xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision c4a11bf4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43 
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46 
47 #define HVS_FIFO_LATENCY_PIX	6
48 
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51 
52 static const struct debugfs_reg32 crtc_regs[] = {
53 	VC4_REG32(PV_CONTROL),
54 	VC4_REG32(PV_V_CONTROL),
55 	VC4_REG32(PV_VSYNCD_EVEN),
56 	VC4_REG32(PV_HORZA),
57 	VC4_REG32(PV_HORZB),
58 	VC4_REG32(PV_VERTA),
59 	VC4_REG32(PV_VERTB),
60 	VC4_REG32(PV_VERTA_EVEN),
61 	VC4_REG32(PV_VERTB_EVEN),
62 	VC4_REG32(PV_INTEN),
63 	VC4_REG32(PV_INTSTAT),
64 	VC4_REG32(PV_STAT),
65 	VC4_REG32(PV_HACT_ACT),
66 };
67 
68 static unsigned int
69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72 	/* Top/base are supposed to be 4-pixel aligned, but the
73 	 * Raspberry Pi firmware fills the low bits (which are
74 	 * presumably ignored).
75 	 */
76 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78 
79 	return top - base + 4;
80 }
81 
82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83 					  bool in_vblank_irq,
84 					  int *vpos, int *hpos,
85 					  ktime_t *stime, ktime_t *etime,
86 					  const struct drm_display_mode *mode)
87 {
88 	struct drm_device *dev = crtc->dev;
89 	struct vc4_dev *vc4 = to_vc4_dev(dev);
90 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92 	unsigned int cob_size;
93 	u32 val;
94 	int fifo_lines;
95 	int vblank_lines;
96 	bool ret = false;
97 
98 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99 
100 	/* Get optional system timestamp before query. */
101 	if (stime)
102 		*stime = ktime_get();
103 
104 	/*
105 	 * Read vertical scanline which is currently composed for our
106 	 * pixelvalve by the HVS, and also the scaler status.
107 	 */
108 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109 
110 	/* Get optional system timestamp after query. */
111 	if (etime)
112 		*etime = ktime_get();
113 
114 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115 
116 	/* Vertical position of hvs composed scanline. */
117 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118 	*hpos = 0;
119 
120 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121 		*vpos /= 2;
122 
123 		/* Use hpos to correct for field offset in interlaced mode. */
124 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125 			*hpos += mode->crtc_htotal / 2;
126 	}
127 
128 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129 	/* This is the offset we need for translating hvs -> pv scanout pos. */
130 	fifo_lines = cob_size / mode->crtc_hdisplay;
131 
132 	if (fifo_lines > 0)
133 		ret = true;
134 
135 	/* HVS more than fifo_lines into frame for compositing? */
136 	if (*vpos > fifo_lines) {
137 		/*
138 		 * We are in active scanout and can get some meaningful results
139 		 * from HVS. The actual PV scanout can not trail behind more
140 		 * than fifo_lines as that is the fifo's capacity. Assume that
141 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 		 * refilling the fifo and PV consuming from the fifo, ie.
143 		 * whenever the PV consumes and frees up a scanline in the
144 		 * fifo, the HVS will immediately refill it, therefore
145 		 * incrementing vpos. Therefore we choose HVS read position -
146 		 * fifo size in scanlines as a estimate of the real scanout
147 		 * position of the PV.
148 		 */
149 		*vpos -= fifo_lines + 1;
150 
151 		return ret;
152 	}
153 
154 	/*
155 	 * Less: This happens when we are in vblank and the HVS, after getting
156 	 * the VSTART restart signal from the PV, just started refilling its
157 	 * fifo with new lines from the top-most lines of the new framebuffers.
158 	 * The PV does not scan out in vblank, so does not remove lines from
159 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 	 * We can't get meaningful readings wrt. scanline position of the PV
161 	 * and need to make things up in a approximative but consistent way.
162 	 */
163 	vblank_lines = mode->vtotal - mode->vdisplay;
164 
165 	if (in_vblank_irq) {
166 		/*
167 		 * Assume the irq handler got called close to first
168 		 * line of vblank, so PV has about a full vblank
169 		 * scanlines to go, and as a base timestamp use the
170 		 * one taken at entry into vblank irq handler, so it
171 		 * is not affected by random delays due to lock
172 		 * contention on event_lock or vblank_time lock in
173 		 * the core.
174 		 */
175 		*vpos = -vblank_lines;
176 
177 		if (stime)
178 			*stime = vc4_crtc->t_vblank;
179 		if (etime)
180 			*etime = vc4_crtc->t_vblank;
181 
182 		/*
183 		 * If the HVS fifo is not yet full then we know for certain
184 		 * we are at the very beginning of vblank, as the hvs just
185 		 * started refilling, and the stime and etime timestamps
186 		 * truly correspond to start of vblank.
