1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * encoder's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, the CRTC is also 19 * responsible for writing the display list for the HVS channel that 20 * the CRTC will use. 21 * 22 * The 2835 has 3 different pixel valves. pv0 in the audio power 23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 24 * image domain can feed either HDMI or the SDTV controller. The 25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 26 * SDTV, etc.) according to which output type is chosen in the mux. 27 * 28 * For power management, the pixel valve's registers are all clocked 29 * by the AXI clock, while the timings and FIFOs make use of the 30 * output-specific clock. Since the encoders also directly consume 31 * the CPRMAN clocks, and know what timings they need, they are the 32 * ones that set the clock. 33 */ 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_crtc_helper.h> 38 #include <linux/clk.h> 39 #include <drm/drm_fb_cma_helper.h> 40 #include <linux/component.h> 41 #include <linux/of_device.h> 42 #include "vc4_drv.h" 43 #include "vc4_regs.h" 44 45 struct vc4_crtc { 46 struct drm_crtc base; 47 const struct vc4_crtc_data *data; 48 void __iomem *regs; 49 50 /* Timestamp at start of vblank irq - unaffected by lock delays. */ 51 ktime_t t_vblank; 52 53 /* Which HVS channel we're using for our CRTC. */ 54 int channel; 55 56 u8 lut_r[256]; 57 u8 lut_g[256]; 58 u8 lut_b[256]; 59 /* Size in pixels of the COB memory allocated to this CRTC. */ 60 u32 cob_size; 61 62 struct drm_pending_vblank_event *event; 63 }; 64 65 struct vc4_crtc_state { 66 struct drm_crtc_state base; 67 /* Dlist area for this CRTC configuration. */ 68 struct drm_mm_node mm; 69 }; 70 71 static inline struct vc4_crtc * 72 to_vc4_crtc(struct drm_crtc *crtc) 73 { 74 return (struct vc4_crtc *)crtc; 75 } 76 77 static inline struct vc4_crtc_state * 78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 79 { 80 return (struct vc4_crtc_state *)crtc_state; 81 } 82 83 struct vc4_crtc_data { 84 /* Which channel of the HVS this pixelvalve sources from. */ 85 int hvs_channel; 86 87 enum vc4_encoder_type encoder_types[4]; 88 }; 89 90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 92 93 #define CRTC_REG(reg) { reg, #reg } 94 static const struct { 95 u32 reg; 96 const char *name; 97 } crtc_regs[] = { 98 CRTC_REG(PV_CONTROL), 99 CRTC_REG(PV_V_CONTROL), 100 CRTC_REG(PV_VSYNCD_EVEN), 101 CRTC_REG(PV_HORZA), 102 CRTC_REG(PV_HORZB), 103 CRTC_REG(PV_VERTA), 104 CRTC_REG(PV_VERTB), 105 CRTC_REG(PV_VERTA_EVEN), 106 CRTC_REG(PV_VERTB_EVEN), 107 CRTC_REG(PV_INTEN), 108 CRTC_REG(PV_INTSTAT), 109 CRTC_REG(PV_STAT), 110 CRTC_REG(PV_HACT_ACT), 111 }; 112 113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 114 { 115 int i; 116 117 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 118 DRM_INFO("0x%04x (%s): 0x%08x\n", 119 crtc_regs[i].reg, crtc_regs[i].name, 120 CRTC_READ(crtc_regs[i].reg)); 121 } 122 } 123 124 #ifdef CONFIG_DEBUG_FS 125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 126 { 127 struct drm_info_node *node = (struct drm_info_node *)m->private; 128 struct drm_device *dev = node->minor->dev; 129 int crtc_index = (uintptr_t)node->info_ent->data; 130 struct drm_crtc *crtc; 131 struct vc4_crtc *vc4_crtc; 132 int i; 133 134 i = 0; 135 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 136 if (i == crtc_index) 137 break; 138 i++; 139 } 140 if (!crtc) 141 return 0; 142 vc4_crtc = to_vc4_crtc(crtc); 143 144 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 145 seq_printf(m, "%s (0x%04x): 0x%08x\n", 146 crtc_regs[i].name, crtc_regs[i].reg, 147 CRTC_READ(crtc_regs[i].reg)); 148 } 149 150 return 0; 151 } 152 #endif 153 154 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 155 bool in_vblank_irq, int *vpos, int *hpos, 156 ktime_t *stime, ktime_t *etime, 157 const struct drm_display_mode *mode) 158 { 159 struct vc4_dev *vc4 = to_vc4_dev(dev); 160 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 161 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 162 u32 val; 163 int fifo_lines; 164 int vblank_lines; 165 bool ret = false; 166 167 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 168 169 /* Get optional system timestamp before query. */ 170 if (stime) 171 *stime = ktime_get(); 172 173 /* 174 * Read vertical scanline which is currently composed for our 175 * pixelvalve by the HVS, and also the scaler status. 