1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <drm/drm_atomic.h> 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_atomic_uapi.h> 35 #include <drm/drm_print.h> 36 #include <drm/drm_probe_helper.h> 37 #include <linux/clk.h> 38 #include <drm/drm_fb_cma_helper.h> 39 #include <linux/component.h> 40 #include <linux/of_device.h> 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 struct vc4_crtc_state { 45 struct drm_crtc_state base; 46 /* Dlist area for this CRTC configuration. */ 47 struct drm_mm_node mm; 48 bool feed_txp; 49 bool txp_armed; 50 51 struct { 52 unsigned int left; 53 unsigned int right; 54 unsigned int top; 55 unsigned int bottom; 56 } margins; 57 }; 58 59 static inline struct vc4_crtc_state * 60 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 61 { 62 return (struct vc4_crtc_state *)crtc_state; 63 } 64 65 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 66 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 67 68 static const struct debugfs_reg32 crtc_regs[] = { 69 VC4_REG32(PV_CONTROL), 70 VC4_REG32(PV_V_CONTROL), 71 VC4_REG32(PV_VSYNCD_EVEN), 72 VC4_REG32(PV_HORZA), 73 VC4_REG32(PV_HORZB), 74 VC4_REG32(PV_VERTA), 75 VC4_REG32(PV_VERTB), 76 VC4_REG32(PV_VERTA_EVEN), 77 VC4_REG32(PV_VERTB_EVEN), 78 VC4_REG32(PV_INTEN), 79 VC4_REG32(PV_INTSTAT), 80 VC4_REG32(PV_STAT), 81 VC4_REG32(PV_HACT_ACT), 82 }; 83 84 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 85 bool in_vblank_irq, int *vpos, int *hpos, 86 ktime_t *stime, ktime_t *etime, 87 const struct drm_display_mode *mode) 88 { 89 struct vc4_dev *vc4 = to_vc4_dev(dev); 90 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 91 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 92 u32 val; 93 int fifo_lines; 94 int vblank_lines; 95 bool ret = false; 96 97 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 98 99 /* Get optional system timestamp before query. */ 100 if (stime) 101 *stime = ktime_get(); 102 103 /* 104 * Read vertical scanline which is currently composed for our 105 * pixelvalve by the HVS, and also the scaler status. 106 */ 107 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 108 109 /* Get optional system timestamp after query. */ 110 if (etime) 111 *etime = ktime_get(); 112 113 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 114 115 /* Vertical position of hvs composed scanline. */ 116 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 117 *hpos = 0; 118 119 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 120 *vpos /= 2; 121 122 /* Use hpos to correct for field offset in interlaced mode. */ 123 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 124 *hpos += mode->crtc_htotal / 2; 125 } 126 127 /* This is the offset we need for translating hvs -> pv scanout pos. */ 128 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 129 130 if (fifo_lines > 0) 131 ret = true; 132 133 /* HVS more than fifo_lines into frame for compositing? */ 134 if (*vpos > fifo_lines) { 135 /* 136 * We are in active scanout and can get some meaningful results 137 * from HVS. The actual PV scanout can not trail behind more 138 * than fifo_lines as that is the fifo's capacity. Assume that 139 * in active scanout the HVS and PV work in lockstep wrt. HVS 140 * refilling the fifo and PV consuming from the fifo, ie. 141 * whenever the PV consumes and frees up a scanline in the 142 * fifo, the HVS will immediately refill it, therefore 143 * incrementing vpos. Therefore we choose HVS read position - 144 * fifo size in scanlines as a estimate of the real scanout 145 * position of the PV. 146 */ 147 *vpos -= fifo_lines + 1; 148 149 return ret; 150 } 151 152 /* 153 * Less: This happens when we are in vblank and the HVS, after getting 154 * the VSTART restart signal from the PV, just started refilling its 155 * fifo with new lines from the top-most lines of the new framebuffers. 156 * The PV does not scan out in vblank, so does not remove lines from 157 * the fifo, so the fifo will be full quickly and the HVS has to pause. 158 * We can't get meaningful readings wrt. scanline position of the PV 159 * and need to make things up in a approximative but consistent way. 160 */ 161 vblank_lines = mode->vtotal - mode->vdisplay; 162 163 if (in_vblank_irq) { 164 /* 165 * Assume the irq handler got called close to first 166 * line of vblank, so PV has about a full vblank 167 * scanlines to go, and as a base timestamp use the 168 * one taken at entry into vblank irq handler, so it 169 * is not affected by random delays due to lock 170 * contention on event_lock or vblank_time lock in 171 * the core. 172 */ 173 *vpos = -vblank_lines; 174 175 if (stime) 176 *stime = vc4_crtc->t_vblank; 177 if (etime) 178 *etime = vc4_crtc->t_vblank; 179 180 /* 181 * If the HVS fifo is not yet full then we know for certain 182 * we are at the very beginning of vblank, as the hvs just 183 * started refilling, and the stime and etime timestamps 184 * truly correspond to start of vblank. 