xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision c4a7b9b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_dma_helper.h>
41 #include <drm/drm_framebuffer.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_print.h>
44 #include <drm/drm_probe_helper.h>
45 #include <drm/drm_vblank.h>
46 
47 #include "vc4_drv.h"
48 #include "vc4_hdmi.h"
49 #include "vc4_regs.h"
50 
51 #define HVS_FIFO_LATENCY_PIX	6
52 
53 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
54 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
55 
56 static const struct debugfs_reg32 crtc_regs[] = {
57 	VC4_REG32(PV_CONTROL),
58 	VC4_REG32(PV_V_CONTROL),
59 	VC4_REG32(PV_VSYNCD_EVEN),
60 	VC4_REG32(PV_HORZA),
61 	VC4_REG32(PV_HORZB),
62 	VC4_REG32(PV_VERTA),
63 	VC4_REG32(PV_VERTB),
64 	VC4_REG32(PV_VERTA_EVEN),
65 	VC4_REG32(PV_VERTB_EVEN),
66 	VC4_REG32(PV_INTEN),
67 	VC4_REG32(PV_INTSTAT),
68 	VC4_REG32(PV_STAT),
69 	VC4_REG32(PV_HACT_ACT),
70 };
71 
72 static unsigned int
73 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
74 {
75 	struct vc4_hvs *hvs = vc4->hvs;
76 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
77 	/* Top/base are supposed to be 4-pixel aligned, but the
78 	 * Raspberry Pi firmware fills the low bits (which are
79 	 * presumably ignored).
80 	 */
81 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
82 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
83 
84 	return top - base + 4;
85 }
86 
87 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
88 					  bool in_vblank_irq,
89 					  int *vpos, int *hpos,
90 					  ktime_t *stime, ktime_t *etime,
91 					  const struct drm_display_mode *mode)
92 {
93 	struct drm_device *dev = crtc->dev;
94 	struct vc4_dev *vc4 = to_vc4_dev(dev);
95 	struct vc4_hvs *hvs = vc4->hvs;
96 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
97 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
98 	unsigned int cob_size;
99 	u32 val;
100 	int fifo_lines;
101 	int vblank_lines;
102 	bool ret = false;
103 
104 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
105 
106 	/* Get optional system timestamp before query. */
107 	if (stime)
108 		*stime = ktime_get();
109 
110 	/*
111 	 * Read vertical scanline which is currently composed for our
112 	 * pixelvalve by the HVS, and also the scaler status.
113 	 */
114 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
115 
116 	/* Get optional system timestamp after query. */
117 	if (etime)
118 		*etime = ktime_get();
119 
120 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
121 
122 	/* Vertical position of hvs composed scanline. */
123 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
124 	*hpos = 0;
125 
126 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
127 		*vpos /= 2;
128 
129 		/* Use hpos to correct for field offset in interlaced mode. */
130 		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
131 			*hpos += mode->crtc_htotal / 2;
132 	}
133 
134 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
135 	/* This is the offset we need for translating hvs -> pv scanout pos. */
136 	fifo_lines = cob_size / mode->crtc_hdisplay;
137 
138 	if (fifo_lines > 0)
139 		ret = true;
140 
141 	/* HVS more than fifo_lines into frame for compositing? */
142 	if (*vpos > fifo_lines) {
143 		/*
144 		 * We are in active scanout and can get some meaningful results
145 		 * from HVS. The actual PV scanout can not trail behind more
146 		 * than fifo_lines as that is the fifo's capacity. Assume that
147 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
148 		 * refilling the fifo and PV consuming from the fifo, ie.
149 		 * whenever the PV consumes and frees up a scanline in the
150 		 * fifo, the HVS will immediately refill it, therefore
151 		 * incrementing vpos. Therefore we choose HVS read position -
152 		 * fifo size in scanlines as a estimate of the real scanout
153 		 * position of the PV.
154 		 */
155 		*vpos -= fifo_lines + 1;
156 
157 		return ret;
158 	}
159 
160 	/*
161 	 * Less: This happens when we are in vblank and the HVS, after getting
162 	 * the VSTART restart signal from the PV, just started refilling its
163 	 * fifo with new lines from the top-most lines of the new framebuffers.
164 	 * The PV does not scan out in vblank, so does not remove lines from
165 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
166 	 * We can't get meaningful readings wrt. scanline position of the PV
167 	 * and need to make things up in a approximative but consistent way.
168 	 */
169 	vblank_lines = mode->vtotal - mode->vdisplay;
170 
171 	if (in_vblank_irq) {
172 		/*
173 		 * Assume the irq handler got called close to first
174 		 * line of vblank, so PV has about a full vblank
175 		 * scanlines to go, and as a base timestamp use the
176 		 * one taken at entry into vblank irq handler, so it
177 		 * is not affected by random delays due to lock
178 		 * contention on event_lock or vblank_time lock in
179 		 * the core.
180 		 */
181 		*vpos = -vblank_lines;
182 
183 		if (stime)
184 			*stime = vc4_crtc->t_vblank;
185 		if (etime)
186 			*etime = vc4_crtc->t_vblank;
187 
188 		/*
189 		 * If the HVS fifo is not yet full then we know for certain
190 		 * we are at the very beginning of vblank, as the hvs just
191 		 * started refilling, and the stime and etime timestamps
192 		 * truly correspond to start of vblank.
