *fb,
764 			       struct drm_pending_vblank_event *event,
765 			       uint32_t flags)
766 {
767 	struct drm_device *dev = crtc->dev;
768 	struct vc4_dev *vc4 = to_vc4_dev(dev);
769 	struct drm_plane *plane = crtc->primary;
770 	int ret = 0;
771 	struct vc4_async_flip_state *flip_state;
772 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
773 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
774 
775 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
776 	if (!flip_state)
777 		return -ENOMEM;
778 
779 	drm_framebuffer_reference(fb);
780 	flip_state->fb = fb;
781 	flip_state->crtc = crtc;
782 	flip_state->event = event;
783 
784 	/* Make sure all other async modesetes have landed. */
785 	ret = down_interruptible(&vc4->async_modeset);
786 	if (ret) {
787 		drm_framebuffer_unreference(fb);
788 		kfree(flip_state);
789 		return ret;
790 	}
791 
792 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
793 
794 	/* Immediately update the plane's legacy fb pointer, so that later
795 	 * modeset prep sees the state that will be present when the semaphore
796 	 * is released.
797 	 */
798 	drm_atomic_set_fb_for_plane(plane->state, fb);
799 	plane->fb = fb;
800 
801 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
802 			   vc4_async_page_flip_complete);
803 
804 	/* Driver takes ownership of state on successful async commit. */
805 	return 0;
806 }
807 
808 static int vc4_page_flip(struct drm_crtc *crtc,
809 			 struct drm_framebuffer *fb,
810 			 struct drm_pending_vblank_event *event,
811 			 uint32_t flags,
812 			 struct drm_modeset_acquire_ctx *ctx)
813 {
814 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
815 		return vc4_async_page_flip(crtc, fb, event, flags);
816 	else
817 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
818 }
819 
820 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
821 {
822 	struct vc4_crtc_state *vc4_state;
823 
824 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
825 	if (!vc4_state)
826 		return NULL;
827 
828 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
829 	return &vc4_state->base;
830 }
831 
832 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
833 				   struct drm_crtc_state *state)
834 {
835 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
836 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
837 
838 	if (vc4_state->mm.allocated) {
839 		unsigned long flags;
840 
841 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
842 		drm_mm_remove_node(&vc4_state->mm);
843 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
844 
845 	}
846 
847 	drm_atomic_helper_crtc_destroy_state(crtc, state);
848 }
849 
850 static void
851 vc4_crtc_reset(struct drm_crtc *crtc)
852 {
853 	if (crtc->state)
854 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
855 
856 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
857 	if (crtc->state)
858 		crtc->state->crtc = crtc;
859 }
860 
861 static const struct drm_crtc_funcs vc4_crtc_funcs = {
862 	.set_config = drm_atomic_helper_set_config,
863 	.destroy = vc4_crtc_destroy,
864 	.page_flip = vc4_page_flip,
865 	.set_property = NULL,
866 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
867 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
868 	.reset = vc4_crtc_reset,
869 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
870 	.atomic_destroy_state = vc4_crtc_destroy_state,
871 	.gamma_set = vc4_crtc_gamma_set,
872 	.enable_vblank = vc4_enable_vblank,
873 	.disable_vblank = vc4_disable_vblank,
874 };
875 
876 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
877 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
878 	.disable = vc4_crtc_disable,
879 	.enable = vc4_crtc_enable,
880 	.mode_fixup = vc4_crtc_mode_fixup,
881 	.atomic_check = vc4_crtc_atomic_check,
882 	.atomic_flush = vc4_crtc_atomic_flush,
883 };
884 
885 static const struct vc4_crtc_data pv0_data = {
886 	.hvs_channel = 0,
887 	.encoder_types = {
888 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
889 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
890 	},
891 };
892 
893 static const struct vc4_crtc_data pv1_data = {
894 	.hvs_channel = 2,
895 	.encoder_types = {
896 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
897 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
898 	},
899 };
900 
901 static const struct vc4_crtc_data pv2_data = {
902 	.hvs_channel = 1,
903 	.encoder_types = {
904 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
905 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
906 	},
907 };
908 
909 static const struct of_device_id vc4_crtc_dt_match[] = {
910 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
911 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
912 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
913 	{}
914 };
915 
916 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
917 					struct drm_crtc *crtc)
918 {
919 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
920 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
921 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
922 	struct drm_encoder *encoder;
923 
924 	drm_for_each_encoder(encoder, drm) {
925 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
926 		int i;
927 
928 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
929 			if (vc4_encoder->type == encoder_types[i]) {
930 				vc4_encoder->clock_select = i;
931 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
932 				break;
933 			}
934 		}
935 	}
936 }
937 
938 static void
939 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
940 {
941 	struct drm_device *drm = vc4_crtc->base.dev;
942 	struct vc4_dev *vc4 = to_vc4_dev(drm);
943 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
944 	/* Top/base are supposed to be 4-pixel aligned, but the
945 	 * Raspberry Pi firmware fills the low bits (which are
946 	 * presumably ignored).