176 */ 177 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 178 179 /* Get optional system timestamp after query. */ 180 if (etime) 181 *etime = ktime_get(); 182 183 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 184 185 /* Vertical position of hvs composed scanline. */ 186 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 187 *hpos = 0; 188 189 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 190 *vpos /= 2; 191 192 /* Use hpos to correct for field offset in interlaced mode. */ 193 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 194 *hpos += mode->crtc_htotal / 2; 195 } 196 197 /* This is the offset we need for translating hvs -> pv scanout pos. */ 198 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 199 200 if (fifo_lines > 0) 201 ret = true; 202 203 /* HVS more than fifo_lines into frame for compositing? */ 204 if (*vpos > fifo_lines) { 205 /* 206 * We are in active scanout and can get some meaningful results 207 * from HVS. The actual PV scanout can not trail behind more 208 * than fifo_lines as that is the fifo's capacity. Assume that 209 * in active scanout the HVS and PV work in lockstep wrt. HVS 210 * refilling the fifo and PV consuming from the fifo, ie. 211 * whenever the PV consumes and frees up a scanline in the 212 * fifo, the HVS will immediately refill it, therefore 213 * incrementing vpos. Therefore we choose HVS read position - 214 * fifo size in scanlines as a estimate of the real scanout 215 * position of the PV. 216 */ 217 *vpos -= fifo_lines + 1; 218 219 return ret; 220 } 221 222 /* 223 * Less: This happens when we are in vblank and the HVS, after getting 224 * the VSTART restart signal from the PV, just started refilling its 225 * fifo with new lines from the top-most lines of the new framebuffers. 226 * The PV does not scan out in vblank, so does not remove lines from 227 * the fifo, so the fifo will be full quickly and the HVS has to pause. 228 * We can't get meaningful readings wrt. scanline position of the PV 229 * and need to make things up in a approximative but consistent way. 230 */ 231 vblank_lines = mode->vtotal - mode->vdisplay; 232 233 if (in_vblank_irq) { 234 /* 235 * Assume the irq handler got called close to first 236 * line of vblank, so PV has about a full vblank 237 * scanlines to go, and as a base timestamp use the 238 * one taken at entry into vblank irq handler, so it 239 * is not affected by random delays due to lock 240 * contention on event_lock or vblank_time lock in 241 * the core. 242 */ 243 *vpos = -vblank_lines; 244 245 if (stime) 246 *stime = vc4_crtc->t_vblank; 247 if (etime) 248 *etime = vc4_crtc->t_vblank; 249 250 /* 251 * If the HVS fifo is not yet full then we know for certain 252 * we are at the very beginning of vblank, as the hvs just 253 * started refilling, and the stime and etime timestamps 254 * truly correspond to start of vblank. 255 * 256 * Unfortunately there's no way to report this to upper levels 257 * and make it more useful. 258 */ 259 } else { 260 /* 261 * No clue where we are inside vblank. Return a vpos of zero, 262 * which will cause calling code to just return the etime 263 * timestamp uncorrected. At least this is no worse than the 264 * standard fallback. 265 */ 266 *vpos = 0; 267 } 268 269 return ret; 270 } 271 272 static void vc4_crtc_destroy(struct drm_crtc *crtc) 273 { 274 drm_crtc_cleanup(crtc); 275 } 276 277 static void 278 vc4_crtc_lut_load(struct drm_crtc *crtc) 279 { 280 struct drm_device *dev = crtc->dev; 281 struct vc4_dev *vc4 = to_vc4_dev(dev); 282 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 283 u32 i; 284 285 /* The LUT memory is laid out with each HVS channel in order, 286 * each of which takes 256 writes for R, 256 for G, then 256 287 * for B. 288 */ 289 HVS_WRITE(SCALER_GAMADDR, 290 SCALER_GAMADDR_AUTOINC | 291 (vc4_crtc->channel * 3 * crtc->gamma_size)); 292 293 for (i = 0; i < crtc->gamma_size; i++) 294 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 295 for (i = 0; i < crtc->gamma_size; i++) 296 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 297 for (i = 0; i < crtc->gamma_size; i++) 298 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 299 } 300 301 static int 302 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 303 uint32_t size, 