193 		 *
194 		 * Unfortunately there's no way to report this to upper levels
195 		 * and make it more useful.
196 		 */
197 	} else {
198 		/*
199 		 * No clue where we are inside vblank. Return a vpos of zero,
200 		 * which will cause calling code to just return the etime
201 		 * timestamp uncorrected. At least this is no worse than the
202 		 * standard fallback.
203 		 */
204 		*vpos = 0;
205 	}
206 
207 	return ret;
208 }
209 
210 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
211 {
212 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
213 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
214 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
215 	u32 fifo_len_bytes = pv_data->fifo_depth;
216 
217 	/*
218 	 * Pixels are pulled from the HVS if the number of bytes is
219 	 * lower than the FIFO full level.
220 	 *
221 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
222 	 * need to convert those 6 pixels in bytes, depending on the
223 	 * format, and then subtract that from the length of the FIFO
224 	 * to make sure we never end up in a situation where the FIFO
225 	 * is full.
226 	 */
227 	switch (format) {
228 	case PV_CONTROL_FORMAT_DSIV_16:
229 	case PV_CONTROL_FORMAT_DSIC_16:
230 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
231 	case PV_CONTROL_FORMAT_DSIV_18:
232 		return fifo_len_bytes - 14;
233 	case PV_CONTROL_FORMAT_24:
234 	case PV_CONTROL_FORMAT_DSIV_24:
235 	default:
236 		/*
237 		 * For some reason, the pixelvalve4 doesn't work with
238 		 * the usual formula and will only work with 32.
239 		 */
240 		if (crtc_data->hvs_output == 5)
241 			return 32;
242 
243 		/*
244 		 * It looks like in some situations, we will overflow
245 		 * the PixelValve FIFO (with the bit 10 of PV stat being
246 		 * set) and stall the HVS / PV, eventually resulting in
247 		 * a page flip timeout.
248 		 *
249 		 * Displaying the video overlay during a playback with
250 		 * Kodi on an RPi3 seems to be a great solution with a
251 		 * failure rate around 50%.
252 		 *
253 		 * Removing 1 from the FIFO full level however
254 		 * seems to completely remove that issue.
255 		 */
256 		if (!vc4->is_vc5)
257 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
258 
259 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
260 	}
261 }
262 
263 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
264 					     u32 format)
265 {
266 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
267 	u32 ret = 0;
268 
269 	ret |= VC4_SET_FIELD((level >> 6),
270 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
271 
272 	return ret | VC4_SET_FIELD(level & 0x3f,
273 				   PV_CONTROL_FIFO_LEVEL);
274 }
275 
276 /*
277  * Returns the encoder attached to the CRTC.
278  *
279  * VC4 can only scan out to one encoder at a time, while the DRM core
280  * allows drivers to push pixels to more than one encoder from the
281  * same CRTC.
282  */
283 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
284 					 struct drm_crtc_state *state)
285 {
286 	struct drm_encoder *encoder;
287 
288 	WARN_ON(hweight32(state->encoder_mask) > 1);
289 
290 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
291 		return encoder;
292 
293 	return NULL;
294 }
295 
296 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
297 {
298 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
299 	struct drm_device *dev = crtc->dev;
300 	int idx;
301 
302 	if (!drm_dev_enter(dev, &idx))
303 		return;
304 
305 	/* The PV needs to be disabled before it can be flushed */
306 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
307 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
308 
309 	drm_dev_exit(idx);
310 }
311 
312 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
313 			       struct drm_atomic_state *state)
314 {
315 	struct drm_device *dev = crtc->dev;
316 	struct vc4_dev *vc4 = to_vc4_dev(dev);
317 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
318 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
320 	struct drm_crtc_state *crtc_state = crtc->state;
321 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
322 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
323 	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
324 		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
325 	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
326 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
327 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
328 	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
329 	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
330 	u8 ppc = pv_data->pixels_per_clock;
331 	bool debug_dump_regs = false;
332 	int idx;
333 
334 	if (!drm_dev_enter(dev, &idx))
335 		return;
336 
337 	if (debug_dump_regs) {
338 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
339 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
340 			 drm_crtc_index(crtc));
341 		drm_print_regset32(&p, &vc4_crtc->regset);
342 	}
343 
344 	vc4_crtc_pixelvalve_reset(crtc);
345 
346 	CRTC_WRITE(PV_HORZA,
347 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
348 				 PV_HORZA_HBP) |
349 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
350 				 PV_HORZA_HSYNC));
351 
352 	CRTC_WRITE(PV_HORZB,
353 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
354 				 PV_HORZB_HFP) |
355 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
356 				 PV_HORZB_HACTIVE));
357 
358 	CRTC_WRITE(PV_VERTA,
359 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
360 				 interlace,
361 				 PV_VERTA_VBP) |
362 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
363 				 PV_VERTA_VSYNC));
364 	CRTC_WRITE(PV_VERTB,
365 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
366 				 PV_VERTB_VFP) |
367 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
368 
369 	if (interlace) {
370 		CRTC_WRITE(PV_VERTA_EVEN,
371 			   VC4_SET_FIELD(mode->crtc_vtotal -
372 					 mode->crtc_vsync_end,
373 					 PV_VERTA_VBP) |
374 			   VC4_SET_FIELD(mode->crtc_vsync_end -
375 					 mode->crtc_vsync_start,
376 					 PV_VERTA_VSYNC));
377 		CRTC_WRITE(PV_VERTB_EVEN,
378 			   VC4_SET_FIELD(mode->crtc_vsync_start -
379 					 mode->crtc_vdisplay,
380 					 PV_VERTB_VFP) |
381 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
382 
383 		/* We set up first field even mode for HDMI.  VEC's
384 		 * NTSC mode would want first field odd instead, once
385 		 * we support it (to do so, set ODD_FIRST and put the
386 		 * delay in VSYNCD_EVEN instead).