185 * 186 * Unfortunately there's no way to report this to upper levels 187 * and make it more useful. 188 */ 189 } else { 190 /* 191 * No clue where we are inside vblank. Return a vpos of zero, 192 * which will cause calling code to just return the etime 193 * timestamp uncorrected. At least this is no worse than the 194 * standard fallback. 195 */ 196 *vpos = 0; 197 } 198 199 return ret; 200 } 201 202 static void vc4_crtc_destroy(struct drm_crtc *crtc) 203 { 204 drm_crtc_cleanup(crtc); 205 } 206 207 static void 208 vc4_crtc_lut_load(struct drm_crtc *crtc) 209 { 210 struct drm_device *dev = crtc->dev; 211 struct vc4_dev *vc4 = to_vc4_dev(dev); 212 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 213 u32 i; 214 215 /* The LUT memory is laid out with each HVS channel in order, 216 * each of which takes 256 writes for R, 256 for G, then 256 217 * for B. 218 */ 219 HVS_WRITE(SCALER_GAMADDR, 220 SCALER_GAMADDR_AUTOINC | 221 (vc4_crtc->channel * 3 * crtc->gamma_size)); 222 223 for (i = 0; i < crtc->gamma_size; i++) 224 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 225 for (i = 0; i < crtc->gamma_size; i++) 226 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 227 for (i = 0; i < crtc->gamma_size; i++) 228 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 229 } 230 231 static void 232 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc) 233 { 234 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 235 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 236 u32 length = drm_color_lut_size(crtc->state->gamma_lut); 237 u32 i; 238 239 for (i = 0; i < length; i++) { 240 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); 241 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); 242 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); 243 } 244 245 vc4_crtc_lut_load(crtc); 246 } 247 248 static u32 vc4_get_fifo_full_level(u32 format) 249 { 250 static const u32 fifo_len_bytes = 64; 251 static const u32 hvs_latency_pix = 6; 252 253 switch (format) { 254 case PV_CONTROL_FORMAT_DSIV_16: 255 case PV_CONTROL_FORMAT_DSIC_16: 256 return fifo_len_bytes - 2 * hvs_latency_pix; 257 case PV_CONTROL_FORMAT_DSIV_18: 258 return fifo_len_bytes - 14; 259 case PV_CONTROL_FORMAT_24: 260 case PV_CONTROL_FORMAT_DSIV_24: 261 default: 262 return fifo_len_bytes - 3 * hvs_latency_pix; 263 } 264 } 265 266 /* 267 * Returns the encoder attached to the CRTC. 268 * 269 * VC4 can only scan out to one encoder at a time, while the DRM core 270 * allows drivers to push pixels to more than one encoder from the 271 * same CRTC. 272 */ 273 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 274 { 275 struct drm_connector *connector; 276 struct drm_connector_list_iter conn_iter; 277 278 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 279 drm_for_each_connector_iter(connector, &conn_iter) { 280 if (connector->state->crtc == crtc) { 281 drm_connector_list_iter_end(&conn_iter); 282 return connector->encoder; 283 } 284 } 285 drm_connector_list_iter_end(&conn_iter); 286 287 return NULL; 288 } 289 290 static void vc4_crtc_config_pv(struct drm_crtc *crtc) 291 { 292 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 293 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 294 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 295 struct drm_crtc_state *state = crtc->state; 296 struct drm_display_mode *mode = &state->adjusted_mode; 297 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 298 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 299 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 300 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 301 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 302 303 /* Reset the PV fifo. */ 304 CRTC_WRITE(PV_CONTROL, 0); 305 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 306 CRTC_WRITE(PV_CONTROL, 0); 307 308 CRTC_WRITE(PV_HORZA, 309 VC4_SET_FIELD((mode->htotal - 310 mode->hsync_end) * pixel_rep, 311 PV_HORZA_HBP) | 312 VC4_SET_FIELD((mode->hsync_end - 313 mode->hsync_start) * pixel_rep, 314 PV_HORZA_HSYNC)); 315 CRTC_WRITE(PV_HORZB, 316 VC4_SET_FIELD((mode->hsync_start - 317 mode->hdisplay) * pixel_rep, 318 PV_HORZB_HFP) | 319 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 320 321 CRTC_WRITE(PV_VERTA, 322 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 323 PV_VERTA_VBP) | 324 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 325 PV_VERTA_VSYNC)); 326 CRTC_WRITE(PV_VERTB, 327 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 328 PV_VERTB_VFP) | 329 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 330 331 if (interlace) { 332 CRTC_WRITE(PV_VERTA_EVEN, 333 VC4_SET_FIELD(mode->crtc_vtotal - 334 mode->crtc_vsync_end - 1, 335 PV_VERTA_VBP) | 336 VC4_SET_FIELD(mode->crtc_vsync_end - 337 mode->crtc_vsync_start, 338 PV_VERTA_VSYNC)); 339 CRTC_WRITE(PV_VERTB_EVEN, 340 VC4_SET_FIELD(mode->crtc_vsync_start - 341 mode->crtc_vdisplay, 342 PV_VERTB_VFP) | 343 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 344 345 /* We set up first field even mode for HDMI. VEC's 346 * NTSC mode would want first field odd instead, once 347 * we support it (to do so, set ODD_FIRST and put the 348 * delay in VSYNCD_EVEN instead). 