304 struct drm_modeset_acquire_ctx *ctx) 305 { 306 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 307 u32 i; 308 309 for (i = 0; i < size; i++) { 310 vc4_crtc->lut_r[i] = r[i] >> 8; 311 vc4_crtc->lut_g[i] = g[i] >> 8; 312 vc4_crtc->lut_b[i] = b[i] >> 8; 313 } 314 315 vc4_crtc_lut_load(crtc); 316 317 return 0; 318 } 319 320 static u32 vc4_get_fifo_full_level(u32 format) 321 { 322 static const u32 fifo_len_bytes = 64; 323 static const u32 hvs_latency_pix = 6; 324 325 switch (format) { 326 case PV_CONTROL_FORMAT_DSIV_16: 327 case PV_CONTROL_FORMAT_DSIC_16: 328 return fifo_len_bytes - 2 * hvs_latency_pix; 329 case PV_CONTROL_FORMAT_DSIV_18: 330 return fifo_len_bytes - 14; 331 case PV_CONTROL_FORMAT_24: 332 case PV_CONTROL_FORMAT_DSIV_24: 333 default: 334 return fifo_len_bytes - 3 * hvs_latency_pix; 335 } 336 } 337 338 /* 339 * Returns the encoder attached to the CRTC. 340 * 341 * VC4 can only scan out to one encoder at a time, while the DRM core 342 * allows drivers to push pixels to more than one encoder from the 343 * same CRTC. 344 */ 345 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 346 { 347 struct drm_connector *connector; 348 struct drm_connector_list_iter conn_iter; 349 350 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 351 drm_for_each_connector_iter(connector, &conn_iter) { 352 if (connector->state->crtc == crtc) { 353 drm_connector_list_iter_end(&conn_iter); 354 return connector->encoder; 355 } 356 } 357 drm_connector_list_iter_end(&conn_iter); 358 359 return NULL; 360 } 361 362 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 363 { 364 struct drm_device *dev = crtc->dev; 365 struct vc4_dev *vc4 = to_vc4_dev(dev); 366 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 367 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 368 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 369 struct drm_crtc_state *state = crtc->state; 370 struct drm_display_mode *mode = &state->adjusted_mode; 371 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 372 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 373 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 374 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 375 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 376 bool debug_dump_regs = false; 377 378 if (debug_dump_regs) { 379 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 380 vc4_crtc_dump_regs(vc4_crtc); 381 } 382 383 /* Reset the PV fifo. */ 384 CRTC_WRITE(PV_CONTROL, 0); 385 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 386 CRTC_WRITE(PV_CONTROL, 0); 387 388 CRTC_WRITE(PV_HORZA, 389 VC4_SET_FIELD((mode->htotal - 390 mode->hsync_end) * pixel_rep, 391 PV_HORZA_HBP) | 392 VC4_SET_FIELD((mode->hsync_end - 393 mode->hsync_start) * pixel_rep, 394 PV_HORZA_HSYNC)); 395 CRTC_WRITE(PV_HORZB, 396 VC4_SET_FIELD((mode->hsync_start - 397 mode->hdisplay) * pixel_rep, 398 PV_HORZB_HFP) | 399 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 400 401 CRTC_WRITE(PV_VERTA, 402 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 403 PV_VERTA_VBP) | 404 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 405 PV_VERTA_VSYNC)); 406 CRTC_WRITE(PV_VERTB, 407 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 408 PV_VERTB_VFP) | 409 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 410 411 if (interlace) { 412 CRTC_WRITE(PV_VERTA_EVEN, 413 VC4_SET_FIELD(mode->crtc_vtotal - 414 mode->crtc_vsync_end - 1, 415 PV_VERTA_VBP) | 416 VC4_SET_FIELD(mode->crtc_vsync_end - 417 mode->crtc_vsync_start, 418 PV_VERTA_VSYNC)); 419 CRTC_WRITE(PV_VERTB_EVEN, 420 VC4_SET_FIELD(mode->crtc_vsync_start - 421 mode->crtc_vdisplay, 422 PV_VERTB_VFP) | 423 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 424 425 /* We set up first field even mode for HDMI. VEC's 426 * NTSC mode would want first field odd instead, once 427 * we support it (to do so, set ODD_FIRST and put the 428 * delay in VSYNCD_EVEN instead). 