1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * encoder's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, the CRTC is also 19 * responsible for writing the display list for the HVS channel that 20 * the CRTC will use. 21 * 22 * The 2835 has 3 different pixel valves. pv0 in the audio power 23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 24 * image domain can feed either HDMI or the SDTV controller. The 25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 26 * SDTV, etc.) according to which output type is chosen in the mux. 27 * 28 * For power management, the pixel valve's registers are all clocked 29 * by the AXI clock, while the timings and FIFOs make use of the 30 * output-specific clock. Since the encoders also directly consume 31 * the CPRMAN clocks, and know what timings they need, they are the 32 * ones that set the clock. 33 */ 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_crtc_helper.h> 38 #include <linux/clk.h> 39 #include <drm/drm_fb_cma_helper.h> 40 #include <linux/component.h> 41 #include <linux/of_device.h> 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 struct vc4_crtc { 46 struct drm_crtc base; 47 const struct vc4_crtc_data *data; 48 void __iomem *regs; 49 50 /* Timestamp at start of vblank irq - unaffected by lock delays. */ 51 ktime_t t_vblank; 52 53 /* Which HVS channel we're using for our CRTC. */ 54 int channel; 55 56 u8 lut_r[256]; 57 u8 lut_g[256]; 58 u8 lut_b[256]; 59 /* Size in pixels of the COB memory allocated to this CRTC. */ 60 u32 cob_size; 61 62 struct drm_pending_vblank_event *event; 63 }; 64 65 struct vc4_crtc_state { 66 struct drm_crtc_state base; 67 /* Dlist area for this CRTC configuration. */ 68 struct drm_mm_node mm; 69 }; 70 71 static inline struct vc4_crtc * 72 to_vc4_crtc(struct drm_crtc *crtc) 73 { 74 return (struct vc4_crtc *)crtc; 75 } 76 77 static inline struct vc4_crtc_state * 78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 79 { 80 return (struct vc4_crtc_state *)crtc_state; 81 } 82 83 struct vc4_crtc_data { 84 /* Which channel of the HVS this pixelvalve sources from. */ 85 int hvs_channel; 86 87 enum vc4_encoder_type encoder_types[4]; 88 }; 89 90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 92 93 #define CRTC_REG(reg) { reg, #reg } 94 static const struct { 95 u32 reg; 96 const char *name; 97 } crtc_regs[] = { 98 CRTC_REG(PV_CONTROL), 99 CRTC_REG(PV_V_CONTROL), 100 CRTC_REG(PV_VSYNCD_EVEN), 101 CRTC_REG(PV_HORZA), 102 CRTC_REG(PV_HORZB), 103 CRTC_REG(PV_VERTA), 104 CRTC_REG(PV_VERTB), 105 CRTC_REG(PV_VERTA_EVEN), 106 CRTC_REG(PV_VERTB_EVEN), 107 CRTC_REG(PV_INTEN), 108 CRTC_REG(PV_INTSTAT), 109 CRTC_REG(PV_STAT), 110 CRTC_REG(PV_HACT_ACT), 111 }; 112 113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 114 { 115 int i; 116 117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 118 DRM_INFO("0x%04x (%s): 0x%08x\n", 119 crtc_regs[i].reg, crtc_regs[i].name, 120 CRTC_READ(crtc_regs[i].reg)); 121 } 122 } 123 124 #ifdef CONFIG_DEBUG_FS 125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 126 { 127 struct drm_info_node *node = (struct drm_info_node *)m->private; 128 struct drm_device *dev = node->minor->dev; 129 int crtc_index = (uintptr_t)node->info_ent->data; 130 struct drm_crtc *crtc; 131 struct vc4_crtc *vc4_crtc; 132 int i; 133 134 i = 0; 135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 136 if (i == crtc_index) 137 break; 138 i++; 139 } 140 if (!crtc) 141 return 0; 142 vc4_crtc = to_vc4_crtc(crtc); 143 144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 145 seq_printf(m, "%s (0x%04x): 0x%08x\n", 146 crtc_regs[i].name, crtc_regs[i].reg, 147 CRTC_READ(crtc_regs[i].reg)); 148 } 149 150 return 0; 151 } 152 #endif 153 154 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 155 bool in_vblank_irq, int *vpos, int *hpos, 156 ktime_t *stime, ktime_t *etime, 157 const struct drm_display_mode *mode) 158 { 159 struct vc4_dev *vc4 = to_vc4_dev(dev); 160 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 161 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 162 u32 val; 163 int fifo_lines; 164 int vblank_lines; 165 bool ret = false; 166 167 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 168 169 /* Get optional system timestamp before query. */ 170 if (stime) 171 *stime = ktime_get(); 172 173 /* 174 * Read vertical scanline which is currently composed for our 175 * pixelvalve by the HVS, and also the scaler status. 