349 */ 350 CRTC_WRITE(PV_V_CONTROL, 351 PV_VCONTROL_CONTINUOUS | 352 (is_dsi ? PV_VCONTROL_DSI : 0) | 353 PV_VCONTROL_INTERLACE | 354 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 355 PV_VCONTROL_ODD_DELAY)); 356 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 357 } else { 358 CRTC_WRITE(PV_V_CONTROL, 359 PV_VCONTROL_CONTINUOUS | 360 (is_dsi ? PV_VCONTROL_DSI : 0)); 361 } 362 363 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 364 365 CRTC_WRITE(PV_CONTROL, 366 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 367 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 368 PV_CONTROL_FIFO_LEVEL) | 369 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 370 PV_CONTROL_CLR_AT_START | 371 PV_CONTROL_TRIGGER_UNDERFLOW | 372 PV_CONTROL_WAIT_HSTART | 373 VC4_SET_FIELD(vc4_encoder->clock_select, 374 PV_CONTROL_CLK_SELECT) | 375 PV_CONTROL_FIFO_CLR | 376 PV_CONTROL_EN); 377 } 378 379 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 380 { 381 struct drm_device *dev = crtc->dev; 382 struct vc4_dev *vc4 = to_vc4_dev(dev); 383 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 384 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 385 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 386 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 387 bool debug_dump_regs = false; 388 389 if (debug_dump_regs) { 390 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 391 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 392 drm_crtc_index(crtc)); 393 drm_print_regset32(&p, &vc4_crtc->regset); 394 } 395 396 if (vc4_crtc->channel == 2) { 397 u32 dispctrl; 398 u32 dsp3_mux; 399 400 /* 401 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 402 * FIFO X'. 403 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 404 * 405 * DSP3 is connected to FIFO2 unless the transposer is 406 * enabled. In this case, FIFO 2 is directly accessed by the 407 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 408 * route. 409 */ 410 if (vc4_state->feed_txp) 411 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 412 else 413 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 414 415 dispctrl = HVS_READ(SCALER_DISPCTRL) & 416 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 417 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 418 } 419 420 if (!vc4_state->feed_txp) 421 vc4_crtc_config_pv(crtc); 422 423 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 424 SCALER_DISPBKGND_AUTOHS | 425 SCALER_DISPBKGND_GAMMA | 426 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 427 428 /* Reload the LUT, since the SRAMs would have been disabled if 429 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 430 */ 431 vc4_crtc_lut_load(crtc); 432 433 if (debug_dump_regs) { 434 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 435 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 436 drm_crtc_index(crtc)); 437 drm_print_regset32(&p, &vc4_crtc->regset); 438 } 439 } 440 441 static void require_hvs_enabled(struct drm_device *dev) 442 { 443 struct vc4_dev *vc4 = to_vc4_dev(dev); 444 445 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 446 SCALER_DISPCTRL_ENABLE); 447 } 448 449 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 450 struct drm_crtc_state *old_state) 451 { 452 struct drm_device *dev = crtc->dev; 453 struct vc4_dev *vc4 = to_vc4_dev(dev); 454 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 455 u32 chan = vc4_crtc->channel; 456 int ret; 457 require_hvs_enabled(dev); 458 459 /* Disable vblank irq handling before crtc is disabled. */ 460 drm_crtc_vblank_off(crtc); 461 462 CRTC_WRITE(PV_V_CONTROL, 463 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 464 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 465 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 466 467 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 468 SCALER_DISPCTRLX_ENABLE) { 469 HVS_WRITE(SCALER_DISPCTRLX(chan), 470 SCALER_DISPCTRLX_RESET); 471 472 /* While the docs say that reset is self-clearing, it 473 * seems it doesn't actually. 474 */ 475 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 476 } 477 478 /* Once we leave, the scaler should be disabled and its fifo empty. */ 479 480 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 481 482 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 483 SCALER_DISPSTATX_MODE) != 484 SCALER_DISPSTATX_MODE_DISABLED); 485 486 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 487 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 488 SCALER_DISPSTATX_EMPTY); 489 490 /* 491 * Make sure we issue a vblank event after disabling the CRTC if 492 * someone was waiting it. 493 */ 494 if (crtc->state->event) { 495 unsigned long flags; 496 497 spin_lock_irqsave(&dev->event_lock, flags); 498 drm_crtc_send_vblank_event(crtc, crtc->state->event); 