187 		 *
188 		 * Unfortunately there's no way to report this to upper levels
189 		 * and make it more useful.
190 		 */
191 	} else {
192 		/*
193 		 * No clue where we are inside vblank. Return a vpos of zero,
194 		 * which will cause calling code to just return the etime
195 		 * timestamp uncorrected. At least this is no worse than the
196 		 * standard fallback.
197 		 */
198 		*vpos = 0;
199 	}
200 
201 	return ret;
202 }
203 
204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206 	drm_crtc_cleanup(crtc);
207 }
208 
209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
214 	u32 fifo_len_bytes = pv_data->fifo_depth;
215 
216 	/*
217 	 * Pixels are pulled from the HVS if the number of bytes is
218 	 * lower than the FIFO full level.
219 	 *
220 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
221 	 * need to convert those 6 pixels in bytes, depending on the
222 	 * format, and then subtract that from the length of the FIFO
223 	 * to make sure we never end up in a situation where the FIFO
224 	 * is full.
225 	 */
226 	switch (format) {
227 	case PV_CONTROL_FORMAT_DSIV_16:
228 	case PV_CONTROL_FORMAT_DSIC_16:
229 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
230 	case PV_CONTROL_FORMAT_DSIV_18:
231 		return fifo_len_bytes - 14;
232 	case PV_CONTROL_FORMAT_24:
233 	case PV_CONTROL_FORMAT_DSIV_24:
234 	default:
235 		/*
236 		 * For some reason, the pixelvalve4 doesn't work with
237 		 * the usual formula and will only work with 32.
238 		 */
239 		if (crtc_data->hvs_output == 5)
240 			return 32;
241 
242 		/*
243 		 * It looks like in some situations, we will overflow
244 		 * the PixelValve FIFO (with the bit 10 of PV stat being
245 		 * set) and stall the HVS / PV, eventually resulting in
246 		 * a page flip timeout.
247 		 *
248 		 * Displaying the video overlay during a playback with
249 		 * Kodi on an RPi3 seems to be a great solution with a
250 		 * failure rate around 50%.
251 		 *
252 		 * Removing 1 from the FIFO full level however
253 		 * seems to completely remove that issue.
254 		 */
255 		if (!vc4->hvs->hvs5)
256 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
257 
258 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
259 	}
260 }
261 
262 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
263 					     u32 format)
264 {
265 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
266 	u32 ret = 0;
267 
268 	ret |= VC4_SET_FIELD((level >> 6),
269 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
270 
271 	return ret | VC4_SET_FIELD(level & 0x3f,
272 				   PV_CONTROL_FIFO_LEVEL);
273 }
274 
275 /*
276  * Returns the encoder attached to the CRTC.
277  *
278  * VC4 can only scan out to one encoder at a time, while the DRM core
279  * allows drivers to push pixels to more than one encoder from the
280  * same CRTC.
281  */
282 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
283 						struct drm_atomic_state *state,
284 						struct drm_connector_state *(*get_state)(struct drm_atomic_state *state,
285 											 struct drm_connector *connector))
286 {
287 	struct drm_connector *connector;
288 	struct drm_connector_list_iter conn_iter;
289 
290 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
291 	drm_for_each_connector_iter(connector, &conn_iter) {
292 		struct drm_connector_state *conn_state = get_state(state, connector);
293 
294 		if (!conn_state)
295 			continue;
296 
297 		if (conn_state->crtc == crtc) {
298 			drm_connector_list_iter_end(&conn_iter);
299 			return connector->encoder;
300 		}
301 	}
302 	drm_connector_list_iter_end(&conn_iter);
303 
304 	return NULL;
305 }
306 
307 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
308 {
309 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
310 
311 	/* The PV needs to be disabled before it can be flushed */
312 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
313 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
314 }
315 
316 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_atomic_state *state)
317 {
318 	struct drm_device *dev = crtc->dev;
319 	struct vc4_dev *vc4 = to_vc4_dev(dev);
320 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
321 							   drm_atomic_get_new_connector_state);
322 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
323 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
324 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
325 	struct drm_crtc_state *crtc_state = crtc->state;
326 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
327 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
328 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
329 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
330 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