176 */ 177 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 178 179 /* Get optional system timestamp after query. */ 180 if (etime) 181 *etime = ktime_get(); 182 183 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 184 185 /* Vertical position of hvs composed scanline. */ 186 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 187 *hpos = 0; 188 189 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 190 *vpos /= 2; 191 192 /* Use hpos to correct for field offset in interlaced mode. */ 193 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 194 *hpos += mode->crtc_htotal / 2; 195 } 196 197 /* This is the offset we need for translating hvs -> pv scanout pos. */ 198 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 199 200 if (fifo_lines > 0) 201 ret = true; 202 203 /* HVS more than fifo_lines into frame for compositing? */ 204 if (*vpos > fifo_lines) { 205 /* 206 * We are in active scanout and can get some meaningful results 207 * from HVS. The actual PV scanout can not trail behind more 208 * than fifo_lines as that is the fifo's capacity. Assume that 209 * in active scanout the HVS and PV work in lockstep wrt. HVS 210 * refilling the fifo and PV consuming from the fifo, ie. 211 * whenever the PV consumes and frees up a scanline in the 212 * fifo, the HVS will immediately refill it, therefore 213 * incrementing vpos. Therefore we choose HVS read position - 214 * fifo size in scanlines as a estimate of the real scanout 215 * position of the PV. 216 */ 217 *vpos -= fifo_lines + 1; 218 219 return ret; 220 } 221 222 /* 223 * Less: This happens when we are in vblank and the HVS, after getting 224 * the VSTART restart signal from the PV, just started refilling its 225 * fifo with new lines from the top-most lines of the new framebuffers. 226 * The PV does not scan out in vblank, so does not remove lines from 227 * the fifo, so the fifo will be full quickly and the HVS has to pause. 228 * We can't get meaningful readings wrt. scanline position of the PV 229 * and need to make things up in a approximative but consistent way. 230 */ 231 vblank_lines = mode->vtotal - mode->vdisplay; 232 233 if (in_vblank_irq) { 234 /* 235 * Assume the irq handler got called close to first 236 * line of vblank, so PV has about a full vblank 237 * scanlines to go, and as a base timestamp use the 238 * one taken at entry into vblank irq handler, so it 239 * is not affected by random delays due to lock 240 * contention on event_lock or vblank_time lock in 241 * the core. 242 */ 243 *vpos = -vblank_lines; 244 245 if (stime) 246 *stime = vc4_crtc->t_vblank; 247 if (etime) 248 *etime = vc4_crtc->t_vblank; 249 250 /* 251 * If the HVS fifo is not yet full then we know for certain 252 * we are at the very beginning of vblank, as the hvs just 253 * started refilling, and the stime and etime timestamps 254 * truly correspond to start of vblank. 255 * 256 * Unfortunately there's no way to report this to upper levels 257 * and make it more useful. 258 */ 259 } else { 260 /* 261 * No clue where we are inside vblank. Return a vpos of zero, 262 * which will cause calling code to just return the etime 263 * timestamp uncorrected. At least this is no worse than the 264 * standard fallback. 265 */ 266 *vpos = 0; 267 } 268 269 return ret; 270 } 271 272 static void vc4_crtc_destroy(struct drm_crtc *crtc) 273 { 274 drm_crtc_cleanup(crtc); 275 } 276 277 static void 278 vc4_crtc_lut_load(struct drm_crtc *crtc) 279 { 280 struct drm_device *dev = crtc->dev; 281 struct vc4_dev *vc4 = to_vc4_dev(dev); 282 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 283 u32 i; 284 285 /* The LUT memory is laid out with each HVS channel in order, 286 * each of which takes 256 writes for R, 256 for G, then 256 287 * for B. 288 */ 289 HVS_WRITE(SCALER_GAMADDR, 290 SCALER_GAMADDR_AUTOINC | 291 (vc4_crtc->channel * 3 * crtc->gamma_size)); 292 293 for (i = 0; i < crtc->gamma_size; i++) 294 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 295 