387 		 */
388 		CRTC_WRITE(PV_V_CONTROL,
389 			   PV_VCONTROL_CONTINUOUS |
390 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
391 			   PV_VCONTROL_INTERLACE |
392 			   VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
393 					 PV_VCONTROL_ODD_DELAY));
394 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
395 	} else {
396 		CRTC_WRITE(PV_V_CONTROL,
397 			   PV_VCONTROL_CONTINUOUS |
398 			   (is_dsi ? PV_VCONTROL_DSI : 0));
399 	}
400 
401 	if (is_dsi)
402 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
403 
404 	if (vc4->is_vc5)
405 		CRTC_WRITE(PV_MUX_CFG,
406 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
407 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
408 
409 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
410 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
411 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
412 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
413 		   PV_CONTROL_CLR_AT_START |
414 		   PV_CONTROL_TRIGGER_UNDERFLOW |
415 		   PV_CONTROL_WAIT_HSTART |
416 		   VC4_SET_FIELD(vc4_encoder->clock_select,
417 				 PV_CONTROL_CLK_SELECT));
418 
419 	if (debug_dump_regs) {
420 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
421 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
422 			 drm_crtc_index(crtc));
423 		drm_print_regset32(&p, &vc4_crtc->regset);
424 	}
425 
426 	drm_dev_exit(idx);
427 }
428 
429 static void require_hvs_enabled(struct drm_device *dev)
430 {
431 	struct vc4_dev *vc4 = to_vc4_dev(dev);
432 	struct vc4_hvs *hvs = vc4->hvs;
433 
434 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
435 		     SCALER_DISPCTRL_ENABLE);
436 }
437 
438 static int vc4_crtc_disable(struct drm_crtc *crtc,
439 			    struct drm_encoder *encoder,
440 			    struct drm_atomic_state *state,
441 			    unsigned int channel)
442 {
443 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
444 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
445 	struct drm_device *dev = crtc->dev;
446 	struct vc4_dev *vc4 = to_vc4_dev(dev);
447 	int idx, ret;
448 
449 	if (!drm_dev_enter(dev, &idx))
450 		return -ENODEV;
451 
452 	CRTC_WRITE(PV_V_CONTROL,
453 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
454 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
455 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
456 
457 	/*
458 	 * This delay is needed to avoid to get a pixel stuck in an
459 	 * unflushable FIFO between the pixelvalve and the HDMI
460 	 * controllers on the BCM2711.
461 	 *
462 	 * Timing is fairly sensitive here, so mdelay is the safest
463 	 * approach.
464 	 *
465 	 * If it was to be reworked, the stuck pixel happens on a
466 	 * BCM2711 when changing mode with a good probability, so a
467 	 * script that changes mode on a regular basis should trigger
468 	 * the bug after less than 10 attempts. It manifests itself with
469 	 * every pixels being shifted by one to the right, and thus the
470 	 * last pixel of a line actually being displayed as the first
471 	 * pixel on the next line.
472 	 */
473 	mdelay(20);
474 
475 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
476 		vc4_encoder->post_crtc_disable(encoder, state);
477 
478 	vc4_crtc_pixelvalve_reset(crtc);
479 	vc4_hvs_stop_channel(vc4->hvs, channel);
480 
481 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
482 		vc4_encoder->post_crtc_powerdown(encoder, state);
483 
484 	drm_dev_exit(idx);
485 
486 	return 0;
487 }
488 
489 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
490 							enum vc4_encoder_type type)
491 {
492 	struct drm_encoder *encoder;
493 
494 	drm_for_each_encoder(encoder, crtc->dev) {
495 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
496 
497 		if (vc4_encoder->type == type)
498 			return encoder;
499 	}
500 
501 	return NULL;
502 }
503 
504 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
505 {
506 	struct drm_device *drm = crtc->dev;
507 	struct vc4_dev *vc4 = to_vc4_dev(drm);
508 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
509 	enum vc4_encoder_type encoder_type;
510 	const struct vc4_pv_data *pv_data;
511 	struct drm_encoder *encoder;
512 	struct vc4_hdmi *vc4_hdmi;
513 	unsigned encoder_sel;
514 	int channel;
515 	int ret;
516 
517 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
518 				      "brcm,bcm2711-pixelvalve2") ||
519 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
520 				      "brcm,bcm2711-pixelvalve4")))
521 		return 0;
522 
523 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
524 		return 0;
525 
526 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
527 		return 0;
528 
529 	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
530 	if (channel < 0)
531 		return 0;
532 
533 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
534 	if (WARN_ON(encoder_sel != 0))
535 		return 0;
536 
537 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
538 	encoder_type = pv_data->encoder_types[encoder_sel];
539 	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
540 	if (WARN_ON(!encoder))
541 		return 0;
542 
543 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
544 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
545 	if (ret)
546 		return ret;
547 
548 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
549 	if (ret)
550 		return ret;
551 
552 	/*
553 	 * post_crtc_powerdown will have called pm_runtime_put, so we
554 	 * don't need it here otherwise we'll get the reference counting
555 	 * wrong.
