xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision ba61bb17)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 struct vc4_crtc_state {
46 	struct drm_crtc_state base;
47 	/* Dlist area for this CRTC configuration. */
48 	struct drm_mm_node mm;
49 };
50 
51 static inline struct vc4_crtc_state *
52 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
53 {
54 	return (struct vc4_crtc_state *)crtc_state;
55 }
56 
57 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
58 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
59 
60 #define CRTC_REG(reg) { reg, #reg }
61 static const struct {
62 	u32 reg;
63 	const char *name;
64 } crtc_regs[] = {
65 	CRTC_REG(PV_CONTROL),
66 	CRTC_REG(PV_V_CONTROL),
67 	CRTC_REG(PV_VSYNCD_EVEN),
68 	CRTC_REG(PV_HORZA),
69 	CRTC_REG(PV_HORZB),
70 	CRTC_REG(PV_VERTA),
71 	CRTC_REG(PV_VERTB),
72 	CRTC_REG(PV_VERTA_EVEN),
73 	CRTC_REG(PV_VERTB_EVEN),
74 	CRTC_REG(PV_INTEN),
75 	CRTC_REG(PV_INTSTAT),
76 	CRTC_REG(PV_STAT),
77 	CRTC_REG(PV_HACT_ACT),
78 };
79 
80 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
81 {
82 	int i;
83 
84 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
85 		DRM_INFO("0x%04x (%s): 0x%08x\n",
86 			 crtc_regs[i].reg, crtc_regs[i].name,
87 			 CRTC_READ(crtc_regs[i].reg));
88 	}
89 }
90 
91 #ifdef CONFIG_DEBUG_FS
92 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
93 {
94 	struct drm_info_node *node = (struct drm_info_node *)m->private;
95 	struct drm_device *dev = node->minor->dev;
96 	int crtc_index = (uintptr_t)node->info_ent->data;
97 	struct drm_crtc *crtc;
98 	struct vc4_crtc *vc4_crtc;
99 	int i;
100 
101 	i = 0;
102 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
103 		if (i == crtc_index)
104 			break;
105 		i++;
106 	}
107 	if (!crtc)
108 		return 0;
109 	vc4_crtc = to_vc4_crtc(crtc);
110 
111 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
112 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
113 			   crtc_regs[i].name, crtc_regs[i].reg,
114 			   CRTC_READ(crtc_regs[i].reg));
115 	}
116 
117 	return 0;
118 }
119 #endif
120 
121 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
122 			     bool in_vblank_irq, int *vpos, int *hpos,
123 			     ktime_t *stime, ktime_t *etime,
124 			     const struct drm_display_mode *mode)
125 {
126 	struct vc4_dev *vc4 = to_vc4_dev(dev);
127 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
128 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
129 	u32 val;
130 	int fifo_lines;
131 	int vblank_lines;
132 	bool ret = false;
133 
134 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
135 
136 	/* Get optional system timestamp before query. */
137 	if (stime)
138 		*stime = ktime_get();
139 
140 	/*
141 	 * Read vertical scanline which is currently composed for our
142 	 * pixelvalve by the HVS, and also the scaler status.
143 	 */
144 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
145 
146 	/* Get optional system timestamp after query. */
147 	if (etime)
148 		*etime = ktime_get();
149 
150 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
151 
152 	/* Vertical position of hvs composed scanline. */
153 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
154 	*hpos = 0;
155 
156 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
157 		*vpos /= 2;
158 
159 		/* Use hpos to correct for field offset in interlaced mode. */
160 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
161 			*hpos += mode->crtc_htotal / 2;
162 	}
163 
164 	/* This is the offset we need for translating hvs -> pv scanout pos. */
165 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
166 
167 	if (fifo_lines > 0)
168 		ret = true;
169 
170 	/* HVS more than fifo_lines into frame for compositing? */
171 	if (*vpos > fifo_lines) {
172 		/*
173 		 * We are in active scanout and can get some meaningful results
174 		 * from HVS. The actual PV scanout can not trail behind more
175 		 * than fifo_lines as that is the fifo's capacity. Assume that
176 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
177 		 * refilling the fifo and PV consuming from the fifo, ie.
178 		 * whenever the PV consumes and frees up a scanline in the
179 		 * fifo, the HVS will immediately refill it, therefore
180 		 * incrementing vpos. Therefore we choose HVS read position -
181 		 * fifo size in scanlines as a estimate of the real scanout
182 		 * position of the PV.
