xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 struct vc4_crtc {
46 	struct drm_crtc base;
47 	const struct vc4_crtc_data *data;
48 	void __iomem *regs;
49 
50 	/* Timestamp at start of vblank irq - unaffected by lock delays. */
51 	ktime_t t_vblank;
52 
53 	/* Which HVS channel we're using for our CRTC. */
54 	int channel;
55 
56 	u8 lut_r[256];
57 	u8 lut_g[256];
58 	u8 lut_b[256];
59 	/* Size in pixels of the COB memory allocated to this CRTC. */
60 	u32 cob_size;
61 
62 	struct drm_pending_vblank_event *event;
63 };
64 
65 struct vc4_crtc_state {
66 	struct drm_crtc_state base;
67 	/* Dlist area for this CRTC configuration. */
68 	struct drm_mm_node mm;
69 };
70 
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74 	return (struct vc4_crtc *)crtc;
75 }
76 
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80 	return (struct vc4_crtc_state *)crtc_state;
81 }
82 
83 struct vc4_crtc_data {
84 	/* Which channel of the HVS this pixelvalve sources from. */
85 	int hvs_channel;
86 
87 	enum vc4_encoder_type encoder_types[4];
88 };
89 
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92 
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 	u32 reg;
96 	const char *name;
97 } crtc_regs[] = {
98 	CRTC_REG(PV_CONTROL),
99 	CRTC_REG(PV_V_CONTROL),
100 	CRTC_REG(PV_VSYNCD_EVEN),
101 	CRTC_REG(PV_HORZA),
102 	CRTC_REG(PV_HORZB),
103 	CRTC_REG(PV_VERTA),
104 	CRTC_REG(PV_VERTB),
105 	CRTC_REG(PV_VERTA_EVEN),
106 	CRTC_REG(PV_VERTB_EVEN),
107 	CRTC_REG(PV_INTEN),
108 	CRTC_REG(PV_INTSTAT),
109 	CRTC_REG(PV_STAT),
110 	CRTC_REG(PV_HACT_ACT),
111 };
112 
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115 	int i;
116 
117 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 		DRM_INFO("0x%04x (%s): 0x%08x\n",
119 			 crtc_regs[i].reg, crtc_regs[i].name,
120 			 CRTC_READ(crtc_regs[i].reg));
121 	}
122 }
123 
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127 	struct drm_info_node *node = (struct drm_info_node *)m->private;
128 	struct drm_device *dev = node->minor->dev;
129 	int crtc_index = (uintptr_t)node->info_ent->data;
130 	struct drm_crtc *crtc;
131 	struct vc4_crtc *vc4_crtc;
132 	int i;
133 
134 	i = 0;
135 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 		if (i == crtc_index)
137 			break;
138 		i++;
139 	}
140 	if (!crtc)
141 		return 0;
142 	vc4_crtc = to_vc4_crtc(crtc);
143 
144 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 			   crtc_regs[i].name, crtc_regs[i].reg,
147 			   CRTC_READ(crtc_regs[i].reg));
148 	}
149 
150 	return 0;
151 }
152 #endif
153 
154 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 			     bool in_vblank_irq, int *vpos, int *hpos,
156 			     ktime_t *stime, ktime_t *etime,
157 			     const struct drm_display_mode *mode)
158 {
159 	struct vc4_dev *vc4 = to_vc4_dev(dev);
160 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 	u32 val;
163 	int fifo_lines;
164 	int vblank_lines;
165 	bool ret = false;
166 
167 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168 
169 	/* Get optional system timestamp before query. */
170 	if (stime)
171 		*stime = ktime_get();
172 
173 	/*
174 	 * Read vertical scanline which is currently composed for our
175 	 * pixelvalve by the HVS, and also the scaler status.