429 */ 430 CRTC_WRITE(PV_V_CONTROL, 431 PV_VCONTROL_CONTINUOUS | 432 (is_dsi ? PV_VCONTROL_DSI : 0) | 433 PV_VCONTROL_INTERLACE | 434 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 435 PV_VCONTROL_ODD_DELAY)); 436 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 437 } else { 438 CRTC_WRITE(PV_V_CONTROL, 439 PV_VCONTROL_CONTINUOUS | 440 (is_dsi ? PV_VCONTROL_DSI : 0)); 441 } 442 443 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 444 445 CRTC_WRITE(PV_CONTROL, 446 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 447 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 448 PV_CONTROL_FIFO_LEVEL) | 449 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 450 PV_CONTROL_CLR_AT_START | 451 PV_CONTROL_TRIGGER_UNDERFLOW | 452 PV_CONTROL_WAIT_HSTART | 453 VC4_SET_FIELD(vc4_encoder->clock_select, 454 PV_CONTROL_CLK_SELECT) | 455 PV_CONTROL_FIFO_CLR | 456 PV_CONTROL_EN); 457 458 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 459 SCALER_DISPBKGND_AUTOHS | 460 SCALER_DISPBKGND_GAMMA | 461 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 462 463 /* Reload the LUT, since the SRAMs would have been disabled if 464 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 465 */ 466 vc4_crtc_lut_load(crtc); 467 468 if (debug_dump_regs) { 469 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 470 vc4_crtc_dump_regs(vc4_crtc); 471 } 472 } 473 474 static void require_hvs_enabled(struct drm_device *dev) 475 { 476 struct vc4_dev *vc4 = to_vc4_dev(dev); 477 478 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 479 SCALER_DISPCTRL_ENABLE); 480 } 481 482 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 483 struct drm_crtc_state *old_state) 484 { 485 struct drm_device *dev = crtc->dev; 486 struct vc4_dev *vc4 = to_vc4_dev(dev); 487 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 488 u32 chan = vc4_crtc->channel; 489 int ret; 490 require_hvs_enabled(dev); 491 492 /* Disable vblank irq handling before crtc is disabled. */ 493 drm_crtc_vblank_off(crtc); 494 495 CRTC_WRITE(PV_V_CONTROL, 496 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 497 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 498 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 499 500 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 501 SCALER_DISPCTRLX_ENABLE) { 502 HVS_WRITE(SCALER_DISPCTRLX(chan), 503 SCALER_DISPCTRLX_RESET); 504 505 /* While the docs say that reset is self-clearing, it 506 * seems it doesn't actually. 507 */ 508 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 509 } 510 511 /* Once we leave, the scaler should be disabled and its fifo empty. */ 512 513 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 514 515 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 516 SCALER_DISPSTATX_MODE) != 517 SCALER_DISPSTATX_MODE_DISABLED); 518 519 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 520 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 521 SCALER_DISPSTATX_EMPTY); 522 523 /* 524 * Make sure we issue a vblank event after disabling the CRTC if 525 * someone was waiting it. 526 */ 527 if (crtc->state->event) { 528 unsigned long flags; 529 530 spin_lock_irqsave(&dev->event_lock, flags); 531 drm_crtc_send_vblank_event(crtc, crtc->state->event); 532 crtc->state->event = NULL; 533 spin_unlock_irqrestore(&dev->event_lock, flags); 534 } 535 } 536 537 static void vc4_crtc_update_dlist(struct drm_crtc *crtc) 538 { 539 struct drm_device *dev = crtc->dev; 540 struct vc4_dev *vc4 = to_vc4_dev(dev); 541 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 542 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 543 544 if (crtc->state->event) { 545 unsigned long flags; 546 547 crtc->state->event->pipe = drm_crtc_index(crtc); 548 549 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 550 551 spin_lock_irqsave(&dev->event_lock, flags); 552 vc4_crtc->event = crtc->state->event; 553 crtc->state->event = NULL; 554 555 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 556 vc4_state->mm.start); 557 558 spin_unlock_irqrestore(&dev->event_lock, flags); 559 } else { 560 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 561 vc4_state->mm.start); 562 } 563 } 564 565 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 566 struct drm_crtc_state *old_state) 567 { 568 struct drm_device *dev = crtc->dev; 569 struct vc4_dev *vc4 = to_vc4_dev(dev); 570 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 571 struct drm_crtc_state *state = crtc->state; 572 struct drm_display_mode *mode = &state->adjusted_mode; 573 574 require_hvs_enabled(dev); 575 576 /* Enable vblank irq handling before crtc is started otherwise 577 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 578 */ 579 drm_crtc_vblank_on(crtc); 580 vc4_crtc_update_dlist(crtc); 581 582 /* Turn on the scaler, which will wait for vstart to start 583 * compositing. 