183 		 */
184 		*vpos -= fifo_lines + 1;
185 
186 		return ret;
187 	}
188 
189 	/*
190 	 * Less: This happens when we are in vblank and the HVS, after getting
191 	 * the VSTART restart signal from the PV, just started refilling its
192 	 * fifo with new lines from the top-most lines of the new framebuffers.
193 	 * The PV does not scan out in vblank, so does not remove lines from
194 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
195 	 * We can't get meaningful readings wrt. scanline position of the PV
196 	 * and need to make things up in a approximative but consistent way.
197 	 */
198 	vblank_lines = mode->vtotal - mode->vdisplay;
199 
200 	if (in_vblank_irq) {
201 		/*
202 		 * Assume the irq handler got called close to first
203 		 * line of vblank, so PV has about a full vblank
204 		 * scanlines to go, and as a base timestamp use the
205 		 * one taken at entry into vblank irq handler, so it
206 		 * is not affected by random delays due to lock
207 		 * contention on event_lock or vblank_time lock in
208 		 * the core.
209 		 */
210 		*vpos = -vblank_lines;
211 
212 		if (stime)
213 			*stime = vc4_crtc->t_vblank;
214 		if (etime)
215 			*etime = vc4_crtc->t_vblank;
216 
217 		/*
218 		 * If the HVS fifo is not yet full then we know for certain
219 		 * we are at the very beginning of vblank, as the hvs just
220 		 * started refilling, and the stime and etime timestamps
221 		 * truly correspond to start of vblank.
222 		 *
223 		 * Unfortunately there's no way to report this to upper levels
224 		 * and make it more useful.
225 		 */
226 	} else {
227 		/*
228 		 * No clue where we are inside vblank. Return a vpos of zero,
229 		 * which will cause calling code to just return the etime
230 		 * timestamp uncorrected. At least this is no worse than the
231 		 * standard fallback.
232 		 */
233 		*vpos = 0;
234 	}
235 
236 	return ret;
237 }
238 
239 static void vc4_crtc_destroy(struct drm_crtc *crtc)
240 {
241 	drm_crtc_cleanup(crtc);
242 }
243 
244 static void
245 vc4_crtc_lut_load(struct drm_crtc *crtc)
246 {
247 	struct drm_device *dev = crtc->dev;
248 	struct vc4_dev *vc4 = to_vc4_dev(dev);
249 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
250 	u32 i;
251 
252 	/* The LUT memory is laid out with each HVS channel in order,
253 	 * each of which takes 256 writes for R, 256 for G, then 256
254 	 * for B.
255 	 */
256 	HVS_WRITE(SCALER_GAMADDR,
257 		  SCALER_GAMADDR_AUTOINC |
258 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
259 
260 	for (i = 0; i < crtc->gamma_size; i++)
261 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
262 	for (i = 0; i < crtc->gamma_size; i++)
263 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
264 	for (i = 0; i < crtc->gamma_size; i++)
265 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
266 }
267 
268 static void
269 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
270 {
271 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
272 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
273 	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
274 	u32 i;
275 
276 	for (i = 0; i < length; i++) {
277 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
278 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
279 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
280 	}
281 
282 	vc4_crtc_lut_load(crtc);
283 }
284 
285 static u32 vc4_get_fifo_full_level(u32 format)
286 {
287 	static const u32 fifo_len_bytes = 64;
288 	static const u32 hvs_latency_pix = 6;
289 
290 	switch (format) {
291 	case PV_CONTROL_FORMAT_DSIV_16:
292 	case PV_CONTROL_FORMAT_DSIC_16:
293 		return fifo_len_bytes - 2 * hvs_latency_pix;
294 	case PV_CONTROL_FORMAT_DSIV_18:
295 		return fifo_len_bytes - 14;
296 	case PV_CONTROL_FORMAT_24:
297 	case PV_CONTROL_FORMAT_DSIV_24:
298 	default:
299 		return fifo_len_bytes - 3 * hvs_latency_pix;
300 	}
301 }
302 
303 /*
304  * Returns the encoder attached to the CRTC.
305  *
306  * VC4 can only scan out to one encoder at a time, while the DRM core
307  * allows drivers to push pixels to more than one encoder from the
308  * same CRTC.