for (i = 0; i < crtc->gamma_size; i++) 296 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 297 for (i = 0; i < crtc->gamma_size; i++) 298 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 299 } 300 301 static int 302 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 303 uint32_t size, 304 struct drm_modeset_acquire_ctx *ctx) 305 { 306 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 307 u32 i; 308 309 for (i = 0; i < size; i++) { 310 vc4_crtc->lut_r[i] = r[i] >> 8; 311 vc4_crtc->lut_g[i] = g[i] >> 8; 312 vc4_crtc->lut_b[i] = b[i] >> 8; 313 } 314 315 vc4_crtc_lut_load(crtc); 316 317 return 0; 318 } 319 320 static u32 vc4_get_fifo_full_level(u32 format) 321 { 322 static const u32 fifo_len_bytes = 64; 323 static const u32 hvs_latency_pix = 6; 324 325 switch (format) { 326 case PV_CONTROL_FORMAT_DSIV_16: 327 case PV_CONTROL_FORMAT_DSIC_16: 328 return fifo_len_bytes - 2 * hvs_latency_pix; 329 case PV_CONTROL_FORMAT_DSIV_18: 330 return fifo_len_bytes - 14; 331 case PV_CONTROL_FORMAT_24: 332 case PV_CONTROL_FORMAT_DSIV_24: 333 default: 334 return fifo_len_bytes - 3 * hvs_latency_pix; 335 } 336 } 337 338 /* 339 * Returns the encoder attached to the CRTC. 340 * 341 * VC4 can only scan out to one encoder at a time, while the DRM core 342 * allows drivers to push pixels to more than one encoder from the 343 * same CRTC. 344 */ 345 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 346 { 347 struct drm_connector *connector; 348 struct drm_connector_list_iter conn_iter; 349 350 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 351 drm_for_each_connector_iter(connector, &conn_iter) { 352 if (connector->state->crtc == crtc) { 353 drm_connector_list_iter_end(&conn_iter); 354 return connector->encoder; 355 } 356 } 357 drm_connector_list_iter_end(&conn_iter); 358 359 return NULL; 360 } 361 362 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 363 { 364 struct drm_device *dev = crtc->dev; 365 struct vc4_dev *vc4 = to_vc4_dev(dev); 366 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 367 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 368 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 369 struct drm_crtc_state *state = crtc->state; 370 struct drm_display_mode *mode = &state->adjusted_mode; 371 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 372 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 373 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 374 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 375 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 376 bool debug_dump_regs = false; 377 378 if (debug_dump_regs) { 379 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 380 vc4_crtc_dump_regs(vc4_crtc); 381 } 382 383 /* Reset the PV fifo. */ 384 CRTC_WRITE(PV_CONTROL, 0); 385 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 386 CRTC_WRITE(PV_CONTROL, 0); 387 388 CRTC_WRITE(PV_HORZA, 389 VC4_SET_FIELD((mode->htotal - 390 mode->hsync_end) * pixel_rep, 391 PV_HORZA_HBP) | 392 VC4_SET_FIELD((mode->hsync_end - 393 mode->hsync_start) * pixel_rep, 394 PV_HORZA_HSYNC)); 395 CRTC_WRITE(PV_HORZB, 396 VC4_SET_FIELD((mode->hsync_start - 397 mode->hdisplay) * pixel_rep, 398 PV_HORZB_HFP) | 399 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 400 401 CRTC_WRITE(PV_VERTA, 402 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 403 PV_VERTA_VBP) | 404 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 405 PV_VERTA_VSYNC)); 406 CRTC_WRITE(PV_VERTB, 407 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 408 PV_VERTB_VFP) | 409 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 410 411 if (interlace) { 412 CRTC_WRITE(PV_VERTA_EVEN, 413 VC4_SET_FIELD(mode->crtc_vtotal - 414 mode->crtc_vsync_end - 1, 415 PV_VERTA_VBP) | 416 VC4_SET_FIELD(mode->crtc_vsync_end - 417 mode->crtc_vsync_start, 418 PV_VERTA_VSYNC)); 419 CRTC_WRITE(PV_VERTB_EVEN, 420 VC4_SET_FIELD(mode->crtc_vsync_start - 421 mode->crtc_vdisplay, 422 PV_VERTB_VFP) | 423 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 424 425 /* We set up first field even mode for HDMI. VEC's 426 * NTSC mode would want first field odd instead, once 427 * we support it (to do so, set ODD_FIRST and put the 428 * delay in VSYNCD_EVEN instead). 