556 	 */
557 
558 	return 0;
559 }
560 
561 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
562 {
563 	struct drm_device *dev = crtc->dev;
564 	unsigned long flags;
565 
566 	if (!crtc->state || !crtc->state->event)
567 		return;
568 
569 	spin_lock_irqsave(&dev->event_lock, flags);
570 	drm_crtc_send_vblank_event(crtc, crtc->state->event);
571 	crtc->state->event = NULL;
572 	spin_unlock_irqrestore(&dev->event_lock, flags);
573 }
574 
575 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
576 				    struct drm_atomic_state *state)
577 {
578 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
579 									 crtc);
580 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
581 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
582 	struct drm_device *dev = crtc->dev;
583 
584 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
585 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
586 
587 	require_hvs_enabled(dev);
588 
589 	/* Disable vblank irq handling before crtc is disabled. */
590 	drm_crtc_vblank_off(crtc);
591 
592 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
593 
594 	/*
595 	 * Make sure we issue a vblank event after disabling the CRTC if
596 	 * someone was waiting it.
597 	 */
598 	vc4_crtc_send_vblank(crtc);
599 }
600 
601 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
602 				   struct drm_atomic_state *state)
603 {
604 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
605 									 crtc);
606 	struct drm_device *dev = crtc->dev;
607 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
608 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
609 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
610 	int idx;
611 
612 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
613 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
614 
615 	if (!drm_dev_enter(dev, &idx))
616 		return;
617 
618 	require_hvs_enabled(dev);
619 
620 	/* Enable vblank irq handling before crtc is started otherwise
621 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
622 	 */
623 	drm_crtc_vblank_on(crtc);
624 
625 	vc4_hvs_atomic_enable(crtc, state);
626 
627 	if (vc4_encoder->pre_crtc_configure)
628 		vc4_encoder->pre_crtc_configure(encoder, state);
629 
630 	vc4_crtc_config_pv(crtc, encoder, state);
631 
632 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
633 
634 	if (vc4_encoder->pre_crtc_enable)
635 		vc4_encoder->pre_crtc_enable(encoder, state);
636 
637 	/* When feeding the transposer block the pixelvalve is unneeded and
638 	 * should not be enabled.
639 	 */
640 	CRTC_WRITE(PV_V_CONTROL,
641 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
642 
643 	if (vc4_encoder->post_crtc_enable)
644 		vc4_encoder->post_crtc_enable(encoder, state);
645 
646 	drm_dev_exit(idx);
647 }
648 
649 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
650 						const struct drm_display_mode *mode)
651 {
652 	/* Do not allow doublescan modes from user space */
653 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
654 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
655 			      crtc->base.id);
656 		return MODE_NO_DBLESCAN;
657 	}
658 
659 	return MODE_OK;
660 }
661 
662 void vc4_crtc_get_margins(struct drm_crtc_state *state,
663 			  unsigned int *left, unsigned int *right,
664 			  unsigned int *top, unsigned int *bottom)
665 {
666 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
667 	struct drm_connector_state *conn_state;
668 	struct drm_connector *conn;
669 	int i;
670 
671 	*left = vc4_state->margins.left;
672 	*right = vc4_state->margins.right;
673 	*top = vc4_state->margins.top;
674 	*bottom = vc4_state->margins.bottom;
675 
676 	/* We have to interate over all new connector states because
677 	 * vc4_crtc_get_margins() might be called before
678 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
679 	 * might be outdated.
680 	 */
681 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
682 		if (conn_state->crtc != state->crtc)
683 			continue;
684 
685 		*left = conn_state->tv.margins.left;
686 		*right = conn_state->tv.margins.right;
687 		*top = conn_state->tv.margins.top;
688 		*bottom = conn_state->tv.margins.bottom;
689 		break;
690 	}
691 }
692 
693 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
694 				 struct drm_atomic_state *state)
695 {
696 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
697 									  crtc);
698 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
699 	struct drm_connector *conn;
700 	struct drm_connector_state *conn_state;
701 	struct drm_encoder *encoder;
702 	int ret, i;
703 
704 	ret = vc4_hvs_atomic_check(crtc, state);
705 	if (ret)
706 		return ret;
707 
708 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
709 	if (encoder) {
710 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
711 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
712 
713 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