947 	 */
948 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
949 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
950 
951 	vc4_crtc->cob_size = top - base + 4;
952 }
953 
954 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
955 {
956 	struct platform_device *pdev = to_platform_device(dev);
957 	struct drm_device *drm = dev_get_drvdata(master);
958 	struct vc4_crtc *vc4_crtc;
959 	struct drm_crtc *crtc;
960 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
961 	const struct of_device_id *match;
962 	int ret, i;
963 
964 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
965 	if (!vc4_crtc)
966 		return -ENOMEM;
967 	crtc = &vc4_crtc->base;
968 
969 	match = of_match_device(vc4_crtc_dt_match, dev);
970 	if (!match)
971 		return -ENODEV;
972 	vc4_crtc->data = match->data;
973 
974 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
975 	if (IS_ERR(vc4_crtc->regs))
976 		return PTR_ERR(vc4_crtc->regs);
977 
978 	/* For now, we create just the primary and the legacy cursor
979 	 * planes.  We should be able to stack more planes on easily,
980 	 * but to do that we would need to compute the bandwidth
981 	 * requirement of the plane configuration, and reject ones
982 	 * that will take too much.
983 	 */
984 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
985 	if (IS_ERR(primary_plane)) {
986 		dev_err(dev, "failed to construct primary plane\n");
987 		ret = PTR_ERR(primary_plane);
988 		goto err;
989 	}
990 
991 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
992 				  &vc4_crtc_funcs, NULL);
993 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
994 	primary_plane->crtc = crtc;
995 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
996 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
997 
998 	/* Set up some arbitrary number of planes.  We're not limited
999 	 * by a set number of physical registers, just the space in
1000 	 * the HVS (16k) and how small an plane can be (28 bytes).
1001 	 * However, each plane we set up takes up some memory, and
1002 	 * increases the cost of looping over planes, which atomic
1003 	 * modesetting does quite a bit.  As a result, we pick a
1004 	 * modest number of planes to expose, that should hopefully
1005 	 * still cover any sane usecase.
1006 	 */
1007 	for (i = 0; i < 8; i++) {
1008 		struct drm_plane *plane =
1009 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1010 
1011 		if (IS_ERR(plane))
1012 			continue;
1013 
1014 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1015 	}
1016 
1017 	/* Set up the legacy cursor after overlay initialization,
1018 	 * since we overlay planes on the CRTC in the order they were
1019 	 * initialized.
1020 	 */
1021 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1022 	if (!IS_ERR(cursor_plane)) {
1023 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1024 		cursor_plane->crtc = crtc;
1025 		crtc->cursor = cursor_plane;
1026 	}
1027 
1028 	vc4_crtc_get_cob_allocation(vc4_crtc);
1029 
1030 	CRTC_WRITE(PV_INTEN, 0);
1031 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1032 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1033 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1034 	if (ret)
1035 		goto err_destroy_planes;
1036 
1037 	vc4_set_crtc_possible_masks(drm, crtc);
1038 
1039 	for (i = 0; i < crtc->gamma_size; i++) {
1040 		vc4_crtc->lut_r[i] = i;
1041 		vc4_crtc->lut_g[i] = i;
1042 		vc4_crtc->lut_b[i] = i;
1043 	}
1044 
1045 	platform_set_drvdata(pdev, vc4_crtc);
1046 
1047 	return 0;
1048 
1049 err_destroy_planes:
1050 	list_for_each_entry_safe(destroy_plane, temp,
1051 				 &drm->mode_config.plane_list, head) {
1052 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1053 		    destroy_plane->funcs->destroy(destroy_plane);
1054 	}
1055 err:
1056 	return ret;
1057 }
1058 
1059 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1060 			    void *data)
1061 {
1062 	struct platform_device *pdev = to_platform_device(dev);
1063 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1064 
1065 	vc4_crtc_destroy(&vc4_crtc->base);
1066 
1067 	CRTC_WRITE(PV_INTEN, 0);
1068 
1069 	platform_set_drvdata(pdev, NULL);
1070 }
1071 
1072 static const struct component_ops vc4_crtc_ops = {
1073 	.bind   = vc4_crtc_bind,
1074 	.unbind = vc4_crtc_unbind,
1075 };
1076 
1077 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1078 {
1079 	return component_add(&pdev->dev, &vc4_crtc_ops);
1080 }
1081 
1082 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1083 {
1084 	component_del(&pdev->dev, &vc4_crtc_ops);
1085 	return 0;
1086 }
1087 
1088 struct platform_driver vc4_crtc_driver = {
1089 	.probe = vc4_crtc_dev_probe,
1090 	.remove = vc4_crtc_dev_remove,
1091 	.driver = {
1092 		.name = "vc4_crtc",
1093 		.of_match_table = vc4_crtc_dt_match,
1094 	},
1095 };
1096