499 crtc->state->event = NULL; 500 spin_unlock_irqrestore(&dev->event_lock, flags); 501 } 502 } 503 504 void vc4_crtc_txp_armed(struct drm_crtc_state *state) 505 { 506 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 507 508 vc4_state->txp_armed = true; 509 } 510 511 static void vc4_crtc_update_dlist(struct drm_crtc *crtc) 512 { 513 struct drm_device *dev = crtc->dev; 514 struct vc4_dev *vc4 = to_vc4_dev(dev); 515 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 516 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 517 518 if (crtc->state->event) { 519 unsigned long flags; 520 521 crtc->state->event->pipe = drm_crtc_index(crtc); 522 523 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 524 525 spin_lock_irqsave(&dev->event_lock, flags); 526 527 if (!vc4_state->feed_txp || vc4_state->txp_armed) { 528 vc4_crtc->event = crtc->state->event; 529 crtc->state->event = NULL; 530 } 531 532 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 533 vc4_state->mm.start); 534 535 spin_unlock_irqrestore(&dev->event_lock, flags); 536 } else { 537 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 538 vc4_state->mm.start); 539 } 540 } 541 542 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 543 struct drm_crtc_state *old_state) 544 { 545 struct drm_device *dev = crtc->dev; 546 struct vc4_dev *vc4 = to_vc4_dev(dev); 547 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 548 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 549 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 550 551 require_hvs_enabled(dev); 552 553 /* Enable vblank irq handling before crtc is started otherwise 554 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 555 */ 556 drm_crtc_vblank_on(crtc); 557 vc4_crtc_update_dlist(crtc); 558 559 /* Turn on the scaler, which will wait for vstart to start 560 * compositing. 561 * When feeding the transposer, we should operate in oneshot 562 * mode. 563 */ 564 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 565 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 566 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 567 SCALER_DISPCTRLX_ENABLE | 568 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0)); 569 570 /* When feeding the transposer block the pixelvalve is unneeded and 571 * should not be enabled. 572 */ 573 if (!vc4_state->feed_txp) 574 CRTC_WRITE(PV_V_CONTROL, 575 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 576 } 577 578 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 579 const struct drm_display_mode *mode) 580 { 581 /* Do not allow doublescan modes from user space */ 582 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 583 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 584 crtc->base.id); 585 return MODE_NO_DBLESCAN; 586 } 587 588 return MODE_OK; 589 } 590 591 void vc4_crtc_get_margins(struct drm_crtc_state *state, 592 unsigned int *left, unsigned int *right, 593 unsigned int *top, unsigned int *bottom) 594 { 595 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 596 struct drm_connector_state *conn_state; 597 struct drm_connector *conn; 598 int i; 599 600 *left = vc4_state->margins.left; 601 *right = vc4_state->margins.right; 602 *top = vc4_state->margins.top; 603 *bottom = vc4_state->margins.bottom; 604 605 /* We have to interate over all new connector states because 606 * vc4_crtc_get_margins() might be called before 607 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 608 * might be outdated. 609 */ 610 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 611 if (conn_state->crtc != state->crtc) 612 continue; 613 614 *left = conn_state->tv.margins.left; 615 *right = conn_state->tv.margins.right; 616 *top = conn_state->tv.margins.top; 617 *bottom = conn_state->tv.margins.bottom; 618 break; 619 } 620 } 621 622 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 623 struct drm_crtc_state *state) 624 { 625 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 626 struct drm_device *dev = crtc->dev; 627 struct vc4_dev *vc4 = to_vc4_dev(dev); 628 struct drm_plane *plane; 629 unsigned long flags; 630 const struct drm_plane_state *plane_state; 631 struct drm_connector *conn; 632 struct drm_connector_state *conn_state; 633 u32 dlist_count = 0; 634 int ret, i; 635 636 /* The pixelvalve can only feed one encoder (and encoders are 637 * 1:1 with connectors.) 