429 */ 430 CRTC_WRITE(PV_V_CONTROL, 431 PV_VCONTROL_CONTINUOUS | 432 (is_dsi ? PV_VCONTROL_DSI : 0) | 433 PV_VCONTROL_INTERLACE | 434 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 435 PV_VCONTROL_ODD_DELAY)); 436 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 437 } else { 438 CRTC_WRITE(PV_V_CONTROL, 439 PV_VCONTROL_CONTINUOUS | 440 (is_dsi ? PV_VCONTROL_DSI : 0)); 441 } 442 443 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 444 445 CRTC_WRITE(PV_CONTROL, 446 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 447 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 448 PV_CONTROL_FIFO_LEVEL) | 449 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 450 PV_CONTROL_CLR_AT_START | 451 PV_CONTROL_TRIGGER_UNDERFLOW | 452 PV_CONTROL_WAIT_HSTART | 453 VC4_SET_FIELD(vc4_encoder->clock_select, 454 PV_CONTROL_CLK_SELECT) | 455 PV_CONTROL_FIFO_CLR | 456 PV_CONTROL_EN); 457 458 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 459 SCALER_DISPBKGND_AUTOHS | 460 SCALER_DISPBKGND_GAMMA | 461 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 462 463 /* Reload the LUT, since the SRAMs would have been disabled if 464 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 465 */ 466 vc4_crtc_lut_load(crtc); 467 468 if (debug_dump_regs) { 469 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 470 vc4_crtc_dump_regs(vc4_crtc); 471 } 472 } 473 474 static void require_hvs_enabled(struct drm_device *dev) 475 { 476 struct vc4_dev *vc4 = to_vc4_dev(dev); 477 478 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 479 SCALER_DISPCTRL_ENABLE); 480 } 481 482 static void vc4_crtc_disable(struct drm_crtc *crtc) 483 { 484 struct drm_device *dev = crtc->dev; 485 struct vc4_dev *vc4 = to_vc4_dev(dev); 486 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 487 u32 chan = vc4_crtc->channel; 488 int ret; 489 require_hvs_enabled(dev); 490 491 /* Disable vblank irq handling before crtc is disabled. */ 492 drm_crtc_vblank_off(crtc); 493 494 CRTC_WRITE(PV_V_CONTROL, 495 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 496 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 497 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 498 499 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 500 SCALER_DISPCTRLX_ENABLE) { 501 HVS_WRITE(SCALER_DISPCTRLX(chan), 502 SCALER_DISPCTRLX_RESET); 503 504 /* While the docs say that reset is self-clearing, it 505 * seems it doesn't actually. 506 */ 507 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 508 } 509 510 /* Once we leave, the scaler should be disabled and its fifo empty. */ 511 512 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 513 514 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 515 SCALER_DISPSTATX_MODE) != 516 SCALER_DISPSTATX_MODE_DISABLED); 517 518 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 519 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 520 SCALER_DISPSTATX_EMPTY); 521 } 522 523 static void vc4_crtc_update_dlist(struct drm_crtc *crtc) 524 { 525 struct drm_device *dev = crtc->dev; 526 struct vc4_dev *vc4 = to_vc4_dev(dev); 527 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 528 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 529 530 if (crtc->state->event) { 531 unsigned long flags; 532 533 crtc->state->event->pipe = drm_crtc_index(crtc); 534 535 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 536 537 spin_lock_irqsave(&dev->event_lock, flags); 538 vc4_crtc->event = crtc->state->event; 539 crtc->state->event = NULL; 540 541 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 542 vc4_state->mm.start); 543 544 spin_unlock_irqrestore(&dev->event_lock, flags); 545 } else { 546 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 547 vc4_state->mm.start); 548 } 549 } 550 551 static void vc4_crtc_enable(struct drm_crtc *crtc) 552 { 553 struct drm_device *dev = crtc->dev; 554 struct vc4_dev *vc4 = to_vc4_dev(dev); 555 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 556 struct drm_crtc_state *state = crtc->state; 557 struct drm_display_mode *mode = &state->adjusted_mode; 558 559 require_hvs_enabled(dev); 560 561 /* Enable vblank irq handling before crtc is started otherwise 562 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 563 */ 564 drm_crtc_vblank_on(crtc); 565 vc4_crtc_update_dlist(crtc); 566 567 /* Turn on the scaler, which will wait for vstart to start 568 * compositing. 