309  */
310 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
311 {
312 	struct drm_connector *connector;
313 	struct drm_connector_list_iter conn_iter;
314 
315 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
316 	drm_for_each_connector_iter(connector, &conn_iter) {
317 		if (connector->state->crtc == crtc) {
318 			drm_connector_list_iter_end(&conn_iter);
319 			return connector->encoder;
320 		}
321 	}
322 	drm_connector_list_iter_end(&conn_iter);
323 
324 	return NULL;
325 }
326 
327 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
328 {
329 	struct drm_device *dev = crtc->dev;
330 	struct vc4_dev *vc4 = to_vc4_dev(dev);
331 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
332 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
333 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
334 	struct drm_crtc_state *state = crtc->state;
335 	struct drm_display_mode *mode = &state->adjusted_mode;
336 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
337 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
338 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
339 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
340 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
341 	bool debug_dump_regs = false;
342 
343 	if (debug_dump_regs) {
344 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
345 		vc4_crtc_dump_regs(vc4_crtc);
346 	}
347 
348 	/* Reset the PV fifo. */
349 	CRTC_WRITE(PV_CONTROL, 0);
350 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
351 	CRTC_WRITE(PV_CONTROL, 0);
352 
353 	CRTC_WRITE(PV_HORZA,
354 		   VC4_SET_FIELD((mode->htotal -
355 				  mode->hsync_end) * pixel_rep,
356 				 PV_HORZA_HBP) |
357 		   VC4_SET_FIELD((mode->hsync_end -
358 				  mode->hsync_start) * pixel_rep,
359 				 PV_HORZA_HSYNC));
360 	CRTC_WRITE(PV_HORZB,
361 		   VC4_SET_FIELD((mode->hsync_start -
362 				  mode->hdisplay) * pixel_rep,
363 				 PV_HORZB_HFP) |
364 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
365 
366 	CRTC_WRITE(PV_VERTA,
367 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
368 				 PV_VERTA_VBP) |
369 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
370 				 PV_VERTA_VSYNC));
371 	CRTC_WRITE(PV_VERTB,
372 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
373 				 PV_VERTB_VFP) |
374 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
375 
376 	if (interlace) {
377 		CRTC_WRITE(PV_VERTA_EVEN,
378 			   VC4_SET_FIELD(mode->crtc_vtotal -
379 					 mode->crtc_vsync_end - 1,
380 					 PV_VERTA_VBP) |
381 			   VC4_SET_FIELD(mode->crtc_vsync_end -
382 					 mode->crtc_vsync_start,
383 					 PV_VERTA_VSYNC));
384 		CRTC_WRITE(PV_VERTB_EVEN,
385 			   VC4_SET_FIELD(mode->crtc_vsync_start -
386 					 mode->crtc_vdisplay,
387 					 PV_VERTB_VFP) |
388 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
389 
390 		/* We set up first field even mode for HDMI.  VEC's
391 		 * NTSC mode would want first field odd instead, once
392 		 * we support it (to do so, set ODD_FIRST and put the
393 		 * delay in VSYNCD_EVEN instead).
394 		 */
395 		CRTC_WRITE(PV_V_CONTROL,
396 			   PV_VCONTROL_CONTINUOUS |
397 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
398 			   PV_VCONTROL_INTERLACE |
399 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
400 					 PV_VCONTROL_ODD_DELAY));
401 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
402 	} else {
403 		CRTC_WRITE(PV_V_CONTROL,
404 			   PV_VCONTROL_CONTINUOUS |
405 			   (is_dsi ? PV_VCONTROL_DSI : 0));
406 	}
407 
408 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
409 
410 	CRTC_WRITE(PV_CONTROL,
411 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
412 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
413 				 PV_CONTROL_FIFO_LEVEL) |
414 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
415 		   PV_CONTROL_CLR_AT_START |
416 		   PV_CONTROL_TRIGGER_UNDERFLOW |
417 		   PV_CONTROL_WAIT_HSTART |
418 		   VC4_SET_FIELD(vc4_encoder->clock_select,
419 				 PV_CONTROL_CLK_SELECT) |
420 		   PV_CONTROL_FIFO_CLR |
421 		   PV_CONTROL_EN);
422 
423 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
424 		  SCALER_DISPBKGND_AUTOHS |
425 		  SCALER_DISPBKGND_GAMMA |
426 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
427 
428 	/* Reload the LUT, since the SRAMs would have been disabled if
429 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
430 	 */
431 	vc4_crtc_lut_load(crtc);
432 
433 	if (debug_dump_regs) {
434 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
435 		vc4_crtc_dump_regs(vc4_crtc);
436 	}
437 }
438 
439 static void require_hvs_enabled(struct drm_device *dev)
440 {
441 	struct vc4_dev *vc4 = to_vc4_dev(dev);
442 
443 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
444 		     SCALER_DISPCTRL_ENABLE);
445 }
446 
447 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
448 				    struct drm_crtc_state *old_state)
449 {
450 	struct drm_device *dev = crtc->dev;
451 	struct vc4_dev *vc4 = to_vc4_dev(dev);
452 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
453 	u32 chan = vc4_crtc->channel;
454 	int ret;
455 	require_hvs_enabled(dev);
456 
457 	/* Disable vblank irq handling before crtc is disabled. */
458 	drm_crtc_vblank_off(crtc);
459 
460 	CRTC_WRITE(PV_V_CONTROL,
461 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
462 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
463 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
464 
465 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
466 	    SCALER_DISPCTRLX_ENABLE) {
467 		HVS_WRITE(SCALER_DISPCTRLX(chan),
468 			  SCALER_DISPCTRLX_RESET);
469 
470 		/* While the docs say that reset is self-clearing, it
471 		 * seems it doesn't actually.