638 */ 639 if (hweight32(state->connector_mask) > 1) 640 return -EINVAL; 641 642 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 643 dlist_count += vc4_plane_dlist_size(plane_state); 644 645 dlist_count++; /* Account for SCALER_CTL0_END. */ 646 647 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 648 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 649 dlist_count); 650 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 651 if (ret) 652 return ret; 653 654 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 655 if (conn_state->crtc != crtc) 656 continue; 657 658 /* The writeback connector is implemented using the transposer 659 * block which is directly taking its data from the HVS FIFO. 660 */ 661 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) { 662 state->no_vblank = true; 663 vc4_state->feed_txp = true; 664 } else { 665 state->no_vblank = false; 666 vc4_state->feed_txp = false; 667 } 668 669 vc4_state->margins.left = conn_state->tv.margins.left; 670 vc4_state->margins.right = conn_state->tv.margins.right; 671 vc4_state->margins.top = conn_state->tv.margins.top; 672 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 673 break; 674 } 675 676 return 0; 677 } 678 679 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 680 struct drm_crtc_state *old_state) 681 { 682 struct drm_device *dev = crtc->dev; 683 struct vc4_dev *vc4 = to_vc4_dev(dev); 684 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 685 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 686 struct drm_plane *plane; 687 struct vc4_plane_state *vc4_plane_state; 688 bool debug_dump_regs = false; 689 bool enable_bg_fill = false; 690 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 691 u32 __iomem *dlist_next = dlist_start; 692 693 if (debug_dump_regs) { 694 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 695 vc4_hvs_dump_state(dev); 696 } 697 698 /* Copy all the active planes' dlist contents to the hardware dlist. */ 699 drm_atomic_crtc_for_each_plane(plane, crtc) { 700 /* Is this the first active plane? */ 701 if (dlist_next == dlist_start) { 702 /* We need to enable background fill when a plane 703 * could be alpha blending from the background, i.e. 704 * where no other plane is underneath. It suffices to 705 * consider the first active plane here since we set 706 * needs_bg_fill such that either the first plane 707 * already needs it or all planes on top blend from 708 * the first or a lower plane. 709 */ 710 vc4_plane_state = to_vc4_plane_state(plane->state); 711 enable_bg_fill = vc4_plane_state->needs_bg_fill; 712 } 713 714 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 715 } 716 717 writel(SCALER_CTL0_END, dlist_next); 718 dlist_next++; 719 720 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 721 722 if (enable_bg_fill) 723 /* This sets a black background color fill, as is the case 724 * with other DRM drivers. 725 */ 726 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 727 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) | 728 SCALER_DISPBKGND_FILL); 729 730 /* Only update DISPLIST if the CRTC was already running and is not 731 * being disabled. 732 * vc4_crtc_enable() takes care of updating the dlist just after 733 * re-enabling VBLANK interrupts and before enabling the engine. 734 * If the CRTC is being disabled, there's no point in updating this 735 * information. 736 */ 737 if (crtc->state->active && old_state->active) 738 vc4_crtc_update_dlist(crtc); 739 740 if (crtc->state->color_mgmt_changed) { 741 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)); 742 743 if (crtc->state->gamma_lut) { 744 vc4_crtc_update_gamma_lut(crtc); 745 dispbkgndx |= SCALER_DISPBKGND_GAMMA; 746 } else { 747 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step 748 * in hardware, which is the same as a linear lut that 749 * DRM expects us to use in absence of a user lut. 750 */ 751 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 752 } 753 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx); 754 } 755 756 if (debug_dump_regs) { 757 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 758 vc4_hvs_dump_state(dev); 759 } 760 } 761 762 static int vc4_enable_vblank(struct drm_crtc *crtc) 763 { 764 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 765 766 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 767 768 return 0; 769 } 770 771 static void vc4_disable_vblank(struct drm_crtc *crtc) 772 { 773 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 774 775 CRTC_WRITE(PV_INTEN, 0); 776 } 777 778 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 779 { 780 struct drm_crtc *crtc = &vc4_crtc->base; 781 struct drm_device *dev = crtc->dev; 782 struct vc4_dev *vc4 = to_vc4_dev(dev); 783 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 784 u32 chan = vc4_crtc->channel; 785 unsigned long flags; 786 787 spin_lock_irqsave(&dev->event_lock, flags); 788 if (vc4_crtc->event && 789 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 790 vc4_state->feed_txp)) { 791 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 792 vc4_crtc->event = NULL; 793 drm_crtc_vblank_put(crtc); 794 795 /* Wait for the page flip to unmask the underrun to ensure that 796 * the display list was updated by the hardware. Before that 797 * happens, the HVS will be using the previous display list with 798 * the CRTC and encoder already reconfigured, leading to 799 * underruns. This can be seen when reconfiguring the CRTC. 800 */ 801 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel); 802 } 803 spin_unlock_irqrestore(&dev->event_lock, flags); 804 } 805 806 