714 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
715 						  mode->clock * 9 / 10) * 1000;
716 		} else {
717 			vc4_state->hvs_load = mode->clock * 1000;
718 		}
719 	}
720 
721 	for_each_new_connector_in_state(state, conn, conn_state,
722 					i) {
723 		if (conn_state->crtc != crtc)
724 			continue;
725 
726 		vc4_state->margins.left = conn_state->tv.margins.left;
727 		vc4_state->margins.right = conn_state->tv.margins.right;
728 		vc4_state->margins.top = conn_state->tv.margins.top;
729 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
730 		break;
731 	}
732 
733 	return 0;
734 }
735 
736 static int vc4_enable_vblank(struct drm_crtc *crtc)
737 {
738 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
739 	struct drm_device *dev = crtc->dev;
740 	int idx;
741 
742 	if (!drm_dev_enter(dev, &idx))
743 		return -ENODEV;
744 
745 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
746 
747 	drm_dev_exit(idx);
748 
749 	return 0;
750 }
751 
752 static void vc4_disable_vblank(struct drm_crtc *crtc)
753 {
754 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
755 	struct drm_device *dev = crtc->dev;
756 	int idx;
757 
758 	if (!drm_dev_enter(dev, &idx))
759 		return;
760 
761 	CRTC_WRITE(PV_INTEN, 0);
762 
763 	drm_dev_exit(idx);
764 }
765 
766 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
767 {
768 	struct drm_crtc *crtc = &vc4_crtc->base;
769 	struct drm_device *dev = crtc->dev;
770 	struct vc4_dev *vc4 = to_vc4_dev(dev);
771 	struct vc4_hvs *hvs = vc4->hvs;
772 	u32 chan = vc4_crtc->current_hvs_channel;
773 	unsigned long flags;
774 
775 	spin_lock_irqsave(&dev->event_lock, flags);
776 	spin_lock(&vc4_crtc->irq_lock);
777 	if (vc4_crtc->event &&
778 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
779 	     vc4_crtc->feeds_txp)) {
780 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
781 		vc4_crtc->event = NULL;
782 		drm_crtc_vblank_put(crtc);
783 
784 		/* Wait for the page flip to unmask the underrun to ensure that
785 		 * the display list was updated by the hardware. Before that
786 		 * happens, the HVS will be using the previous display list with
787 		 * the CRTC and encoder already reconfigured, leading to
788 		 * underruns. This can be seen when reconfiguring the CRTC.
789 		 */
790 		vc4_hvs_unmask_underrun(hvs, chan);
791 	}
792 	spin_unlock(&vc4_crtc->irq_lock);
793 	spin_unlock_irqrestore(&dev->event_lock, flags);
794 }
795 
796 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
797 {
798 	crtc->t_vblank = ktime_get();
799 	drm_crtc_handle_vblank(&crtc->base);
800 	vc4_crtc_handle_page_flip(crtc);
801 }
802 
803 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
804 {
805 	struct vc4_crtc *vc4_crtc = data;
806 	u32 stat = CRTC_READ(PV_INTSTAT);
807 	irqreturn_t ret = IRQ_NONE;
808 
809 	if (stat & PV_INT_VFP_START) {
810 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
811 		vc4_crtc_handle_vblank(vc4_crtc);
812 		ret = IRQ_HANDLED;
813 	}
814 
815 	return ret;
816 }
817 
818 struct vc4_async_flip_state {
819 	struct drm_crtc *crtc;
820 	struct drm_framebuffer *fb;
821 	struct drm_framebuffer *old_fb;
822 	struct drm_pending_vblank_event *event;
823 
824 	union {
825 		struct dma_fence_cb fence;
826 		struct vc4_seqno_cb seqno;
827 	} cb;
828 };
829 
830 /* Called when the V3D execution for the BO being flipped to is done, so that
831  * we can actually update the plane's address to point to it.
832  */
833 static void
834 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
835 {
836 	struct drm_crtc *crtc = flip_state->crtc;
837 	struct drm_device *dev = crtc->dev;
838 	struct drm_plane *plane = crtc->primary;
839 
840 	vc4_plane_async_set_fb(plane, flip_state->fb);
841 	if (flip_state->event) {
842 		unsigned long flags;
843 
844 		spin_lock_irqsave(&dev->event_lock, flags);
845 		drm_crtc_send_vblank_event(crtc, flip_state->event);
846 		spin_unlock_irqrestore(&dev->event_lock, flags);
847 	}
848 
849 	drm_crtc_vblank_put(crtc);
850 	drm_framebuffer_put(flip_state->fb);
851 
852 	if (flip_state->old_fb)
853 		drm_framebuffer_put(flip_state->old_fb);
854 
855 	kfree(flip_state);
856 }
857 
858 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
859 {
860 	struct vc4_async_flip_state *flip_state =
861 		container_of(cb, struct vc4_async_flip_state, cb.seqno);
862 	struct vc4_bo *bo = NULL;
863 
864 	if (flip_state->old_fb) {
865 		struct drm_gem_dma_object *dma_bo =
866 			drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
867 		bo = to_vc4_bo(&dma_bo->base);
868 	}
869 
870 	vc4_async_page_flip_complete(flip_state);
871 
872 	/*
873 	 * Decrement the BO usecnt in order to keep the inc/dec
874 	 * calls balanced when the planes are updated through
875 	 * the async update path.
876 	 *
877 	 * FIXME: we should move to generic async-page-flip when
878 	 * it's available, so that we can get rid of this
879 	 * hand-made cleanup_fb() logic.