569 */ 570 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 571 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 572 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 573 SCALER_DISPCTRLX_ENABLE); 574 575 /* Turn on the pixel valve, which will emit the vstart signal. */ 576 CRTC_WRITE(PV_V_CONTROL, 577 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 578 } 579 580 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc, 581 const struct drm_display_mode *mode, 582 struct drm_display_mode *adjusted_mode) 583 { 584 /* Do not allow doublescan modes from user space */ 585 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) { 586 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 587 crtc->base.id); 588 return false; 589 } 590 591 return true; 592 } 593 594 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 595 struct drm_crtc_state *state) 596 { 597 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 598 struct drm_device *dev = crtc->dev; 599 struct vc4_dev *vc4 = to_vc4_dev(dev); 600 struct drm_plane *plane; 601 unsigned long flags; 602 const struct drm_plane_state *plane_state; 603 u32 dlist_count = 0; 604 int ret; 605 606 /* The pixelvalve can only feed one encoder (and encoders are 607 * 1:1 with connectors.) 608 */ 609 if (hweight32(state->connector_mask) > 1) 610 return -EINVAL; 611 612 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 613 dlist_count += vc4_plane_dlist_size(plane_state); 614 615 dlist_count++; /* Account for SCALER_CTL0_END. */ 616 617 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 618 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 619 dlist_count); 620 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 621 if (ret) 622 return ret; 623 624 return 0; 625 } 626 627 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 628 struct drm_crtc_state *old_state) 629 { 630 struct drm_device *dev = crtc->dev; 631 struct vc4_dev *vc4 = to_vc4_dev(dev); 632 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 633 struct drm_plane *plane; 634 bool debug_dump_regs = false; 635 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 636 u32 __iomem *dlist_next = dlist_start; 637 638 if (debug_dump_regs) { 639 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 640 vc4_hvs_dump_state(dev); 641 } 642 643 /* Copy all the active planes' dlist contents to the hardware dlist. */ 644 drm_atomic_crtc_for_each_plane(plane, crtc) { 645 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 646 } 647 648 writel(SCALER_CTL0_END, dlist_next); 649 dlist_next++; 650 651 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 652 653 /* Only update DISPLIST if the CRTC was already running and is not 654 * being disabled. 655 * vc4_crtc_enable() takes care of updating the dlist just after 656 * re-enabling VBLANK interrupts and before enabling the engine. 657 * If the CRTC is being disabled, there's no point in updating this 658 * information. 659 */ 660 if (crtc->state->active && old_state->active) 661 vc4_crtc_update_dlist(crtc); 662 663 if (debug_dump_regs) { 664 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 665 vc4_hvs_dump_state(dev); 666 } 667 } 668 669 static int vc4_enable_vblank(struct drm_crtc *crtc) 670 { 671 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 672 673 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 674 675 return 0; 676 } 677 678 static void vc4_disable_vblank(struct drm_crtc *crtc) 679 { 680 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 681 682 CRTC_WRITE(PV_INTEN, 0); 683 } 684 685 /* Must be called with the event lock held */ 686 bool vc4_event_pending(struct drm_crtc *crtc) 687 { 688 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 689 690 return !!vc4_crtc->event; 691 } 692 693 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 694 { 695 struct drm_crtc *crtc = &vc4_crtc->base; 696 struct drm_device *dev = crtc->dev; 697 struct vc4_dev *vc4 = to_vc4_dev(dev); 698 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 