584 */ 585 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 586 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 587 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 588 SCALER_DISPCTRLX_ENABLE); 589 590 /* Turn on the pixel valve, which will emit the vstart signal. */ 591 CRTC_WRITE(PV_V_CONTROL, 592 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 593 } 594 595 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 596 const struct drm_display_mode *mode) 597 { 598 /* Do not allow doublescan modes from user space */ 599 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 600 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 601 crtc->base.id); 602 return MODE_NO_DBLESCAN; 603 } 604 605 return MODE_OK; 606 } 607 608 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 609 struct drm_crtc_state *state) 610 { 611 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 612 struct drm_device *dev = crtc->dev; 613 struct vc4_dev *vc4 = to_vc4_dev(dev); 614 struct drm_plane *plane; 615 unsigned long flags; 616 const struct drm_plane_state *plane_state; 617 u32 dlist_count = 0; 618 int ret; 619 620 /* The pixelvalve can only feed one encoder (and encoders are 621 * 1:1 with connectors.) 622 */ 623 if (hweight32(state->connector_mask) > 1) 624 return -EINVAL; 625 626 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 627 dlist_count += vc4_plane_dlist_size(plane_state); 628 629 dlist_count++; /* Account for SCALER_CTL0_END. */ 630 631 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 632 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 633 dlist_count); 634 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 635 if (ret) 636 return ret; 637 638 return 0; 639 } 640 641 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 642 struct drm_crtc_state *old_state) 643 { 644 struct drm_device *dev = crtc->dev; 645 struct vc4_dev *vc4 = to_vc4_dev(dev); 646 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 647 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 648 struct drm_plane *plane; 649 struct vc4_plane_state *vc4_plane_state; 650 bool debug_dump_regs = false; 651 bool enable_bg_fill = false; 652 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 653 u32 __iomem *dlist_next = dlist_start; 654 655 if (debug_dump_regs) { 656 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 657 vc4_hvs_dump_state(dev); 658 } 659 660 /* Copy all the active planes' dlist contents to the hardware dlist. */ 661 drm_atomic_crtc_for_each_plane(plane, crtc) { 662 /* Is this the first active plane? */ 663 if (dlist_next == dlist_start) { 664 /* We need to enable background fill when a plane 665 * could be alpha blending from the background, i.e. 666 * where no other plane is underneath. It suffices to 667 * consider the first active plane here since we set 668 * needs_bg_fill such that either the first plane 669 * already needs it or all planes on top blend from 670 * the first or a lower plane. 671 */ 672 vc4_plane_state = to_vc4_plane_state(plane->state); 673 enable_bg_fill = vc4_plane_state->needs_bg_fill; 674 } 675 676 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 677 } 678 679 writel(SCALER_CTL0_END, dlist_next); 680 dlist_next++; 681 682 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 683 684 if (enable_bg_fill) 685 /* This sets a black background color fill, as is the case 686 * with other DRM drivers. 687 */ 688 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 689 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) | 690 SCALER_DISPBKGND_FILL); 691 692 /* Only update DISPLIST if the CRTC was already running and is not 693 * being disabled. 694 * vc4_crtc_enable() takes care of updating the dlist just after 695 * re-enabling VBLANK interrupts and before enabling the engine. 696 * If the CRTC is being disabled, there's no point in updating this 697 * information. 