331 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
332 	u8 ppc = pv_data->pixels_per_clock;
333 	bool debug_dump_regs = false;
334 
335 	if (debug_dump_regs) {
336 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
337 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
338 			 drm_crtc_index(crtc));
339 		drm_print_regset32(&p, &vc4_crtc->regset);
340 	}
341 
342 	vc4_crtc_pixelvalve_reset(crtc);
343 
344 	CRTC_WRITE(PV_HORZA,
345 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
346 				 PV_HORZA_HBP) |
347 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
348 				 PV_HORZA_HSYNC));
349 
350 	CRTC_WRITE(PV_HORZB,
351 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
352 				 PV_HORZB_HFP) |
353 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
354 				 PV_HORZB_HACTIVE));
355 
356 	CRTC_WRITE(PV_VERTA,
357 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
358 				 PV_VERTA_VBP) |
359 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
360 				 PV_VERTA_VSYNC));
361 	CRTC_WRITE(PV_VERTB,
362 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
363 				 PV_VERTB_VFP) |
364 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
365 
366 	if (interlace) {
367 		CRTC_WRITE(PV_VERTA_EVEN,
368 			   VC4_SET_FIELD(mode->crtc_vtotal -
369 					 mode->crtc_vsync_end - 1,
370 					 PV_VERTA_VBP) |
371 			   VC4_SET_FIELD(mode->crtc_vsync_end -
372 					 mode->crtc_vsync_start,
373 					 PV_VERTA_VSYNC));
374 		CRTC_WRITE(PV_VERTB_EVEN,
375 			   VC4_SET_FIELD(mode->crtc_vsync_start -
376 					 mode->crtc_vdisplay,
377 					 PV_VERTB_VFP) |
378 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
379 
380 		/* We set up first field even mode for HDMI.  VEC's
381 		 * NTSC mode would want first field odd instead, once
382 		 * we support it (to do so, set ODD_FIRST and put the
383 		 * delay in VSYNCD_EVEN instead).
384 		 */
385 		CRTC_WRITE(PV_V_CONTROL,
386 			   PV_VCONTROL_CONTINUOUS |
387 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
388 			   PV_VCONTROL_INTERLACE |
389 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
390 					 PV_VCONTROL_ODD_DELAY));
391 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
392 	} else {
393 		CRTC_WRITE(PV_V_CONTROL,
394 			   PV_VCONTROL_CONTINUOUS |
395 			   (is_dsi ? PV_VCONTROL_DSI : 0));
396 	}
397 
398 	if (is_dsi)
399 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
400 
401 	if (vc4->hvs->hvs5)
402 		CRTC_WRITE(PV_MUX_CFG,
403 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
404 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
405 
406 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
407 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
408 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
409 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
410 		   PV_CONTROL_CLR_AT_START |
411 		   PV_CONTROL_TRIGGER_UNDERFLOW |
412 		   PV_CONTROL_WAIT_HSTART |
413 		   VC4_SET_FIELD(vc4_encoder->clock_select,
414 				 PV_CONTROL_CLK_SELECT));
415 
416 	if (debug_dump_regs) {
417 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
418 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
419 			 drm_crtc_index(crtc));
420 		drm_print_regset32(&p, &vc4_crtc->regset);
421 	}
422 }
423 
424 static void require_hvs_enabled(struct drm_device *dev)
425 {
426 	struct vc4_dev *vc4 = to_vc4_dev(dev);
427 
428 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
429 		     SCALER_DISPCTRL_ENABLE);
430 }
431 
432 static int vc4_crtc_disable(struct drm_crtc *crtc,
433 			    struct drm_encoder *encoder,
434 			    struct drm_atomic_state *state,
435 			    unsigned int channel)
436 {
437 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
438 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
439 	struct drm_device *dev = crtc->dev;
440 	int ret;
441 
442 	CRTC_WRITE(PV_V_CONTROL,
443 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
444 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
445 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
446 
447 	/*
448 	 * This delay is needed to avoid to get a pixel stuck in an
449 	 * unflushable FIFO between the pixelvalve and the HDMI
450 	 * controllers on the BCM2711.
451 	 *
452 	 * Timing is fairly sensitive here, so mdelay is the safest
453 	 * approach.
454 	 *
455 	 * If it was to be reworked, the stuck pixel happens on a
456 	 * BCM2711 when changing mode with a good probability, so a
457 	 * script that changes mode on a regular basis should trigger
458 	 * the bug after less than 10 attempts. It manifests itself with
459 	 * every pixels being shifted by one to the right, and thus the
460 	 * last pixel of a line actually being displayed as the first
461 	 * pixel on the next line.