176 	 */
177 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178 
179 	/* Get optional system timestamp after query. */
180 	if (etime)
181 		*etime = ktime_get();
182 
183 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184 
185 	/* Vertical position of hvs composed scanline. */
186 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 	*hpos = 0;
188 
189 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190 		*vpos /= 2;
191 
192 		/* Use hpos to correct for field offset in interlaced mode. */
193 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194 			*hpos += mode->crtc_htotal / 2;
195 	}
196 
197 	/* This is the offset we need for translating hvs -> pv scanout pos. */
198 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199 
200 	if (fifo_lines > 0)
201 		ret = true;
202 
203 	/* HVS more than fifo_lines into frame for compositing? */
204 	if (*vpos > fifo_lines) {
205 		/*
206 		 * We are in active scanout and can get some meaningful results
207 		 * from HVS. The actual PV scanout can not trail behind more
208 		 * than fifo_lines as that is the fifo's capacity. Assume that
209 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
210 		 * refilling the fifo and PV consuming from the fifo, ie.
211 		 * whenever the PV consumes and frees up a scanline in the
212 		 * fifo, the HVS will immediately refill it, therefore
213 		 * incrementing vpos. Therefore we choose HVS read position -
214 		 * fifo size in scanlines as a estimate of the real scanout
215 		 * position of the PV.
216 		 */
217 		*vpos -= fifo_lines + 1;
218 
219 		return ret;
220 	}
221 
222 	/*
223 	 * Less: This happens when we are in vblank and the HVS, after getting
224 	 * the VSTART restart signal from the PV, just started refilling its
225 	 * fifo with new lines from the top-most lines of the new framebuffers.
226 	 * The PV does not scan out in vblank, so does not remove lines from
227 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 	 * We can't get meaningful readings wrt. scanline position of the PV
229 	 * and need to make things up in a approximative but consistent way.
230 	 */
231 	vblank_lines = mode->vtotal - mode->vdisplay;
232 
233 	if (in_vblank_irq) {
234 		/*
235 		 * Assume the irq handler got called close to first
236 		 * line of vblank, so PV has about a full vblank
237 		 * scanlines to go, and as a base timestamp use the
238 		 * one taken at entry into vblank irq handler, so it
239 		 * is not affected by random delays due to lock
240 		 * contention on event_lock or vblank_time lock in
241 		 * the core.
242 		 */
243 		*vpos = -vblank_lines;
244 
245 		if (stime)
246 			*stime = vc4_crtc->t_vblank;
247 		if (etime)
248 			*etime = vc4_crtc->t_vblank;
249 
250 		/*
251 		 * If the HVS fifo is not yet full then we know for certain
252 		 * we are at the very beginning of vblank, as the hvs just
253 		 * started refilling, and the stime and etime timestamps
254 		 * truly correspond to start of vblank.
255 		 *
256 		 * Unfortunately there's no way to report this to upper levels
257 		 * and make it more useful.
258 		 */
259 	} else {
260 		/*
261 		 * No clue where we are inside vblank. Return a vpos of zero,
262 		 * which will cause calling code to just return the etime
263 		 * timestamp uncorrected. At least this is no worse than the
264 		 * standard fallback.
265 		 */
266 		*vpos = 0;
267 	}
268 
269 	return ret;
270 }
271 
272 static void vc4_crtc_destroy(struct drm_crtc *crtc)
273 {
274 	drm_crtc_cleanup(crtc);
275 }
276 
277 static void
278 vc4_crtc_lut_load(struct drm_crtc *crtc)
279 {
280 	struct drm_device *dev = crtc->dev;
281 	struct vc4_dev *vc4 = to_vc4_dev(dev);
282 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
283 	u32 i;
284 
285 	/* The LUT memory is laid out with each HVS channel in order,
286 	 * each of which takes 256 writes for R, 256 for G, then 256
287 	 * for B.