880 	 */
881 	if (bo)
882 		vc4_bo_dec_usecnt(bo);
883 }
884 
885 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
886 					       struct dma_fence_cb *cb)
887 {
888 	struct vc4_async_flip_state *flip_state =
889 		container_of(cb, struct vc4_async_flip_state, cb.fence);
890 
891 	vc4_async_page_flip_complete(flip_state);
892 	dma_fence_put(fence);
893 }
894 
895 static int vc4_async_set_fence_cb(struct drm_device *dev,
896 				  struct vc4_async_flip_state *flip_state)
897 {
898 	struct drm_framebuffer *fb = flip_state->fb;
899 	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
900 	struct vc4_dev *vc4 = to_vc4_dev(dev);
901 	struct dma_fence *fence;
902 	int ret;
903 
904 	if (!vc4->is_vc5) {
905 		struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
906 
907 		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
908 					  vc4_async_page_flip_seqno_complete);
909 	}
910 
911 	ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
912 	if (ret)
913 		return ret;
914 
915 	/* If there's no fence, complete the page flip immediately */
916 	if (!fence) {
917 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
918 		return 0;
919 	}
920 
921 	/* If the fence has already been completed, complete the page flip */
922 	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
923 				   vc4_async_page_flip_fence_complete))
924 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
925 
926 	return 0;
927 }
928 
929 static int
930 vc4_async_page_flip_common(struct drm_crtc *crtc,
931 			   struct drm_framebuffer *fb,
932 			   struct drm_pending_vblank_event *event,
933 			   uint32_t flags)
934 {
935 	struct drm_device *dev = crtc->dev;
936 	struct drm_plane *plane = crtc->primary;
937 	struct vc4_async_flip_state *flip_state;
938 
939 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
940 	if (!flip_state)
941 		return -ENOMEM;
942 
943 	drm_framebuffer_get(fb);
944 	flip_state->fb = fb;
945 	flip_state->crtc = crtc;
946 	flip_state->event = event;
947 
948 	/* Save the current FB before it's replaced by the new one in
949 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
950 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
951 	 * it consistent.
952 	 * FIXME: we should move to generic async-page-flip when it's
953 	 * available, so that we can get rid of this hand-made cleanup_fb()
954 	 * logic.
955 	 */
956 	flip_state->old_fb = plane->state->fb;
957 	if (flip_state->old_fb)
958 		drm_framebuffer_get(flip_state->old_fb);
959 
960 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
961 
962 	/* Immediately update the plane's legacy fb pointer, so that later
963 	 * modeset prep sees the state that will be present when the semaphore
964 	 * is released.
965 	 */
966 	drm_atomic_set_fb_for_plane(plane->state, fb);
967 
968 	vc4_async_set_fence_cb(dev, flip_state);
969 
970 	/* Driver takes ownership of state on successful async commit. */
971 	return 0;
972 }
973 
974 /* Implements async (non-vblank-synced) page flips.
975  *
976  * The page flip ioctl needs to return immediately, so we grab the
977  * modeset semaphore on the pipe, and queue the address update for
978  * when V3D is done with the BO being flipped to.
979  */
980 static int vc4_async_page_flip(struct drm_crtc *crtc,
981 			       struct drm_framebuffer *fb,
982 			       struct drm_pending_vblank_event *event,
983 			       uint32_t flags)
984 {
985 	struct drm_device *dev = crtc->dev;
986 	struct vc4_dev *vc4 = to_vc4_dev(dev);
987 	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
988 	struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
989 	int ret;
990 
991 	if (WARN_ON_ONCE(vc4->is_vc5))
992 		return -ENODEV;
993 
994 	/*
995 	 * Increment the BO usecnt here, so that we never end up with an
996 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
997 	 * plane is later updated through the non-async path.
998 	 *
999 	 * FIXME: we should move to generic async-page-flip when
1000 	 * it's available, so that we can get rid of this
1001 	 * hand-made prepare_fb() logic.
1002 	 */
1003 	ret = vc4_bo_inc_usecnt(bo);
1004 	if (ret)
1005 		return ret;
1006 
1007 	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1008 	if (ret) {
1009 		vc4_bo_dec_usecnt(bo);
1010 		return ret;
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int vc5_async_page_flip(struct drm_crtc *crtc,
1017 			       struct drm_framebuffer *fb,
1018 			       struct drm_pending_vblank_event *event,
1019 			       uint32_t flags)
1020 {
1021 	return vc4_async_page_flip_common(crtc, fb, event, flags);
1022 }
1023 
1024 int vc4_page_flip(struct drm_crtc *crtc,
1025 		  struct drm_framebuffer *fb,
1026 		  struct drm_pending_vblank_event *event,
1027 		  uint32_t flags,
1028 		  struct drm_modeset_acquire_ctx *ctx)
1029 {
1030 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1031 		struct drm_device *dev = crtc->dev;
1032 		struct vc4_dev *vc4 = to_vc4_dev(dev);
1033 
1034 		if (vc4->is_vc5)
1035 			return vc5_async_page_flip(crtc, fb, event, flags);
1036 		else
1037 			return vc4_async_page_flip(crtc, fb, event, flags);
1038 	} else {
1039 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1040 	}
1041 }
1042 
1043 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1044 {
1045 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1046 
1047 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1048 	if (!vc4_state)
1049 		return NULL;
1050 
1051 	old_vc4_state = to_vc4_crtc_state(crtc->state);
1052 	vc4_state->margins = old_vc4_state->margins;