462 	 */
463 	mdelay(20);
464 
465 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
466 		vc4_encoder->post_crtc_disable(encoder, state);
467 
468 	vc4_crtc_pixelvalve_reset(crtc);
469 	vc4_hvs_stop_channel(dev, channel);
470 
471 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
472 		vc4_encoder->post_crtc_powerdown(encoder, state);
473 
474 	return 0;
475 }
476 
477 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
478 							enum vc4_encoder_type type)
479 {
480 	struct drm_encoder *encoder;
481 
482 	drm_for_each_encoder(encoder, crtc->dev) {
483 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
484 
485 		if (vc4_encoder->type == type)
486 			return encoder;
487 	}
488 
489 	return NULL;
490 }
491 
492 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
493 {
494 	struct drm_device *drm = crtc->dev;
495 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
496 	enum vc4_encoder_type encoder_type;
497 	const struct vc4_pv_data *pv_data;
498 	struct drm_encoder *encoder;
499 	unsigned encoder_sel;
500 	int channel;
501 
502 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
503 				      "brcm,bcm2711-pixelvalve2") ||
504 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
505 				      "brcm,bcm2711-pixelvalve4")))
506 		return 0;
507 
508 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
509 		return 0;
510 
511 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
512 		return 0;
513 
514 	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
515 	if (channel < 0)
516 		return 0;
517 
518 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
519 	if (WARN_ON(encoder_sel != 0))
520 		return 0;
521 
522 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
523 	encoder_type = pv_data->encoder_types[encoder_sel];
524 	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
525 	if (WARN_ON(!encoder))
526 		return 0;
527 
528 	return vc4_crtc_disable(crtc, encoder, NULL, channel);
529 }
530 
531 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
532 				    struct drm_atomic_state *state)
533 {
534 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
535 									 crtc);
536 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
537 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
538 							   drm_atomic_get_old_connector_state);
539 	struct drm_device *dev = crtc->dev;
540 
541 	require_hvs_enabled(dev);
542 
543 	/* Disable vblank irq handling before crtc is disabled. */
544 	drm_crtc_vblank_off(crtc);
545 
546 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
547 
548 	/*
549 	 * Make sure we issue a vblank event after disabling the CRTC if
550 	 * someone was waiting it.
551 	 */
552 	if (crtc->state->event) {
553 		unsigned long flags;
554 
555 		spin_lock_irqsave(&dev->event_lock, flags);
556 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
557 		crtc->state->event = NULL;
558 		spin_unlock_irqrestore(&dev->event_lock, flags);
559 	}
560 }
561 
562 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
563 				   struct drm_atomic_state *state)
564 {
565 	struct drm_device *dev = crtc->dev;
566 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
567 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
568 							   drm_atomic_get_new_connector_state);
569 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
570 
571 	require_hvs_enabled(dev);
572 
573 	/* Enable vblank irq handling before crtc is started otherwise
574 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
575 	 */
576 	drm_crtc_vblank_on(crtc);
577 
578 	vc4_hvs_atomic_enable(crtc, state);
579 
580 	if (vc4_encoder->pre_crtc_configure)
581 		vc4_encoder->pre_crtc_configure(encoder, state);
582 
583 	vc4_crtc_config_pv(crtc, state);
584 
585 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
586 
587 	if (vc4_encoder->pre_crtc_enable)
588 		vc4_encoder->pre_crtc_enable(encoder, state);
589 
590 	/* When feeding the transposer block the pixelvalve is unneeded and
591 	 * should not be enabled.
592 	 */
593 	CRTC_WRITE(PV_V_CONTROL,
594 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
595 
596 	if (vc4_encoder->post_crtc_enable)
597 		vc4_encoder->post_crtc_enable(encoder, state);
598 }
599 
600 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
601 						const struct drm_display_mode *mode)
602 {
603 	/* Do not allow doublescan modes from user space */
604 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
605 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
606 			      crtc->base.id);
607 		return MODE_NO_DBLESCAN;
608 	}
609 
610 	return MODE_OK;
611 }
612 
613 void vc4_crtc_get_margins(struct drm_crtc_state *state,
614 			  unsigned int *left, unsigned int *right,
615 			  unsigned int *top, unsigned int *bottom)
616 {
617 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
618 	struct drm_connector_state *conn_state;
619 	struct drm_connector *conn;
620 	int i;
621 
622 	*left = vc4_state->margins.left;
623 	*right = vc4_state->margins.right;
624 	*top = vc4_state->margins.top;
625 	*bottom = vc4_state->margins.bottom;
626 
627 	/* We have to interate over all new connector states because
628 	 * vc4_crtc_get_margins() might be called before
629 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
630 	 * might be outdated.