698 */ 699 if (crtc->state->active && old_state->active) 700 vc4_crtc_update_dlist(crtc); 701 702 if (debug_dump_regs) { 703 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 704 vc4_hvs_dump_state(dev); 705 } 706 } 707 708 static int vc4_enable_vblank(struct drm_crtc *crtc) 709 { 710 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 711 712 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 713 714 return 0; 715 } 716 717 static void vc4_disable_vblank(struct drm_crtc *crtc) 718 { 719 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 720 721 CRTC_WRITE(PV_INTEN, 0); 722 } 723 724 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 725 { 726 struct drm_crtc *crtc = &vc4_crtc->base; 727 struct drm_device *dev = crtc->dev; 728 struct vc4_dev *vc4 = to_vc4_dev(dev); 729 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 730 u32 chan = vc4_crtc->channel; 731 unsigned long flags; 732 733 spin_lock_irqsave(&dev->event_lock, flags); 734 if (vc4_crtc->event && 735 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { 736 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 737 vc4_crtc->event = NULL; 738 drm_crtc_vblank_put(crtc); 739 } 740 spin_unlock_irqrestore(&dev->event_lock, flags); 741 } 742 743 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 744 { 745 struct vc4_crtc *vc4_crtc = data; 746 u32 stat = CRTC_READ(PV_INTSTAT); 747 irqreturn_t ret = IRQ_NONE; 748 749 if (stat & PV_INT_VFP_START) { 750 vc4_crtc->t_vblank = ktime_get(); 751 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 752 drm_crtc_handle_vblank(&vc4_crtc->base); 753 vc4_crtc_handle_page_flip(vc4_crtc); 754 ret = IRQ_HANDLED; 755 } 756 757 return ret; 758 } 759 760 struct vc4_async_flip_state { 761 struct drm_crtc *crtc; 762 struct drm_framebuffer *fb; 763 struct drm_pending_vblank_event *event; 764 765 struct vc4_seqno_cb cb; 766 }; 767 768 /* Called when the V3D execution for the BO being flipped to is done, so that 769 * we can actually update the plane's address to point to it. 770 */ 771 static void 772 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 773 { 774 struct vc4_async_flip_state *flip_state = 775 container_of(cb, struct vc4_async_flip_state, cb); 776 struct drm_crtc *crtc = flip_state->crtc; 777 struct drm_device *dev = crtc->dev; 778 struct vc4_dev *vc4 = to_vc4_dev(dev); 779 struct drm_plane *plane = crtc->primary; 780 781 vc4_plane_async_set_fb(plane, flip_state->fb); 782 if (flip_state->event) { 783 unsigned long flags; 784 785 spin_lock_irqsave(&dev->event_lock, flags); 786 drm_crtc_send_vblank_event(crtc, flip_state->event); 787 spin_unlock_irqrestore(&dev->event_lock, flags); 788 } 789 790 drm_crtc_vblank_put(crtc); 791 drm_framebuffer_put(flip_state->fb); 792 kfree(flip_state); 793 794 up(&vc4->async_modeset); 795 } 796 797 /* Implements async (non-vblank-synced) page flips. 798 * 799 * The page flip ioctl needs to return immediately, so we grab the 800 * modeset semaphore on the pipe, and queue the address update for 801 * when V3D is done with the BO being flipped to. 802 */ 803 static int vc4_async_page_flip(struct drm_crtc *crtc, 804 struct drm_framebuffer *fb, 805 struct drm_pending_vblank_event *event, 806 uint32_t flags) 807 { 808 struct drm_device *dev = crtc->dev; 809 struct vc4_dev *vc4 = to_vc4_dev(dev); 810 struct drm_plane *plane = crtc->primary; 811 int ret = 0; 812 struct vc4_async_flip_state *flip_state; 813 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 814 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 815 816 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 817 if (!flip_state) 818 return -ENOMEM; 819 820 drm_framebuffer_get(fb); 821 flip_state->fb = fb; 822 flip_state->crtc = crtc; 823 flip_state->event = event; 824 825 /* Make sure all other async modesetes have landed. */ 826 ret = down_interruptible(&vc4->async_modeset); 827 if (ret) { 828 drm_framebuffer_put(fb); 829 kfree(flip_state); 830 return ret; 831 } 832 833 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 834 835 /* Immediately update the plane's legacy fb pointer, so that later 836 * modeset prep sees the state that will be present when the semaphore 837 * is released. 