472 		 */
473 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
474 	}
475 
476 	/* Once we leave, the scaler should be disabled and its fifo empty. */
477 
478 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
479 
480 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
481 				   SCALER_DISPSTATX_MODE) !=
482 		     SCALER_DISPSTATX_MODE_DISABLED);
483 
484 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
485 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
486 		     SCALER_DISPSTATX_EMPTY);
487 
488 	/*
489 	 * Make sure we issue a vblank event after disabling the CRTC if
490 	 * someone was waiting it.
491 	 */
492 	if (crtc->state->event) {
493 		unsigned long flags;
494 
495 		spin_lock_irqsave(&dev->event_lock, flags);
496 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
497 		crtc->state->event = NULL;
498 		spin_unlock_irqrestore(&dev->event_lock, flags);
499 	}
500 }
501 
502 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
503 {
504 	struct drm_device *dev = crtc->dev;
505 	struct vc4_dev *vc4 = to_vc4_dev(dev);
506 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
507 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
508 
509 	if (crtc->state->event) {
510 		unsigned long flags;
511 
512 		crtc->state->event->pipe = drm_crtc_index(crtc);
513 
514 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
515 
516 		spin_lock_irqsave(&dev->event_lock, flags);
517 		vc4_crtc->event = crtc->state->event;
518 		crtc->state->event = NULL;
519 
520 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
521 			  vc4_state->mm.start);
522 
523 		spin_unlock_irqrestore(&dev->event_lock, flags);
524 	} else {
525 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
526 			  vc4_state->mm.start);
527 	}
528 }
529 
530 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
531 				   struct drm_crtc_state *old_state)
532 {
533 	struct drm_device *dev = crtc->dev;
534 	struct vc4_dev *vc4 = to_vc4_dev(dev);
535 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
536 	struct drm_crtc_state *state = crtc->state;
537 	struct drm_display_mode *mode = &state->adjusted_mode;
538 
539 	require_hvs_enabled(dev);
540 
541 	/* Enable vblank irq handling before crtc is started otherwise
542 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
543 	 */
544 	drm_crtc_vblank_on(crtc);
545 	vc4_crtc_update_dlist(crtc);
546 
547 	/* Turn on the scaler, which will wait for vstart to start
548 	 * compositing.
549 	 */
550 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
551 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
552 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
553 		  SCALER_DISPCTRLX_ENABLE);
554 
555 	/* Turn on the pixel valve, which will emit the vstart signal. */
556 	CRTC_WRITE(PV_V_CONTROL,
557 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
558 }
559 
560 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
561 						const struct drm_display_mode *mode)
562 {
563 	/* Do not allow doublescan modes from user space */
564 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
565 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
566 			      crtc->base.id);
567 		return MODE_NO_DBLESCAN;
568 	}
569 
570 	return MODE_OK;
571 }
572 
573 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
574 				 struct drm_crtc_state *state)
575 {
576 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
577 	struct drm_device *dev = crtc->dev;
578 	struct vc4_dev *vc4 = to_vc4_dev(dev);
579 	struct drm_plane *plane;
580 	unsigned long flags;
581 	const struct drm_plane_state *plane_state;
582 	u32 dlist_count = 0;
583 	int ret;
584 
585 	/* The pixelvalve can only feed one encoder (and encoders are
586 	 * 1:1 with connectors.)