631 	 */
632 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
633 		if (conn_state->crtc != state->crtc)
634 			continue;
635 
636 		*left = conn_state->tv.margins.left;
637 		*right = conn_state->tv.margins.right;
638 		*top = conn_state->tv.margins.top;
639 		*bottom = conn_state->tv.margins.bottom;
640 		break;
641 	}
642 }
643 
644 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
645 				 struct drm_atomic_state *state)
646 {
647 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
648 									  crtc);
649 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
650 	struct drm_connector *conn;
651 	struct drm_connector_state *conn_state;
652 	int ret, i;
653 
654 	ret = vc4_hvs_atomic_check(crtc, state);
655 	if (ret)
656 		return ret;
657 
658 	for_each_new_connector_in_state(state, conn, conn_state,
659 					i) {
660 		if (conn_state->crtc != crtc)
661 			continue;
662 
663 		vc4_state->margins.left = conn_state->tv.margins.left;
664 		vc4_state->margins.right = conn_state->tv.margins.right;
665 		vc4_state->margins.top = conn_state->tv.margins.top;
666 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
667 		break;
668 	}
669 
670 	return 0;
671 }
672 
673 static int vc4_enable_vblank(struct drm_crtc *crtc)
674 {
675 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
676 
677 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
678 
679 	return 0;
680 }
681 
682 static void vc4_disable_vblank(struct drm_crtc *crtc)
683 {
684 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
685 
686 	CRTC_WRITE(PV_INTEN, 0);
687 }
688 
689 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
690 {
691 	struct drm_crtc *crtc = &vc4_crtc->base;
692 	struct drm_device *dev = crtc->dev;
693 	struct vc4_dev *vc4 = to_vc4_dev(dev);
694 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
695 	u32 chan = vc4_state->assigned_channel;
696 	unsigned long flags;
697 
698 	spin_lock_irqsave(&dev->event_lock, flags);
699 	if (vc4_crtc->event &&
700 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
701 	     vc4_state->feed_txp)) {
702 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
703 		vc4_crtc->event = NULL;
704 		drm_crtc_vblank_put(crtc);
705 
706 		/* Wait for the page flip to unmask the underrun to ensure that
707 		 * the display list was updated by the hardware. Before that
708 		 * happens, the HVS will be using the previous display list with
709 		 * the CRTC and encoder already reconfigured, leading to
710 		 * underruns. This can be seen when reconfiguring the CRTC.
711 		 */
712 		vc4_hvs_unmask_underrun(dev, chan);
713 	}
714 	spin_unlock_irqrestore(&dev->event_lock, flags);
715 }
716 
717 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
718 {
719 	crtc->t_vblank = ktime_get();
720 	drm_crtc_handle_vblank(&crtc->base);
721 	vc4_crtc_handle_page_flip(crtc);
722 }
723 
724 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
725 {
726 	struct vc4_crtc *vc4_crtc = data;
727 	u32 stat = CRTC_READ(PV_INTSTAT);
728 	irqreturn_t ret = IRQ_NONE;
729 
730 	if (stat & PV_INT_VFP_START) {
731 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
732 		vc4_crtc_handle_vblank(vc4_crtc);
733 		ret = IRQ_HANDLED;
734 	}
735 
736 	return ret;
737 }
738 
739 struct vc4_async_flip_state {
740 	struct drm_crtc *crtc;
741 	struct drm_framebuffer *fb;
742 	struct drm_framebuffer *old_fb;
743 	struct drm_pending_vblank_event *event;
744 
745 	struct vc4_seqno_cb cb;
746 };
747 
748 /* Called when the V3D execution for the BO being flipped to is done, so that
749  * we can actually update the plane's address to point to it.
750  */
751 static void
752 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
753 {
754 	struct vc4_async_flip_state *flip_state =
755 		container_of(cb, struct vc4_async_flip_state, cb);
756 	struct drm_crtc *crtc = flip_state->crtc;
757 	struct drm_device *dev = crtc->dev;
758 	struct drm_plane *plane = crtc->primary;
759 
760 	vc4_plane_async_set_fb(plane, flip_state->fb);
761 	if (flip_state->event) {
762 		unsigned long flags;
763 
764 		spin_lock_irqsave(&dev->event_lock, flags);
765 		drm_crtc_send_vblank_event(crtc, flip_state->event);
766 		spin_unlock_irqrestore(&dev->event_lock, flags);
767 	}
768 
769 	drm_crtc_vblank_put(crtc);
770 	drm_framebuffer_put(flip_state->fb);
771 
772 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
773 	 * when the planes are updated through the async update path.
774 	 * FIXME: we should move to generic async-page-flip when it's
775 	 * available, so that we can get rid of this hand-made cleanup_fb()
776 	 * logic.
777 	 */
778 	if (flip_state->old_fb) {
779 		struct drm_gem_cma_object *cma_bo;
780 		struct vc4_bo *bo;
781 
782 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
783 		bo = to_vc4_bo(&cma_bo->base);
784 		vc4_bo_dec_usecnt(bo);
785 		drm_framebuffer_put(flip_state->old_fb);
786 	}
787 
788 	kfree(flip_state);
789 }
790 
791 /* Implements async (non-vblank-synced) page flips.