838 */ 839 drm_atomic_set_fb_for_plane(plane->state, fb); 840 plane->fb = fb; 841 842 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 843 vc4_async_page_flip_complete); 844 845 /* Driver takes ownership of state on successful async commit. */ 846 return 0; 847 } 848 849 static int vc4_page_flip(struct drm_crtc *crtc, 850 struct drm_framebuffer *fb, 851 struct drm_pending_vblank_event *event, 852 uint32_t flags, 853 struct drm_modeset_acquire_ctx *ctx) 854 { 855 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 856 return vc4_async_page_flip(crtc, fb, event, flags); 857 else 858 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 859 } 860 861 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 862 { 863 struct vc4_crtc_state *vc4_state; 864 865 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 866 if (!vc4_state) 867 return NULL; 868 869 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 870 return &vc4_state->base; 871 } 872 873 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 874 struct drm_crtc_state *state) 875 { 876 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 877 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 878 879 if (vc4_state->mm.allocated) { 880 unsigned long flags; 881 882 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 883 drm_mm_remove_node(&vc4_state->mm); 884 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 885 886 } 887 888 drm_atomic_helper_crtc_destroy_state(crtc, state); 889 } 890 891 static void 892 vc4_crtc_reset(struct drm_crtc *crtc) 893 { 894 if (crtc->state) 895 __drm_atomic_helper_crtc_destroy_state(crtc->state); 896 897 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 898 if (crtc->state) 899 crtc->state->crtc = crtc; 900 } 901 902 static const struct drm_crtc_funcs vc4_crtc_funcs = { 903 .set_config = drm_atomic_helper_set_config, 904 .destroy = vc4_crtc_destroy, 905 .page_flip = vc4_page_flip, 906 .set_property = NULL, 907 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 908 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 909 .reset = vc4_crtc_reset, 910 .atomic_duplicate_state = vc4_crtc_duplicate_state, 911 .atomic_destroy_state = vc4_crtc_destroy_state, 912 .gamma_set = vc4_crtc_gamma_set, 913 .enable_vblank = vc4_enable_vblank, 914 .disable_vblank = vc4_disable_vblank, 915 }; 916 917 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 918 .mode_set_nofb = vc4_crtc_mode_set_nofb, 919 .mode_valid = vc4_crtc_mode_valid, 920 .atomic_check = vc4_crtc_atomic_check, 921 .atomic_flush = vc4_crtc_atomic_flush, 922 .atomic_enable = vc4_crtc_atomic_enable, 923 .atomic_disable = vc4_crtc_atomic_disable, 924 }; 925 926 static const struct vc4_crtc_data pv0_data = { 927 .hvs_channel = 0, 928 .encoder_types = { 929 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 930 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 931 }, 932 }; 933 934 static const struct vc4_crtc_data pv1_data = { 935 .hvs_channel = 2, 936 .encoder_types = { 937 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 938 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 939 }, 940 }; 941 942 static const struct vc4_crtc_data pv2_data = { 943 .hvs_channel = 1, 944 .encoder_types = { 945 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 946 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 947 }, 948 }; 949 950 static const struct of_device_id vc4_crtc_dt_match[] = { 951 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 952 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 953 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 954 {} 955 }; 956 957 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 958 struct drm_crtc *crtc) 959 { 960 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 961 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 962 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 963 struct drm_encoder *encoder; 964 965 drm_for_each_encoder(encoder, drm) { 966 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 967 int i; 968 969 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 970 if (vc4_encoder->type == encoder_types[i]) { 971 vc4_encoder->clock_select = i; 972 encoder->possible_crtcs |= drm_crtc_mask(crtc); 973 break; 974 } 975 } 976 } 977 } 978 979 static void 980 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 981 { 982 struct drm_device *drm = vc4_crtc->base.dev; 983 struct vc4_dev *vc4 = to_vc4_dev(drm); 984 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 985 /* Top/base are supposed to be 4-pixel aligned, but the 986 * Raspberry Pi firmware fills the low bits (which are 987 * presumably ignored). 