587 	 */
588 	if (hweight32(state->connector_mask) > 1)
589 		return -EINVAL;
590 
591 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
592 		dlist_count += vc4_plane_dlist_size(plane_state);
593 
594 	dlist_count++; /* Account for SCALER_CTL0_END. */
595 
596 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
597 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
598 				 dlist_count);
599 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600 	if (ret)
601 		return ret;
602 
603 	return 0;
604 }
605 
606 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
607 				  struct drm_crtc_state *old_state)
608 {
609 	struct drm_device *dev = crtc->dev;
610 	struct vc4_dev *vc4 = to_vc4_dev(dev);
611 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
612 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
613 	struct drm_plane *plane;
614 	struct vc4_plane_state *vc4_plane_state;
615 	bool debug_dump_regs = false;
616 	bool enable_bg_fill = false;
617 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
618 	u32 __iomem *dlist_next = dlist_start;
619 
620 	if (debug_dump_regs) {
621 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
622 		vc4_hvs_dump_state(dev);
623 	}
624 
625 	/* Copy all the active planes' dlist contents to the hardware dlist. */
626 	drm_atomic_crtc_for_each_plane(plane, crtc) {
627 		/* Is this the first active plane? */
628 		if (dlist_next == dlist_start) {
629 			/* We need to enable background fill when a plane
630 			 * could be alpha blending from the background, i.e.
631 			 * where no other plane is underneath. It suffices to
632 			 * consider the first active plane here since we set
633 			 * needs_bg_fill such that either the first plane
634 			 * already needs it or all planes on top blend from
635 			 * the first or a lower plane.
636 			 */
637 			vc4_plane_state = to_vc4_plane_state(plane->state);
638 			enable_bg_fill = vc4_plane_state->needs_bg_fill;
639 		}
640 
641 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
642 	}
643 
644 	writel(SCALER_CTL0_END, dlist_next);
645 	dlist_next++;
646 
647 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
648 
649 	if (enable_bg_fill)
650 		/* This sets a black background color fill, as is the case
651 		 * with other DRM drivers.
652 		 */
653 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
654 			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
655 			  SCALER_DISPBKGND_FILL);
656 
657 	/* Only update DISPLIST if the CRTC was already running and is not
658 	 * being disabled.
659 	 * vc4_crtc_enable() takes care of updating the dlist just after
660 	 * re-enabling VBLANK interrupts and before enabling the engine.
661 	 * If the CRTC is being disabled, there's no point in updating this
662 	 * information.
663 	 */
664 	if (crtc->state->active && old_state->active)
665 		vc4_crtc_update_dlist(crtc);
666 
667 	if (crtc->state->color_mgmt_changed) {
668 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
669 
670 		if (crtc->state->gamma_lut) {
671 			vc4_crtc_update_gamma_lut(crtc);
672 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
673 		} else {
674 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
675 			 * in hardware, which is the same as a linear lut that
676 			 * DRM expects us to use in absence of a user lut.
677 			 */
678 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
679 		}
680 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
681 	}
682 
683 	if (debug_dump_regs) {
684 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
685 		vc4_hvs_dump_state(dev);
686 	}
687 }
688 
689 static int vc4_enable_vblank(struct drm_crtc *crtc)
690 {
691 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
692 
693 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
694 
695 	return 0;
696 }
697 
698 static void vc4_disable_vblank(struct drm_crtc *crtc)
699 {
700 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
701 
702 	CRTC_WRITE(PV_INTEN, 0);
703 }
704 
705 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
706 {
707 	struct drm_crtc *crtc = &vc4_crtc->base;
708 	struct drm_device *dev = crtc->dev;
709 	struct vc4_dev *vc4 = to_vc4_dev(dev);
710 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
711 	u32 chan = vc4_crtc->channel;
712 	unsigned long flags;
713 
714 	spin_lock_irqsave(&dev->event_lock, flags);
715 	if (vc4_crtc->event &&
716 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
717 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
718 		vc4_crtc->event = NULL;
719 		drm_crtc_vblank_put(crtc);
720 	}
721 	spin_unlock_irqrestore(&dev->event_lock, flags);
722 }
723 
724 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
725 {
726 	struct vc4_crtc *vc4_crtc = data;
727 	u32 stat = CRTC_READ(PV_INTSTAT);
728 	irqreturn_t ret = IRQ_NONE;
729 
730 	if (stat & PV_INT_VFP_START) {
731 		vc4_crtc->t_vblank = ktime_get();
732 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
733 		drm_crtc_handle_vblank(&vc4_crtc->base);
734 		vc4_crtc_handle_page_flip(vc4_crtc);
735 		ret = IRQ_HANDLED;
736 	}
737 
738 	return ret;
739 }
740 
741 struct vc4_async_flip_state {
742 	struct drm_crtc *crtc;
743 	struct drm_framebuffer *fb;
744 	struct drm_framebuffer *old_fb;
745 	struct drm_pending_vblank_event *event;
746 
747 	struct vc4_seqno_cb cb;
748 };
749 
750 /* Called when the V3D execution for the BO being flipped to is done, so that
751  * we can actually update the plane's address to point to it.