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 807 { 808 crtc->t_vblank = ktime_get(); 809 drm_crtc_handle_vblank(&crtc->base); 810 vc4_crtc_handle_page_flip(crtc); 811 } 812 813 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 814 { 815 struct vc4_crtc *vc4_crtc = data; 816 u32 stat = CRTC_READ(PV_INTSTAT); 817 irqreturn_t ret = IRQ_NONE; 818 819 if (stat & PV_INT_VFP_START) { 820 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 821 vc4_crtc_handle_vblank(vc4_crtc); 822 ret = IRQ_HANDLED; 823 } 824 825 return ret; 826 } 827 828 struct vc4_async_flip_state { 829 struct drm_crtc *crtc; 830 struct drm_framebuffer *fb; 831 struct drm_framebuffer *old_fb; 832 struct drm_pending_vblank_event *event; 833 834 struct vc4_seqno_cb cb; 835 }; 836 837 /* Called when the V3D execution for the BO being flipped to is done, so that 838 * we can actually update the plane's address to point to it. 839 */ 840 static void 841 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 842 { 843 struct vc4_async_flip_state *flip_state = 844 container_of(cb, struct vc4_async_flip_state, cb); 845 struct drm_crtc *crtc = flip_state->crtc; 846 struct drm_device *dev = crtc->dev; 847 struct vc4_dev *vc4 = to_vc4_dev(dev); 848 struct drm_plane *plane = crtc->primary; 849 850 vc4_plane_async_set_fb(plane, flip_state->fb); 851 if (flip_state->event) { 852 unsigned long flags; 853 854 spin_lock_irqsave(&dev->event_lock, flags); 855 drm_crtc_send_vblank_event(crtc, flip_state->event); 856 spin_unlock_irqrestore(&dev->event_lock, flags); 857 } 858 859 drm_crtc_vblank_put(crtc); 860 drm_framebuffer_put(flip_state->fb); 861 862 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 863 * when the planes are updated through the async update path. 864 * FIXME: we should move to generic async-page-flip when it's 865 * available, so that we can get rid of this hand-made cleanup_fb() 866 * logic. 867 */ 868 if (flip_state->old_fb) { 869 struct drm_gem_cma_object *cma_bo; 870 struct vc4_bo *bo; 871 872 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 873 bo = to_vc4_bo(&cma_bo->base); 874 vc4_bo_dec_usecnt(bo); 875 drm_framebuffer_put(flip_state->old_fb); 876 } 877 878 kfree(flip_state); 879 880 up(&vc4->async_modeset); 881 } 882 883 /* Implements async (non-vblank-synced) page flips. 884 * 885 * The page flip ioctl needs to return immediately, so we grab the 886 * modeset semaphore on the pipe, and queue the address update for 887 * when V3D is done with the BO being flipped to. 888 */ 889 static int vc4_async_page_flip(struct drm_crtc *crtc, 890 struct drm_framebuffer *fb, 891 struct drm_pending_vblank_event *event, 892 uint32_t flags) 893 { 894 struct drm_device *dev = crtc->dev; 895 struct vc4_dev *vc4 = to_vc4_dev(dev); 896 struct drm_plane *plane = crtc->primary; 897 int ret = 0; 898 struct vc4_async_flip_state *flip_state; 899 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 900 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 901 902 /* Increment the BO usecnt here, so that we never end up with an 903 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 904 * plane is later updated through the non-async path. 905 * FIXME: we should move to generic async-page-flip when it's 906 * available, so that we can get rid of this hand-made prepare_fb() 907 * logic. 908 */ 909 ret = vc4_bo_inc_usecnt(bo); 910 if (ret) 911 return ret; 912 913 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 914 if (!flip_state) { 915 vc4_bo_dec_usecnt(bo); 916 return -ENOMEM; 917 } 918 919 drm_framebuffer_get(fb); 920 flip_state->fb = fb; 921 flip_state->crtc = crtc; 922 flip_state->event = event; 923 924 /* Make sure all other async modesetes have landed. */ 925 ret = down_interruptible(&vc4->async_modeset); 926 if (ret) { 927 drm_framebuffer_put(fb); 928 vc4_bo_dec_usecnt(bo); 929 kfree(flip_state); 930 return ret; 931 } 932 933 /* Save the current FB before it's replaced by the new one in 934 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 935 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 936 * it consistent. 937 * FIXME: we should move to generic async-page-flip when it's 938 * available, so that we can get rid of this hand-made cleanup_fb() 939 * logic. 940 */ 941 flip_state->old_fb = plane->state->fb; 942 if (flip_state->old_fb) 943 drm_framebuffer_get(flip_state->old_fb); 944 945 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 946 947 /* Immediately update the plane's legacy fb pointer, so that later 948 * modeset prep sees the state that will be present when the semaphore 949 * is released. 