792  *
793  * The page flip ioctl needs to return immediately, so we grab the
794  * modeset semaphore on the pipe, and queue the address update for
795  * when V3D is done with the BO being flipped to.
796  */
797 static int vc4_async_page_flip(struct drm_crtc *crtc,
798 			       struct drm_framebuffer *fb,
799 			       struct drm_pending_vblank_event *event,
800 			       uint32_t flags)
801 {
802 	struct drm_device *dev = crtc->dev;
803 	struct drm_plane *plane = crtc->primary;
804 	int ret = 0;
805 	struct vc4_async_flip_state *flip_state;
806 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
807 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
808 
809 	/* Increment the BO usecnt here, so that we never end up with an
810 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
811 	 * plane is later updated through the non-async path.
812 	 * FIXME: we should move to generic async-page-flip when it's
813 	 * available, so that we can get rid of this hand-made prepare_fb()
814 	 * logic.
815 	 */
816 	ret = vc4_bo_inc_usecnt(bo);
817 	if (ret)
818 		return ret;
819 
820 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
821 	if (!flip_state) {
822 		vc4_bo_dec_usecnt(bo);
823 		return -ENOMEM;
824 	}
825 
826 	drm_framebuffer_get(fb);
827 	flip_state->fb = fb;
828 	flip_state->crtc = crtc;
829 	flip_state->event = event;
830 
831 	/* Save the current FB before it's replaced by the new one in
832 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
833 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
834 	 * it consistent.
835 	 * FIXME: we should move to generic async-page-flip when it's
836 	 * available, so that we can get rid of this hand-made cleanup_fb()
837 	 * logic.
838 	 */
839 	flip_state->old_fb = plane->state->fb;
840 	if (flip_state->old_fb)
841 		drm_framebuffer_get(flip_state->old_fb);
842 
843 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
844 
845 	/* Immediately update the plane's legacy fb pointer, so that later
846 	 * modeset prep sees the state that will be present when the semaphore
847 	 * is released.
848 	 */
849 	drm_atomic_set_fb_for_plane(plane->state, fb);
850 
851 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
852 			   vc4_async_page_flip_complete);
853 
854 	/* Driver takes ownership of state on successful async commit. */
855 	return 0;
856 }
857 
858 int vc4_page_flip(struct drm_crtc *crtc,
859 		  struct drm_framebuffer *fb,
860 		  struct drm_pending_vblank_event *event,
861 		  uint32_t flags,
862 		  struct drm_modeset_acquire_ctx *ctx)
863 {
864 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
865 		return vc4_async_page_flip(crtc, fb, event, flags);
866 	else
867 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
868 }
869 
870 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
871 {
872 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
873 
874 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
875 	if (!vc4_state)
876 		return NULL;
877 
878 	old_vc4_state = to_vc4_crtc_state(crtc->state);
879 	vc4_state->feed_txp = old_vc4_state->feed_txp;
880 	vc4_state->margins = old_vc4_state->margins;
881 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
882 
883 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
884 	return &vc4_state->base;
885 }
886 
887 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
888 			    struct drm_crtc_state *state)
889 {
890 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
891 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
892 
893 	if (drm_mm_node_allocated(&vc4_state->mm)) {
894 		unsigned long flags;
895 
896 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
897 		drm_mm_remove_node(&vc4_state->mm);
898 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
899 
900 	}
901 
902 	drm_atomic_helper_crtc_destroy_state(crtc, state);
903 }
904 
905 void vc4_crtc_reset(struct drm_crtc *crtc)
906 {
907 	struct vc4_crtc_state *vc4_crtc_state;
908 
909 	if (crtc->state)
910 		vc4_crtc_destroy_state(crtc, crtc->state);
911 
912 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
913 	if (!vc4_crtc_state) {
914 		crtc->state = NULL;
915 		return;
916 	}
917 
918 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
919 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
920 }
921 
922 static const struct drm_crtc_funcs vc4_crtc_funcs = {
923 	.set_config = drm_atomic_helper_set_config,
924 	.destroy = vc4_crtc_destroy,
925 	.page_flip = vc4_page_flip,
926 	.set_property = NULL,
927 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
928 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
929 	.reset = vc4_crtc_reset,
930 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
931 	.atomic_destroy_state = vc4_crtc_destroy_state,
932 	.enable_vblank = vc4_enable_vblank,
933 	.disable_vblank = vc4_disable_vblank,
934 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
935 };
936 
937 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
938 	.mode_valid = vc4_crtc_mode_valid,
939 	.atomic_check = vc4_crtc_atomic_check,
940 	.atomic_flush = vc4_hvs_atomic_flush,