752  */
753 static void
754 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
755 {
756 	struct vc4_async_flip_state *flip_state =
757 		container_of(cb, struct vc4_async_flip_state, cb);
758 	struct drm_crtc *crtc = flip_state->crtc;
759 	struct drm_device *dev = crtc->dev;
760 	struct vc4_dev *vc4 = to_vc4_dev(dev);
761 	struct drm_plane *plane = crtc->primary;
762 
763 	vc4_plane_async_set_fb(plane, flip_state->fb);
764 	if (flip_state->event) {
765 		unsigned long flags;
766 
767 		spin_lock_irqsave(&dev->event_lock, flags);
768 		drm_crtc_send_vblank_event(crtc, flip_state->event);
769 		spin_unlock_irqrestore(&dev->event_lock, flags);
770 	}
771 
772 	drm_crtc_vblank_put(crtc);
773 	drm_framebuffer_put(flip_state->fb);
774 
775 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
776 	 * when the planes are updated through the async update path.
777 	 * FIXME: we should move to generic async-page-flip when it's
778 	 * available, so that we can get rid of this hand-made cleanup_fb()
779 	 * logic.
780 	 */
781 	if (flip_state->old_fb) {
782 		struct drm_gem_cma_object *cma_bo;
783 		struct vc4_bo *bo;
784 
785 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
786 		bo = to_vc4_bo(&cma_bo->base);
787 		vc4_bo_dec_usecnt(bo);
788 		drm_framebuffer_put(flip_state->old_fb);
789 	}
790 
791 	kfree(flip_state);
792 
793 	up(&vc4->async_modeset);
794 }
795 
796 /* Implements async (non-vblank-synced) page flips.
797  *
798  * The page flip ioctl needs to return immediately, so we grab the
799  * modeset semaphore on the pipe, and queue the address update for
800  * when V3D is done with the BO being flipped to.
801  */
802 static int vc4_async_page_flip(struct drm_crtc *crtc,
803 			       struct drm_framebuffer *fb,
804 			       struct drm_pending_vblank_event *event,
805 			       uint32_t flags)
806 {
807 	struct drm_device *dev = crtc->dev;
808 	struct vc4_dev *vc4 = to_vc4_dev(dev);
809 	struct drm_plane *plane = crtc->primary;
810 	int ret = 0;
811 	struct vc4_async_flip_state *flip_state;
812 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
813 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
814 
815 	/* Increment the BO usecnt here, so that we never end up with an
816 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
817 	 * plane is later updated through the non-async path.
818 	 * FIXME: we should move to generic async-page-flip when it's
819 	 * available, so that we can get rid of this hand-made prepare_fb()
820 	 * logic.
821 	 */
822 	ret = vc4_bo_inc_usecnt(bo);
823 	if (ret)
824 		return ret;
825 
826 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
827 	if (!flip_state) {
828 		vc4_bo_dec_usecnt(bo);
829 		return -ENOMEM;
830 	}
831 
832 	drm_framebuffer_get(fb);
833 	flip_state->fb = fb;
834 	flip_state->crtc = crtc;
835 	flip_state->event = event;
836 
837 	/* Make sure all other async modesetes have landed. */
838 	ret = down_interruptible(&vc4->async_modeset);
839 	if (ret) {
840 		drm_framebuffer_put(fb);
841 		vc4_bo_dec_usecnt(bo);
842 		kfree(flip_state);
843 		return ret;
844 	}
845 
846 	/* Save the current FB before it's replaced by the new one in
847 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
848 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
849 	 * it consistent.
850 	 * FIXME: we should move to generic async-page-flip when it's
851 	 * available, so that we can get rid of this hand-made cleanup_fb()
852 	 * logic.
853 	 */
854 	flip_state->old_fb = plane->state->fb;
855 	if (flip_state->old_fb)
856 		drm_framebuffer_get(flip_state->old_fb);
857 
858 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
859 
860 	/* Immediately update the plane's legacy fb pointer, so that later
861 	 * modeset prep sees the state that will be present when the semaphore
862 	 * is released.