988 */ 989 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 990 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 991 992 vc4_crtc->cob_size = top - base + 4; 993 } 994 995 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 996 { 997 struct platform_device *pdev = to_platform_device(dev); 998 struct drm_device *drm = dev_get_drvdata(master); 999 struct vc4_crtc *vc4_crtc; 1000 struct drm_crtc *crtc; 1001 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 1002 const struct of_device_id *match; 1003 int ret, i; 1004 1005 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1006 if (!vc4_crtc) 1007 return -ENOMEM; 1008 crtc = &vc4_crtc->base; 1009 1010 match = of_match_device(vc4_crtc_dt_match, dev); 1011 if (!match) 1012 return -ENODEV; 1013 vc4_crtc->data = match->data; 1014 1015 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1016 if (IS_ERR(vc4_crtc->regs)) 1017 return PTR_ERR(vc4_crtc->regs); 1018 1019 /* For now, we create just the primary and the legacy cursor 1020 * planes. We should be able to stack more planes on easily, 1021 * but to do that we would need to compute the bandwidth 1022 * requirement of the plane configuration, and reject ones 1023 * that will take too much. 1024 */ 1025 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1026 if (IS_ERR(primary_plane)) { 1027 dev_err(dev, "failed to construct primary plane\n"); 1028 ret = PTR_ERR(primary_plane); 1029 goto err; 1030 } 1031 1032 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1033 &vc4_crtc_funcs, NULL); 1034 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 1035 primary_plane->crtc = crtc; 1036 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 1037 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1038 1039 /* Set up some arbitrary number of planes. We're not limited 1040 * by a set number of physical registers, just the space in 1041 * the HVS (16k) and how small an plane can be (28 bytes). 1042 * However, each plane we set up takes up some memory, and 1043 * increases the cost of looping over planes, which atomic 1044 * modesetting does quite a bit. As a result, we pick a 1045 * modest number of planes to expose, that should hopefully 1046 * still cover any sane usecase. 1047 */ 1048 for (i = 0; i < 8; i++) { 1049 struct drm_plane *plane = 1050 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1051 1052 if (IS_ERR(plane)) 1053 continue; 1054 1055 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1056 } 1057 1058 /* Set up the legacy cursor after overlay initialization, 1059 * since we overlay planes on the CRTC in the order they were 1060 * initialized. 1061 */ 1062 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1063 if (!IS_ERR(cursor_plane)) { 1064 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1065 cursor_plane->crtc = crtc; 1066 crtc->cursor = cursor_plane; 1067 } 1068 1069 vc4_crtc_get_cob_allocation(vc4_crtc); 1070 1071 CRTC_WRITE(PV_INTEN, 0); 1072 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1073 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1074 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1075 if (ret) 1076 goto err_destroy_planes; 1077 1078 vc4_set_crtc_possible_masks(drm, crtc); 1079 1080 for (i = 0; i < crtc->gamma_size; i++) { 1081 vc4_crtc->lut_r[i] = i; 1082 vc4_crtc->lut_g[i] = i; 1083 vc4_crtc->lut_b[i] = i; 1084 } 1085 1086 platform_set_drvdata(pdev, vc4_crtc); 1087 1088 return 0; 1089 1090 err_destroy_planes: 1091 list_for_each_entry_safe(destroy_plane, temp, 1092 &drm->mode_config.plane_list, head) { 1093 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 1094 destroy_plane->funcs->destroy(destroy_plane); 1095 } 1096 err: 1097 return ret; 1098 } 1099 1100 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1101 void *data) 1102 { 1103 struct platform_device *pdev = to_platform_device(dev); 1104 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1105 1106 vc4_crtc_destroy(&vc4_crtc->base); 1107 1108 CRTC_WRITE(PV_INTEN, 0); 1109 1110 platform_set_drvdata(pdev, NULL); 1111 } 1112 1113 static const struct component_ops vc4_crtc_ops = { 1114 .bind = vc4_crtc_bind, 1115 .unbind = vc4_crtc_unbind, 1116 }; 1117 1118 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1119 { 1120 return component_add(&pdev->dev, &vc4_crtc_ops); 1121 } 1122 1123 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1124 { 1125 component_del(&pdev->dev, &vc4_crtc_ops); 1126 return 0; 1127 } 1128 1129 struct platform_driver vc4_crtc_driver = { 1130 .probe = vc4_crtc_dev_probe, 1131 .remove = vc4_crtc_dev_remove, 1132 .driver = { 1133 .name = "vc4_crtc", 1134 .of_match_table = vc4_crtc_dt_match, 1135 }, 1136 }; 1137