1053 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1054 
1055 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1056 	return &vc4_state->base;
1057 }
1058 
1059 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1060 			    struct drm_crtc_state *state)
1061 {
1062 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1063 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1064 
1065 	if (drm_mm_node_allocated(&vc4_state->mm)) {
1066 		unsigned long flags;
1067 
1068 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1069 		drm_mm_remove_node(&vc4_state->mm);
1070 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1071 
1072 	}
1073 
1074 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1075 }
1076 
1077 void vc4_crtc_reset(struct drm_crtc *crtc)
1078 {
1079 	struct vc4_crtc_state *vc4_crtc_state;
1080 
1081 	if (crtc->state)
1082 		vc4_crtc_destroy_state(crtc, crtc->state);
1083 
1084 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1085 	if (!vc4_crtc_state) {
1086 		crtc->state = NULL;
1087 		return;
1088 	}
1089 
1090 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1091 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1092 }
1093 
1094 int vc4_crtc_late_register(struct drm_crtc *crtc)
1095 {
1096 	struct drm_device *drm = crtc->dev;
1097 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1098 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1099 	int ret;
1100 
1101 	ret = vc4_debugfs_add_regset32(drm->primary, crtc_data->debugfs_name,
1102 				       &vc4_crtc->regset);
1103 	if (ret)
1104 		return ret;
1105 
1106 	return 0;
1107 }
1108 
1109 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1110 	.set_config = drm_atomic_helper_set_config,
1111 	.page_flip = vc4_page_flip,
1112 	.set_property = NULL,
1113 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1114 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1115 	.reset = vc4_crtc_reset,
1116 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1117 	.atomic_destroy_state = vc4_crtc_destroy_state,
1118 	.enable_vblank = vc4_enable_vblank,
1119 	.disable_vblank = vc4_disable_vblank,
1120 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1121 	.late_register = vc4_crtc_late_register,
1122 };
1123 
1124 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1125 	.mode_valid = vc4_crtc_mode_valid,
1126 	.atomic_check = vc4_crtc_atomic_check,
1127 	.atomic_begin = vc4_hvs_atomic_begin,
1128 	.atomic_flush = vc4_hvs_atomic_flush,
1129 	.atomic_enable = vc4_crtc_atomic_enable,
1130 	.atomic_disable = vc4_crtc_atomic_disable,
1131 	.get_scanout_position = vc4_crtc_get_scanout_position,
1132 };
1133 
1134 static const struct vc4_pv_data bcm2835_pv0_data = {
1135 	.base = {
1136 		.debugfs_name = "crtc0_regs",
1137 		.hvs_available_channels = BIT(0),
1138 		.hvs_output = 0,
1139 	},
1140 	.fifo_depth = 64,
1141 	.pixels_per_clock = 1,
1142 	.encoder_types = {
1143 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1144 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1145 	},
1146 };
1147 
1148 static const struct vc4_pv_data bcm2835_pv1_data = {
1149 	.base = {
1150 		.debugfs_name = "crtc1_regs",
1151 		.hvs_available_channels = BIT(2),
1152 		.hvs_output = 2,
1153 	},
1154 	.fifo_depth = 64,
1155 	.pixels_per_clock = 1,
1156 	.encoder_types = {
1157 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1158 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1159 	},
1160 };
1161 
1162 static const struct vc4_pv_data bcm2835_pv2_data = {
1163 	.base = {
1164 		.debugfs_name = "crtc2_regs",
1165 		.hvs_available_channels = BIT(1),
1166 		.hvs_output = 1,
1167 	},
1168 	.fifo_depth = 64,
1169 	.pixels_per_clock = 1,
1170 	.encoder_types = {
1171 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1172 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1173 	},
1174 };
1175 
1176 static const struct vc4_pv_data bcm2711_pv0_data = {
1177 	.base = {
1178 		.debugfs_name = "crtc0_regs",
1179 		.hvs_available_channels = BIT(0),
1180 		.hvs_output = 0,
1181 	},
1182 	.fifo_depth = 64,
1183 	.pixels_per_clock = 1,
1184 	.encoder_types = {
1185 		[0] = VC4_ENCODER_TYPE_DSI0,
1186 		[1] = VC4_ENCODER_TYPE_DPI,
1187 	},
1188 };
1189 
1190 static const struct vc4_pv_data bcm2711_pv1_data = {
1191 	.base = {
1192 		.debugfs_name = "crtc1_regs",
1193 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1194 		.hvs_output = 3,
1195 	},
1196 	.fifo_depth = 64,
1197 	.pixels_per_clock = 1,
1198 	.encoder_types = {
1199 		[0] = VC4_ENCODER_TYPE_DSI1,
1200 		[1] = VC4_ENCODER_TYPE_SMI,
1201 	},
1202 };
1203 
1204 static const struct vc4_pv_data bcm2711_pv2_data = {
1205 	.base = {
1206 		.debugfs_name = "crtc2_regs",
1207 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1208 		.hvs_output = 4,
1209 	},
1210 	.fifo_depth = 256,
1211 	.pixels_per_clock = 2,
1212 	.encoder_types = {
1213 		[0] = VC4_ENCODER_TYPE_HDMI0,
1214 	},
1215 };
1216 
1217 static const struct vc4_pv_data bcm2711_pv3_data = {
1218 	.base = {
1219 		.debugfs_name = "crtc3_regs",
1220 		.hvs_available_channels = BIT(1),
1221 		.hvs_output = 1,
1222 	},
1223 	.fifo_depth = 64,
1224 	.pixels_per_clock = 1,
1225 	.encoder_types = {
1226 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1227 	},
1228 };
1229 
1230 static const struct vc4_pv_data bcm2711_pv4_data = {
1231 	.base = {
1232 		.debugfs_name = "crtc4_regs",
1233 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1234 		.hvs_output = 5,
1235 	},
1236 	.fifo_depth = 64,