699 u32 chan = vc4_crtc->channel; 700 unsigned long flags; 701 702 spin_lock_irqsave(&dev->event_lock, flags); 703 if (vc4_crtc->event && 704 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { 705 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 706 vc4_crtc->event = NULL; 707 drm_crtc_vblank_put(crtc); 708 } 709 spin_unlock_irqrestore(&dev->event_lock, flags); 710 } 711 712 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 713 { 714 struct vc4_crtc *vc4_crtc = data; 715 u32 stat = CRTC_READ(PV_INTSTAT); 716 irqreturn_t ret = IRQ_NONE; 717 718 if (stat & PV_INT_VFP_START) { 719 vc4_crtc->t_vblank = ktime_get(); 720 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 721 drm_crtc_handle_vblank(&vc4_crtc->base); 722 vc4_crtc_handle_page_flip(vc4_crtc); 723 ret = IRQ_HANDLED; 724 } 725 726 return ret; 727 } 728 729 struct vc4_async_flip_state { 730 struct drm_crtc *crtc; 731 struct drm_framebuffer *fb; 732 struct drm_pending_vblank_event *event; 733 734 struct vc4_seqno_cb cb; 735 }; 736 737 /* Called when the V3D execution for the BO being flipped to is done, so that 738 * we can actually update the plane's address to point to it. 739 */ 740 static void 741 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 742 { 743 struct vc4_async_flip_state *flip_state = 744 container_of(cb, struct vc4_async_flip_state, cb); 745 struct drm_crtc *crtc = flip_state->crtc; 746 struct drm_device *dev = crtc->dev; 747 struct vc4_dev *vc4 = to_vc4_dev(dev); 748 struct drm_plane *plane = crtc->primary; 749 750 vc4_plane_async_set_fb(plane, flip_state->fb); 751 if (flip_state->event) { 752 unsigned long flags; 753 754 spin_lock_irqsave(&dev->event_lock, flags); 755 drm_crtc_send_vblank_event(crtc, flip_state->event); 756 spin_unlock_irqrestore(&dev->event_lock, flags); 757 } 758 759 drm_crtc_vblank_put(crtc); 760 drm_framebuffer_unreference(flip_state->fb); 761 kfree(flip_state); 762 763 up(&vc4->async_modeset); 764 } 765 766 /* Implements async (non-vblank-synced) page flips. 767 * 768 * The page flip ioctl needs to return immediately, so we grab the 769 * modeset semaphore on the pipe, and queue the address update for 770 * when V3D is done with the BO being flipped to. 771 */ 772 static int vc4_async_page_flip(struct drm_crtc *crtc, 773 struct drm_framebuffer *fb, 774 struct drm_pending_vblank_event *event, 775 uint32_t flags) 776 { 777 struct drm_device *dev = crtc->dev; 778 struct vc4_dev *vc4 = to_vc4_dev(dev); 779 struct drm_plane *plane = crtc->primary; 780 int ret = 0; 781 struct vc4_async_flip_state *flip_state; 782 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 783 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 784 785 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 786 if (!flip_state) 787 return -ENOMEM; 788 789 drm_framebuffer_reference(fb); 790 flip_state->fb = fb; 791 flip_state->crtc = crtc; 792 flip_state->event = event; 793 794 /* Make sure all other async modesetes have landed. */ 795 ret = down_interruptible(&vc4->async_modeset); 796 if (ret) { 797 drm_framebuffer_unreference(fb); 798 kfree(flip_state); 799 return ret; 800 } 801 802 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 803 804 /* Immediately update the plane's legacy fb pointer, so that later 805 * modeset prep sees the state that will be present when the semaphore 806 * is released. 807 */ 808 drm_atomic_set_fb_for_plane(plane->state, fb); 809 plane->fb = fb; 810 811 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 812 vc4_async_page_flip_complete); 813 814 /* Driver takes ownership of state on successful async commit. */ 815 return 0; 816 } 817 818 static int vc4_page_flip(struct drm_crtc *crtc, 819 struct drm_framebuffer *fb, 820 struct drm_pending_vblank_event *event, 821 uint32_t flags, 822 struct drm_modeset_acquire_ctx *ctx) 823 { 824 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 825 return vc4_async_page_flip(crtc, fb, event, flags); 826 else 827 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 828 } 829 830 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 831 { 832 struct vc4_crtc_state *vc4_state; 833 834 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 835 if (!vc4_state) 836 return NULL; 837 838 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 839 return &vc4_state->base; 840 } 841 842 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 843 struct drm_crtc_state *state) 844 { 845 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 846 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 847 848 if (vc4_state->mm.allocated) { 849 unsigned long flags; 850 851 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 852 drm_mm_remove_node(&vc4_state->mm); 853 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 854 855 } 856 857 drm_atomic_helper_crtc_destroy_state(crtc, state); 858 } 859 860 static void 861 vc4_crtc_reset(struct drm_crtc *crtc) 862 { 863 if (crtc->state) 864 __drm_atomic_helper_crtc_destroy_state(crtc->state); 865 866 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 867 if (crtc->state) 868 crtc->state->crtc = crtc; 869 } 870 871 static const struct drm_crtc_funcs vc4_crtc_funcs = { 872 .set_config = drm_atomic_helper_set_config, 873 .destroy = vc4_crtc_destroy, 874 .page_flip = vc4_page_flip, 875 .set_property = NULL, 876 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 877 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 878 .reset = vc4_crtc_reset, 879 .atomic_duplicate_state = vc4_crtc_duplicate_state, 880 .atomic_destroy_state = vc4_crtc_destroy_state, 881 .gamma_set = vc4_crtc_gamma_set, 882 .enable_vblank = vc4_enable_vblank, 883 .disable_vblank = vc4_disable_vblank, 884 }; 885 886 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 887 .mode_set_nofb = vc4_crtc_mode_set_nofb, 888 .disable = vc4_crtc_disable, 889 .enable = vc4_crtc_enable, 890 .mode_fixup = vc4_crtc_mode_fixup, 891 .atomic_check = vc4_crtc_atomic_check, 892 .atomic_flush = vc4_crtc_atomic_flush, 893 }; 894 895 static const struct vc4_crtc_data pv0_data = { 896 .hvs_channel = 0, 897 .encoder_types = { 898 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 899 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 900 }, 901 }; 902 903 static const struct vc4_crtc_data pv1_data = { 904 .hvs_channel = 2, 905 .encoder_types = { 906 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 907 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 908 }, 909 }; 910 911 static const struct vc4_crtc_data pv2_data = { 912 .hvs_channel = 1, 913 .encoder_types = { 914 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 915 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 916 }, 917 }; 918 919 static const struct of_device_id vc4_crtc_dt_match[] = { 920 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 921 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 922 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 923 {} 924 }; 925 926 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 927 struct drm_crtc *crtc) 928 { 929 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 930 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 931 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 932 struct drm_encoder *encoder; 933 934 drm_for_each_encoder(encoder, drm) { 935 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 936 int i; 937 938 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 939 if (vc4_encoder->type == encoder_types[i]) { 940 vc4_encoder->clock_select = i; 941 encoder->possible_crtcs |= drm_crtc_mask(crtc); 942 break; 943 } 944 } 945 } 946 } 947 948 static void 949 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 950 { 951 struct drm_device *drm = vc4_crtc->base.dev; 952 struct vc4_dev *vc4 = to_vc4_dev(drm); 953 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 954 /* Top/base are supposed to be 4-pixel aligned, but the 955 * Raspberry Pi firmware fills the low bits (which are 956 * presumably ignored). 