941 	.atomic_enable = vc4_crtc_atomic_enable,
942 	.atomic_disable = vc4_crtc_atomic_disable,
943 	.get_scanout_position = vc4_crtc_get_scanout_position,
944 };
945 
946 static const struct vc4_pv_data bcm2835_pv0_data = {
947 	.base = {
948 		.hvs_available_channels = BIT(0),
949 		.hvs_output = 0,
950 	},
951 	.debugfs_name = "crtc0_regs",
952 	.fifo_depth = 64,
953 	.pixels_per_clock = 1,
954 	.encoder_types = {
955 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
956 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
957 	},
958 };
959 
960 static const struct vc4_pv_data bcm2835_pv1_data = {
961 	.base = {
962 		.hvs_available_channels = BIT(2),
963 		.hvs_output = 2,
964 	},
965 	.debugfs_name = "crtc1_regs",
966 	.fifo_depth = 64,
967 	.pixels_per_clock = 1,
968 	.encoder_types = {
969 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
970 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
971 	},
972 };
973 
974 static const struct vc4_pv_data bcm2835_pv2_data = {
975 	.base = {
976 		.hvs_available_channels = BIT(1),
977 		.hvs_output = 1,
978 	},
979 	.debugfs_name = "crtc2_regs",
980 	.fifo_depth = 64,
981 	.pixels_per_clock = 1,
982 	.encoder_types = {
983 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
984 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
985 	},
986 };
987 
988 static const struct vc4_pv_data bcm2711_pv0_data = {
989 	.base = {
990 		.hvs_available_channels = BIT(0),
991 		.hvs_output = 0,
992 	},
993 	.debugfs_name = "crtc0_regs",
994 	.fifo_depth = 64,
995 	.pixels_per_clock = 1,
996 	.encoder_types = {
997 		[0] = VC4_ENCODER_TYPE_DSI0,
998 		[1] = VC4_ENCODER_TYPE_DPI,
999 	},
1000 };
1001 
1002 static const struct vc4_pv_data bcm2711_pv1_data = {
1003 	.base = {
1004 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1005 		.hvs_output = 3,
1006 	},
1007 	.debugfs_name = "crtc1_regs",
1008 	.fifo_depth = 64,
1009 	.pixels_per_clock = 1,
1010 	.encoder_types = {
1011 		[0] = VC4_ENCODER_TYPE_DSI1,
1012 		[1] = VC4_ENCODER_TYPE_SMI,
1013 	},
1014 };
1015 
1016 static const struct vc4_pv_data bcm2711_pv2_data = {
1017 	.base = {
1018 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1019 		.hvs_output = 4,
1020 	},
1021 	.debugfs_name = "crtc2_regs",
1022 	.fifo_depth = 256,
1023 	.pixels_per_clock = 2,
1024 	.encoder_types = {
1025 		[0] = VC4_ENCODER_TYPE_HDMI0,
1026 	},
1027 };
1028 
1029 static const struct vc4_pv_data bcm2711_pv3_data = {
1030 	.base = {
1031 		.hvs_available_channels = BIT(1),
1032 		.hvs_output = 1,
1033 	},
1034 	.debugfs_name = "crtc3_regs",
1035 	.fifo_depth = 64,
1036 	.pixels_per_clock = 1,
1037 	.encoder_types = {
1038 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1039 	},
1040 };
1041 
1042 static const struct vc4_pv_data bcm2711_pv4_data = {
1043 	.base = {
1044 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1045 		.hvs_output = 5,
1046 	},
1047 	.debugfs_name = "crtc4_regs",
1048 	.fifo_depth = 64,
1049 	.pixels_per_clock = 2,
1050 	.encoder_types = {
1051 		[0] = VC4_ENCODER_TYPE_HDMI1,
1052 	},
1053 };
1054 
1055 static const struct of_device_id vc4_crtc_dt_match[] = {
1056 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1057 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1058 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1059 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1060 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1061 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1062 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1063 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1064 	{}
1065 };
1066 
1067 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1068 					struct drm_crtc *crtc)
1069 {
1070 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1071 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1072 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1073 	struct drm_encoder *encoder;
1074 
1075 	drm_for_each_encoder(encoder, drm) {
1076 		struct vc4_encoder *vc4_encoder;
1077 		int i;
1078 
1079 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1080 			continue;
1081 
1082 		vc4_encoder = to_vc4_encoder(encoder);
1083 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1084 			if (vc4_encoder->type == encoder_types[i]) {
1085 				vc4_encoder->clock_select = i;
1086 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1087 				break;
1088 			}
1089 		}
1090 	}
1091 }
1092 
1093 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1094 		  const struct drm_crtc_funcs *crtc_funcs,
1095 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1096 {
1097 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1098 	struct drm_crtc *crtc = &vc4_crtc->base;
1099 	struct drm_plane *primary_plane;
1100 	unsigned int i;
1101 
1102 	/* For now, we create just the primary and the legacy cursor
1103 	 * planes.  We should be able to stack more planes on easily,
1104 	 * but to do that we would need to compute the bandwidth
1105 	 * requirement of the plane configuration, and reject ones
1106 	 * that will take too much.