863 	 */
864 	drm_atomic_set_fb_for_plane(plane->state, fb);
865 
866 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
867 			   vc4_async_page_flip_complete);
868 
869 	/* Driver takes ownership of state on successful async commit. */
870 	return 0;
871 }
872 
873 static int vc4_page_flip(struct drm_crtc *crtc,
874 			 struct drm_framebuffer *fb,
875 			 struct drm_pending_vblank_event *event,
876 			 uint32_t flags,
877 			 struct drm_modeset_acquire_ctx *ctx)
878 {
879 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
880 		return vc4_async_page_flip(crtc, fb, event, flags);
881 	else
882 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
883 }
884 
885 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
886 {
887 	struct vc4_crtc_state *vc4_state;
888 
889 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
890 	if (!vc4_state)
891 		return NULL;
892 
893 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
894 	return &vc4_state->base;
895 }
896 
897 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
898 				   struct drm_crtc_state *state)
899 {
900 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
901 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
902 
903 	if (vc4_state->mm.allocated) {
904 		unsigned long flags;
905 
906 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
907 		drm_mm_remove_node(&vc4_state->mm);
908 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
909 
910 	}
911 
912 	drm_atomic_helper_crtc_destroy_state(crtc, state);
913 }
914 
915 static void
916 vc4_crtc_reset(struct drm_crtc *crtc)
917 {
918 	if (crtc->state)
919 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
920 
921 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
922 	if (crtc->state)
923 		crtc->state->crtc = crtc;
924 }
925 
926 static const struct drm_crtc_funcs vc4_crtc_funcs = {
927 	.set_config = drm_atomic_helper_set_config,
928 	.destroy = vc4_crtc_destroy,
929 	.page_flip = vc4_page_flip,
930 	.set_property = NULL,
931 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
932 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
933 	.reset = vc4_crtc_reset,
934 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
935 	.atomic_destroy_state = vc4_crtc_destroy_state,
936 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
937 	.enable_vblank = vc4_enable_vblank,
938 	.disable_vblank = vc4_disable_vblank,
939 };
940 
941 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
942 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
943 	.mode_valid = vc4_crtc_mode_valid,
944 	.atomic_check = vc4_crtc_atomic_check,
945 	.atomic_flush = vc4_crtc_atomic_flush,
946 	.atomic_enable = vc4_crtc_atomic_enable,
947 	.atomic_disable = vc4_crtc_atomic_disable,
948 };
949 
950 static const struct vc4_crtc_data pv0_data = {
951 	.hvs_channel = 0,
952 	.encoder_types = {
953 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
954 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
955 	},
956 };
957 
958 static const struct vc4_crtc_data pv1_data = {
959 	.hvs_channel = 2,
960 	.encoder_types = {
961 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
962 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
963 	},
964 };
965 
966 static const struct vc4_crtc_data pv2_data = {
967 	.hvs_channel = 1,
968 	.encoder_types = {
969 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
970 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
971 	},
972 };
973 
974 static const struct of_device_id vc4_crtc_dt_match[] = {
975 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
976 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
977 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
978 	{}
979 };
980 
981 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
982 					struct drm_crtc *crtc)
983 {
984 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
985 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
986 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
987 	struct drm_encoder *encoder;
988 
989 	drm_for_each_encoder(encoder, drm) {
990 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
991 		int i;
992 
993 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
994 			if (vc4_encoder->type == encoder_types[i]) {
995 				vc4_encoder->clock_select = i;
996 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
997 				break;
998 			}
999 		}
1000 	}
1001 }
1002 
1003 static void
1004 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1005 {
1006 	struct drm_device *drm = vc4_crtc->base.dev;
1007 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1008 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1009 	/* Top/base are supposed to be 4-pixel aligned, but the
1010 	 * Raspberry Pi firmware fills the low bits (which are
1011 	 * presumably ignored).