957 */ 958 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 959 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 960 961 vc4_crtc->cob_size = top - base + 4; 962 } 963 964 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 965 { 966 struct platform_device *pdev = to_platform_device(dev); 967 struct drm_device *drm = dev_get_drvdata(master); 968 struct vc4_crtc *vc4_crtc; 969 struct drm_crtc *crtc; 970 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 971 const struct of_device_id *match; 972 int ret, i; 973 974 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 975 if (!vc4_crtc) 976 return -ENOMEM; 977 crtc = &vc4_crtc->base; 978 979 match = of_match_device(vc4_crtc_dt_match, dev); 980 if (!match) 981 return -ENODEV; 982 vc4_crtc->data = match->data; 983 984 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 985 if (IS_ERR(vc4_crtc->regs)) 986 return PTR_ERR(vc4_crtc->regs); 987 988 /* For now, we create just the primary and the legacy cursor 989 * planes. We should be able to stack more planes on easily, 990 * but to do that we would need to compute the bandwidth 991 * requirement of the plane configuration, and reject ones 992 * that will take too much. 993 */ 994 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 995 if (IS_ERR(primary_plane)) { 996 dev_err(dev, "failed to construct primary plane\n"); 997 ret = PTR_ERR(primary_plane); 998 goto err; 999 } 1000 1001 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1002 &vc4_crtc_funcs, NULL); 1003 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 1004 primary_plane->crtc = crtc; 1005 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 1006 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1007 1008 /* Set up some arbitrary number of planes. We're not limited 1009 * by a set number of physical registers, just the space in 1010 * the HVS (16k) and how small an plane can be (28 bytes). 1011 * However, each plane we set up takes up some memory, and 1012 * increases the cost of looping over planes, which atomic 1013 * modesetting does quite a bit. As a result, we pick a 1014 * modest number of planes to expose, that should hopefully 1015 * still cover any sane usecase. 1016 */ 1017 for (i = 0; i < 8; i++) { 1018 struct drm_plane *plane = 1019 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1020 1021 if (IS_ERR(plane)) 1022 continue; 1023 1024 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1025 } 1026 1027 /* Set up the legacy cursor after overlay initialization, 1028 * since we overlay planes on the CRTC in the order they were 1029 * initialized. 1030 */ 1031 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1032 if (!IS_ERR(cursor_plane)) { 1033 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1034 cursor_plane->crtc = crtc; 1035 crtc->cursor = cursor_plane; 1036 } 1037 1038 vc4_crtc_get_cob_allocation(vc4_crtc); 1039 1040 CRTC_WRITE(PV_INTEN, 0); 1041 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1042 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1043 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1044 if (ret) 1045 goto err_destroy_planes; 1046 1047 vc4_set_crtc_possible_masks(drm, crtc); 1048 1049 for (i = 0; i < crtc->gamma_size; i++) { 1050 vc4_crtc->lut_r[i] = i; 1051 vc4_crtc->lut_g[i] = i; 1052 vc4_crtc->lut_b[i] = i; 1053 } 1054 1055 platform_set_drvdata(pdev, vc4_crtc); 1056 1057 return 0; 1058 1059 err_destroy_planes: 1060 list_for_each_entry_safe(destroy_plane, temp, 1061 &drm->mode_config.plane_list, head) { 1062 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 1063 destroy_plane->funcs->destroy(destroy_plane); 1064 } 1065 err: 1066 return ret; 1067 } 1068 1069 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1070 void *data) 1071 { 1072 struct platform_device *pdev = to_platform_device(dev); 1073 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1074 1075 vc4_crtc_destroy(&vc4_crtc->base); 1076 1077 CRTC_WRITE(PV_INTEN, 0); 1078 1079 platform_set_drvdata(pdev, NULL); 1080 } 1081 1082 static const struct component_ops vc4_crtc_ops = { 1083 .bind = vc4_crtc_bind, 1084 .unbind = vc4_crtc_unbind, 1085 }; 1086 1087 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1088 { 1089 return component_add(&pdev->dev, &vc4_crtc_ops); 1090 } 1091 1092 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1093 { 1094 component_del(&pdev->dev, &vc4_crtc_ops); 1095 return 0; 1096 } 1097 1098 struct platform_driver vc4_crtc_driver = { 1099 .probe = vc4_crtc_dev_probe, 1100 .remove = vc4_crtc_dev_remove, 1101 .driver = { 1102 .name = "vc4_crtc", 1103 .of_match_table = vc4_crtc_dt_match, 1104 }, 1105 }; 1106