1107 	 */
1108 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1109 	if (IS_ERR(primary_plane)) {
1110 		dev_err(drm->dev, "failed to construct primary plane\n");
1111 		return PTR_ERR(primary_plane);
1112 	}
1113 
1114 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1115 				  crtc_funcs, NULL);
1116 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1117 
1118 	if (!vc4->hvs->hvs5) {
1119 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1120 
1121 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1122 
1123 		/* We support CTM, but only for one CRTC at a time. It's therefore
1124 		 * implemented as private driver state in vc4_kms, not here.
1125 		 */
1126 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1127 	}
1128 
1129 	for (i = 0; i < crtc->gamma_size; i++) {
1130 		vc4_crtc->lut_r[i] = i;
1131 		vc4_crtc->lut_g[i] = i;
1132 		vc4_crtc->lut_b[i] = i;
1133 	}
1134 
1135 	return 0;
1136 }
1137 
1138 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1139 {
1140 	struct platform_device *pdev = to_platform_device(dev);
1141 	struct drm_device *drm = dev_get_drvdata(master);
1142 	const struct vc4_pv_data *pv_data;
1143 	struct vc4_crtc *vc4_crtc;
1144 	struct drm_crtc *crtc;
1145 	struct drm_plane *destroy_plane, *temp;
1146 	int ret;
1147 
1148 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1149 	if (!vc4_crtc)
1150 		return -ENOMEM;
1151 	crtc = &vc4_crtc->base;
1152 
1153 	pv_data = of_device_get_match_data(dev);
1154 	if (!pv_data)
1155 		return -ENODEV;
1156 	vc4_crtc->data = &pv_data->base;
1157 	vc4_crtc->pdev = pdev;
1158 
1159 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1160 	if (IS_ERR(vc4_crtc->regs))
1161 		return PTR_ERR(vc4_crtc->regs);
1162 
1163 	vc4_crtc->regset.base = vc4_crtc->regs;
1164 	vc4_crtc->regset.regs = crtc_regs;
1165 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1166 
1167 	ret = vc4_crtc_init(drm, vc4_crtc,
1168 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1169 	if (ret)
1170 		return ret;
1171 	vc4_set_crtc_possible_masks(drm, crtc);
1172 
1173 	CRTC_WRITE(PV_INTEN, 0);
1174 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1175 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1176 			       vc4_crtc_irq_handler,
1177 			       IRQF_SHARED,
1178 			       "vc4 crtc", vc4_crtc);
1179 	if (ret)
1180 		goto err_destroy_planes;
1181 
1182 	platform_set_drvdata(pdev, vc4_crtc);
1183 
1184 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1185 				 &vc4_crtc->regset);
1186 
1187 	return 0;
1188 
1189 err_destroy_planes:
1190 	list_for_each_entry_safe(destroy_plane, temp,
1191 				 &drm->mode_config.plane_list, head) {
1192 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1193 		    destroy_plane->funcs->destroy(destroy_plane);
1194 	}
1195 
1196 	return ret;
1197 }
1198 
1199 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1200 			    void *data)
1201 {
1202 	struct platform_device *pdev = to_platform_device(dev);
1203 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1204 
1205 	vc4_crtc_destroy(&vc4_crtc->base);
1206 
1207 	CRTC_WRITE(PV_INTEN, 0);
1208 
1209 	platform_set_drvdata(pdev, NULL);
1210 }
1211 
1212 static const struct component_ops vc4_crtc_ops = {
1213 	.bind   = vc4_crtc_bind,
1214 	.unbind = vc4_crtc_unbind,
1215 };
1216 
1217 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1218 {
1219 	return component_add(&pdev->dev, &vc4_crtc_ops);
1220 }
1221 
1222 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1223 {
1224 	component_del(&pdev->dev, &vc4_crtc_ops);
1225 	return 0;
1226 }
1227 
1228 struct platform_driver vc4_crtc_driver = {
1229 	.probe = vc4_crtc_dev_probe,
1230 	.remove = vc4_crtc_dev_remove,
1231 	.driver = {
1232 		.name = "vc4_crtc",
1233 		.of_match_table = vc4_crtc_dt_match,
1234 	},
1235 };
1236