1012 	 */
1013 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1014 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1015 
1016 	vc4_crtc->cob_size = top - base + 4;
1017 }
1018 
1019 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1020 {
1021 	struct platform_device *pdev = to_platform_device(dev);
1022 	struct drm_device *drm = dev_get_drvdata(master);
1023 	struct vc4_crtc *vc4_crtc;
1024 	struct drm_crtc *crtc;
1025 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1026 	const struct of_device_id *match;
1027 	int ret, i;
1028 
1029 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1030 	if (!vc4_crtc)
1031 		return -ENOMEM;
1032 	crtc = &vc4_crtc->base;
1033 
1034 	match = of_match_device(vc4_crtc_dt_match, dev);
1035 	if (!match)
1036 		return -ENODEV;
1037 	vc4_crtc->data = match->data;
1038 
1039 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1040 	if (IS_ERR(vc4_crtc->regs))
1041 		return PTR_ERR(vc4_crtc->regs);
1042 
1043 	/* For now, we create just the primary and the legacy cursor
1044 	 * planes.  We should be able to stack more planes on easily,
1045 	 * but to do that we would need to compute the bandwidth
1046 	 * requirement of the plane configuration, and reject ones
1047 	 * that will take too much.
1048 	 */
1049 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1050 	if (IS_ERR(primary_plane)) {
1051 		dev_err(dev, "failed to construct primary plane\n");
1052 		ret = PTR_ERR(primary_plane);
1053 		goto err;
1054 	}
1055 
1056 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1057 				  &vc4_crtc_funcs, NULL);
1058 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1059 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1060 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1061 	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1062 
1063 	/* We support CTM, but only for one CRTC at a time. It's therefore
1064 	 * implemented as private driver state in vc4_kms, not here.
1065 	 */
1066 	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1067 
1068 	/* Set up some arbitrary number of planes.  We're not limited
1069 	 * by a set number of physical registers, just the space in
1070 	 * the HVS (16k) and how small an plane can be (28 bytes).
1071 	 * However, each plane we set up takes up some memory, and
1072 	 * increases the cost of looping over planes, which atomic
1073 	 * modesetting does quite a bit.  As a result, we pick a
1074 	 * modest number of planes to expose, that should hopefully
1075 	 * still cover any sane usecase.
1076 	 */
1077 	for (i = 0; i < 8; i++) {
1078 		struct drm_plane *plane =
1079 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1080 
1081 		if (IS_ERR(plane))
1082 			continue;
1083 
1084 		plane->possible_crtcs = drm_crtc_mask(crtc);
1085 	}
1086 
1087 	/* Set up the legacy cursor after overlay initialization,
1088 	 * since we overlay planes on the CRTC in the order they were
1089 	 * initialized.
1090 	 */
1091 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1092 	if (!IS_ERR(cursor_plane)) {
1093 		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1094 		crtc->cursor = cursor_plane;
1095 	}
1096 
1097 	vc4_crtc_get_cob_allocation(vc4_crtc);
1098 
1099 	CRTC_WRITE(PV_INTEN, 0);
1100 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1101 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1102 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1103 	if (ret)
1104 		goto err_destroy_planes;
1105 
1106 	vc4_set_crtc_possible_masks(drm, crtc);
1107 
1108 	for (i = 0; i < crtc->gamma_size; i++) {
1109 		vc4_crtc->lut_r[i] = i;
1110 		vc4_crtc->lut_g[i] = i;
1111 		vc4_crtc->lut_b[i] = i;
1112 	}
1113 
1114 	platform_set_drvdata(pdev, vc4_crtc);
1115 
1116 	return 0;
1117 
1118 err_destroy_planes:
1119 	list_for_each_entry_safe(destroy_plane, temp,
1120 				 &drm->mode_config.plane_list, head) {
1121 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1122 		    destroy_plane->funcs->destroy(destroy_plane);
1123 	}
1124 err:
1125 	return ret;
1126 }
1127 
1128 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1129 			    void *data)
1130 {
1131 	struct platform_device *pdev = to_platform_device(dev);
1132 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1133 
1134 	vc4_crtc_destroy(&vc4_crtc->base);
1135 
1136 	CRTC_WRITE(PV_INTEN, 0);
1137 
1138 	platform_set_drvdata(pdev, NULL);
1139 }
1140 
1141 static const struct component_ops vc4_crtc_ops = {
1142 	.bind   = vc4_crtc_bind,
1143 	.unbind = vc4_crtc_unbind,
1144 };
1145 
1146 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1147 {
1148 	return component_add(&pdev->dev, &vc4_crtc_ops);
1149 }
1150 
1151 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1152 {
1153 	component_del(&pdev->dev, &vc4_crtc_ops);
1154 	return 0;
1155 }
1156 
1157 struct platform_driver vc4_crtc_driver = {
1158 	.probe = vc4_crtc_dev_probe,
1159 	.remove = vc4_crtc_dev_remove,
1160 	.driver = {
1161 		.name = "vc4_crtc",
1162 		.of_match_table = vc4_crtc_dt_match,
1163 	},
1164 };
1165