1237 	.pixels_per_clock = 2,
1238 	.encoder_types = {
1239 		[0] = VC4_ENCODER_TYPE_HDMI1,
1240 	},
1241 };
1242 
1243 static const struct of_device_id vc4_crtc_dt_match[] = {
1244 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1245 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1246 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1247 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1248 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1249 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1250 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1251 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1252 	{}
1253 };
1254 
1255 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1256 					struct drm_crtc *crtc)
1257 {
1258 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1259 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1260 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1261 	struct drm_encoder *encoder;
1262 
1263 	drm_for_each_encoder(encoder, drm) {
1264 		struct vc4_encoder *vc4_encoder;
1265 		int i;
1266 
1267 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1268 			continue;
1269 
1270 		vc4_encoder = to_vc4_encoder(encoder);
1271 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1272 			if (vc4_encoder->type == encoder_types[i]) {
1273 				vc4_encoder->clock_select = i;
1274 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1275 				break;
1276 			}
1277 		}
1278 	}
1279 }
1280 
1281 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1282 		  const struct drm_crtc_funcs *crtc_funcs,
1283 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1284 {
1285 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1286 	struct drm_crtc *crtc = &vc4_crtc->base;
1287 	struct drm_plane *primary_plane;
1288 	unsigned int i;
1289 	int ret;
1290 
1291 	/* For now, we create just the primary and the legacy cursor
1292 	 * planes.  We should be able to stack more planes on easily,
1293 	 * but to do that we would need to compute the bandwidth
1294 	 * requirement of the plane configuration, and reject ones
1295 	 * that will take too much.
1296 	 */
1297 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1298 	if (IS_ERR(primary_plane)) {
1299 		dev_err(drm->dev, "failed to construct primary plane\n");
1300 		return PTR_ERR(primary_plane);
1301 	}
1302 
1303 	spin_lock_init(&vc4_crtc->irq_lock);
1304 	ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1305 					 crtc_funcs, NULL);
1306 	if (ret)
1307 		return ret;
1308 
1309 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1310 
1311 	if (!vc4->is_vc5) {
1312 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1313 
1314 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1315 
1316 		/* We support CTM, but only for one CRTC at a time. It's therefore
1317 		 * implemented as private driver state in vc4_kms, not here.
1318 		 */
1319 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1320 	}
1321 
1322 	for (i = 0; i < crtc->gamma_size; i++) {
1323 		vc4_crtc->lut_r[i] = i;
1324 		vc4_crtc->lut_g[i] = i;
1325 		vc4_crtc->lut_b[i] = i;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1332 {
1333 	struct platform_device *pdev = to_platform_device(dev);
1334 	struct drm_device *drm = dev_get_drvdata(master);
1335 	const struct vc4_pv_data *pv_data;
1336 	struct vc4_crtc *vc4_crtc;
1337 	struct drm_crtc *crtc;
1338 	int ret;
1339 
1340 	vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1341 	if (!vc4_crtc)
1342 		return -ENOMEM;
1343 	crtc = &vc4_crtc->base;
1344 
1345 	pv_data = of_device_get_match_data(dev);
1346 	if (!pv_data)
1347 		return -ENODEV;
1348 	vc4_crtc->data = &pv_data->base;
1349 	vc4_crtc->pdev = pdev;
1350 
1351 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1352 	if (IS_ERR(vc4_crtc->regs))
1353 		return PTR_ERR(vc4_crtc->regs);
1354 
1355 	vc4_crtc->regset.base = vc4_crtc->regs;
1356 	vc4_crtc->regset.regs = crtc_regs;
1357 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1358 
1359 	ret = vc4_crtc_init(drm, vc4_crtc,
1360 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1361 	if (ret)
1362 		return ret;
1363 	vc4_set_crtc_possible_masks(drm, crtc);
1364 
1365 	CRTC_WRITE(PV_INTEN, 0);
1366 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1367 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1368 			       vc4_crtc_irq_handler,
1369 			       IRQF_SHARED,
1370 			       "vc4 crtc", vc4_crtc);
1371 	if (ret)
1372 		return ret;
1373 
1374 	platform_set_drvdata(pdev, vc4_crtc);
1375 
1376 	return 0;
1377 }
1378 
1379 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1380 			    void *data)
1381 {
1382 	struct platform_device *pdev = to_platform_device(dev);
1383 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1384 
1385 	CRTC_WRITE(PV_INTEN, 0);
1386 
1387 	platform_set_drvdata(pdev, NULL);
1388 }
1389 
1390 static const struct component_ops vc4_crtc_ops = {
1391 	.bind   = vc4_crtc_bind,
1392 	.unbind = vc4_crtc_unbind,
1393 };
1394 
1395 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1396 {
1397 	return component_add(&pdev->dev, &vc4_crtc_ops);
1398 }
1399 
1400 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1401 {
1402 	component_del(&pdev->dev, &vc4_crtc_ops);
1403 	return 0;
1404 }
1405 
1406 struct platform_driver vc4_crtc_driver = {
1407 	.probe = vc4_crtc_dev_probe,
1408 	.remove = vc4_crtc_dev_remove,
1409 	.driver = {
1410 		.name = "vc4_crtc",
1411 		.of_match_table = vc4_crtc_dt_match,
1412 	},
1413 };
1414