950 */ 951 drm_atomic_set_fb_for_plane(plane->state, fb); 952 953 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 954 vc4_async_page_flip_complete); 955 956 /* Driver takes ownership of state on successful async commit. */ 957 return 0; 958 } 959 960 static int vc4_page_flip(struct drm_crtc *crtc, 961 struct drm_framebuffer *fb, 962 struct drm_pending_vblank_event *event, 963 uint32_t flags, 964 struct drm_modeset_acquire_ctx *ctx) 965 { 966 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 967 return vc4_async_page_flip(crtc, fb, event, flags); 968 else 969 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 970 } 971 972 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 973 { 974 struct vc4_crtc_state *vc4_state, *old_vc4_state; 975 976 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 977 if (!vc4_state) 978 return NULL; 979 980 old_vc4_state = to_vc4_crtc_state(crtc->state); 981 vc4_state->feed_txp = old_vc4_state->feed_txp; 982 vc4_state->margins = old_vc4_state->margins; 983 984 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 985 return &vc4_state->base; 986 } 987 988 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 989 struct drm_crtc_state *state) 990 { 991 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 992 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 993 994 if (vc4_state->mm.allocated) { 995 unsigned long flags; 996 997 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 998 drm_mm_remove_node(&vc4_state->mm); 999 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 1000 1001 } 1002 1003 drm_atomic_helper_crtc_destroy_state(crtc, state); 1004 } 1005 1006 static void 1007 vc4_crtc_reset(struct drm_crtc *crtc) 1008 { 1009 if (crtc->state) 1010 vc4_crtc_destroy_state(crtc, crtc->state); 1011 1012 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 1013 if (crtc->state) 1014 crtc->state->crtc = crtc; 1015 } 1016 1017 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1018 .set_config = drm_atomic_helper_set_config, 1019 .destroy = vc4_crtc_destroy, 1020 .page_flip = vc4_page_flip, 1021 .set_property = NULL, 1022 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1023 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1024 .reset = vc4_crtc_reset, 1025 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1026 .atomic_destroy_state = vc4_crtc_destroy_state, 1027 .gamma_set = drm_atomic_helper_legacy_gamma_set, 1028 .enable_vblank = vc4_enable_vblank, 1029 .disable_vblank = vc4_disable_vblank, 1030 }; 1031 1032 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1033 .mode_set_nofb = vc4_crtc_mode_set_nofb, 1034 .mode_valid = vc4_crtc_mode_valid, 1035 .atomic_check = vc4_crtc_atomic_check, 1036 .atomic_flush = vc4_crtc_atomic_flush, 1037 .atomic_enable = vc4_crtc_atomic_enable, 1038 .atomic_disable = vc4_crtc_atomic_disable, 1039 }; 1040 1041 static const struct vc4_crtc_data pv0_data = { 1042 .hvs_channel = 0, 1043 .debugfs_name = "crtc0_regs", 1044 .encoder_types = { 1045 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1046 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1047 }, 1048 }; 1049 1050 static const struct vc4_crtc_data pv1_data = { 1051 .hvs_channel = 2, 1052 .debugfs_name = "crtc1_regs", 1053 .encoder_types = { 1054 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1055 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1056 }, 1057 }; 1058 1059 static const struct vc4_crtc_data pv2_data = { 1060 .hvs_channel = 1, 1061 .debugfs_name = "crtc2_regs", 1062 .encoder_types = { 1063 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 1064 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1065 }, 1066 }; 1067 1068 static const struct of_device_id vc4_crtc_dt_match[] = { 1069 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 1070 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 1071 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 1072 {} 1073 }; 1074 1075 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1076 struct drm_crtc *crtc) 1077 { 1078 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1079 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 1080 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 1081 struct drm_encoder *encoder; 1082 1083 drm_for_each_encoder(encoder, drm) { 1084 struct vc4_encoder *vc4_encoder; 1085 int i; 1086 1087 /* HVS FIFO2 can feed the TXP IP. */ 1088 if (crtc_data->hvs_channel == 2 && 1089 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 1090 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1091 continue; 1092 } 1093 1094 vc4_encoder = to_vc4_encoder(encoder); 1095 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 1096 if (vc4_encoder->type == encoder_types[i]) { 1097 vc4_encoder->clock_select = i; 1098 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1099 break; 1100 } 1101 } 1102 } 1103 } 1104 1105 static void 1106 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 1107 { 1108 struct drm_device *drm = vc4_crtc->base.dev; 1109 struct vc4_dev *vc4 = to_vc4_dev(drm); 1110 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 1111 /* Top/base are supposed to be 4-pixel aligned, but the 1112 * Raspberry Pi firmware fills the low bits (which are 1113 * presumably ignored). 1114 */ 1115 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 1116 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 1117 1118 vc4_crtc->cob_size = top - base + 4; 1119 } 1120 1121 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1122 { 1123 struct platform_device *pdev = to_platform_device(dev); 1124 struct drm_device *drm = dev_get_drvdata(master); 1125 struct vc4_crtc *vc4_crtc; 1126 struct drm_crtc *crtc; 1127 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 1128 const struct of_device_id *match; 1129 int ret, i; 1130 1131 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1132 if (!vc4_crtc) 1133 return -ENOMEM; 1134 crtc = &vc4_crtc->base; 1135 1136 match = of_match_device(vc4_crtc_dt_match, dev); 1137 if (!match) 1138 return -ENODEV; 1139 vc4_crtc->data = match->data; 1140 vc4_crtc->pdev = pdev; 1141 1142 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1143 if (IS_ERR(vc4_crtc->regs)) 1144 return PTR_ERR(vc4_crtc->regs); 1145 1146 vc4_crtc->regset.base = vc4_crtc->regs; 1147 vc4_crtc->regset.regs = crtc_regs; 1148 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1149 1150 /* For now, we create just the primary and the legacy cursor 1151 * planes. We should be able to stack more planes on easily, 1152 * but to do that we would need to compute the bandwidth 1153 * requirement of the plane configuration, and reject ones 1154 * that will take too much. 1155 */ 1156 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1157 if (IS_ERR(primary_plane)) { 1158 dev_err(dev, "failed to construct primary plane\n"); 1159 ret = PTR_ERR(primary_plane); 1160 goto err; 1161 } 1162 1163 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1164 &vc4_crtc_funcs, NULL); 1165 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 1166 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 1167 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1168 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1169 1170 /* We support CTM, but only for one CRTC at a time. It's therefore 1171 * implemented as private driver state in vc4_kms, not here. 1172 */ 1173 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1174 1175 /* Set up some arbitrary number of planes. We're not limited 1176 * by a set number of physical registers, just the space in 1177 * the HVS (16k) and how small an plane can be (28 bytes). 1178 * However, each plane we set up takes up some memory, and 1179 * increases the cost of looping over planes, which atomic 1180 * modesetting does quite a bit. As a result, we pick a 1181 * modest number of planes to expose, that should hopefully 1182 * still cover any sane usecase. 1183 */ 1184 for (i = 0; i < 8; i++) { 1185 struct drm_plane *plane = 1186 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1187 1188 if (IS_ERR(plane)) 1189 continue; 1190 1191 plane->possible_crtcs = drm_crtc_mask(crtc); 1192 } 1193 1194 /* Set up the legacy cursor after overlay initialization, 1195 * since we overlay planes on the CRTC in the order they were 1196 * initialized. 1197 */ 1198 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1199 if (!IS_ERR(cursor_plane)) { 1200 cursor_plane->possible_crtcs = drm_crtc_mask(crtc); 1201 crtc->cursor = cursor_plane; 1202 } 1203 1204 vc4_crtc_get_cob_allocation(vc4_crtc); 1205 1206 CRTC_WRITE(PV_INTEN, 0); 1207 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1208 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1209 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1210 if (ret) 1211 goto err_destroy_planes; 1212 1213 vc4_set_crtc_possible_masks(drm, crtc); 1214 1215 for (i = 0; i < crtc->gamma_size; i++) { 1216 vc4_crtc->lut_r[i] = i; 1217 vc4_crtc->lut_g[i] = i; 1218 vc4_crtc->lut_b[i] = i; 1219 } 1220 1221 platform_set_drvdata(pdev, vc4_crtc); 1222 1223 vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name, 1224 &vc4_crtc->regset); 1225 1226 return 0; 1227 1228 err_destroy_planes: 1229 list_for_each_entry_safe(destroy_plane, temp, 1230 &drm->mode_config.plane_list, head) { 1231 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1232 destroy_plane->funcs->destroy(destroy_plane); 1233 } 1234 err: 1235 return ret; 1236 } 1237 1238 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1239 void *data) 1240 { 1241 struct platform_device *pdev = to_platform_device(dev); 1242 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1243 1244 vc4_crtc_destroy(&vc4_crtc->base); 1245 1246 CRTC_WRITE(PV_INTEN, 0); 1247 1248 platform_set_drvdata(pdev, NULL); 1249 } 1250 1251 static const struct component_ops vc4_crtc_ops = { 1252 .bind = vc4_crtc_bind, 1253 .unbind = vc4_crtc_unbind, 1254 }; 1255 1256 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1257 { 1258 return component_add(&pdev->dev, &vc4_crtc_ops); 1259 } 1260 1261 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1262 { 1263 component_del(&pdev->dev, &vc4_crtc_ops); 1264 return 0; 1265 } 1266 1267 struct platform_driver vc4_crtc_driver = { 1268 .probe = vc4_crtc_dev_probe, 1269 .remove = vc4_crtc_dev_remove, 1270 .driver = { 1271 .name = "vc4_crtc", 1272 .of_match_table = vc4_crtc_dt_match, 1273 }, 1274 }; 1275