288 	 */
289 	HVS_WRITE(SCALER_GAMADDR,
290 		  SCALER_GAMADDR_AUTOINC |
291 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
292 
293 	for (i = 0; i < crtc->gamma_size; i++)
294 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
295 	for (i = 0; i < crtc->gamma_size; i++)
296 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
297 	for (i = 0; i < crtc->gamma_size; i++)
298 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
299 }
300 
301 static int
302 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
303 		   uint32_t size,
304 		   struct drm_modeset_acquire_ctx *ctx)
305 {
306 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
307 	u32 i;
308 
309 	for (i = 0; i < size; i++) {
310 		vc4_crtc->lut_r[i] = r[i] >> 8;
311 		vc4_crtc->lut_g[i] = g[i] >> 8;
312 		vc4_crtc->lut_b[i] = b[i] >> 8;
313 	}
314 
315 	vc4_crtc_lut_load(crtc);
316 
317 	return 0;
318 }
319 
320 static u32 vc4_get_fifo_full_level(u32 format)
321 {
322 	static const u32 fifo_len_bytes = 64;
323 	static const u32 hvs_latency_pix = 6;
324 
325 	switch (format) {
326 	case PV_CONTROL_FORMAT_DSIV_16:
327 	case PV_CONTROL_FORMAT_DSIC_16:
328 		return fifo_len_bytes - 2 * hvs_latency_pix;
329 	case PV_CONTROL_FORMAT_DSIV_18:
330 		return fifo_len_bytes - 14;
331 	case PV_CONTROL_FORMAT_24:
332 	case PV_CONTROL_FORMAT_DSIV_24:
333 	default:
334 		return fifo_len_bytes - 3 * hvs_latency_pix;
335 	}
336 }
337 
338 /*
339  * Returns the encoder attached to the CRTC.
340  *
341  * VC4 can only scan out to one encoder at a time, while the DRM core
342  * allows drivers to push pixels to more than one encoder from the
343  * same CRTC.
344  */
345 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
346 {
347 	struct drm_connector *connector;
348 	struct drm_connector_list_iter conn_iter;
349 
350 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
351 	drm_for_each_connector_iter(connector, &conn_iter) {
352 		if (connector->state->crtc == crtc) {
353 			drm_connector_list_iter_end(&conn_iter);
354 			return connector->encoder;
355 		}
356 	}
357 	drm_connector_list_iter_end(&conn_iter);
358 
359 	return NULL;
360 }
361 
362 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
363 {
364 	struct drm_device *dev = crtc->dev;
365 	struct vc4_dev *vc4 = to_vc4_dev(dev);
366 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
367 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
368 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
369 	struct drm_crtc_state *state = crtc->state;
370 	struct drm_display_mode *mode = &state->adjusted_mode;
371 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
372 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
373 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
374 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
375 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
376 	bool debug_dump_regs = false;
377 
378 	if (debug_dump_regs) {
379 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
380 		vc4_crtc_dump_regs(vc4_crtc);
381 	}
382 
383 	/* Reset the PV fifo. */
384 	CRTC_WRITE(PV_CONTROL, 0);
385 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
386 	CRTC_WRITE(PV_CONTROL, 0);
387 
388 	CRTC_WRITE(PV_HORZA,
389 		   VC4_SET_FIELD((mode->htotal -
390 				  mode->hsync_end) * pixel_rep,
391 				 PV_HORZA_HBP) |
392 		   VC4_SET_FIELD((mode->hsync_end -
393 				  mode->hsync_start) * pixel_rep,
394 				 PV_HORZA_HSYNC));
395 	CRTC_WRITE(PV_HORZB,
396 		   VC4_SET_FIELD((mode->hsync_start -
397 				  mode->hdisplay) * pixel_rep,
398 				 PV_HORZB_HFP) |
399 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
400 
401 	CRTC_WRITE(PV_VERTA,
402 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
403 				 PV_VERTA_VBP) |
404 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
405 				 PV_VERTA_VSYNC));
406 	CRTC_WRITE(PV_VERTB,
407 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
408 				 PV_VERTB_VFP) |
409 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
410 
411 	if (interlace) {
412 		CRTC_WRITE(PV_VERTA_EVEN,
413 			   VC4_SET_FIELD(mode->crtc_vtotal -
414 					 mode->crtc_vsync_end - 1,
415 					 PV_VERTA_VBP) |
416 			   VC4_SET_FIELD(mode->crtc_vsync_end -
417 					 mode->crtc_vsync_start,
418 					 PV_VERTA_VSYNC));
419 		CRTC_WRITE(PV_VERTB_EVEN,
420 			   VC4_SET_FIELD(mode->crtc_vsync_start -
421 					 mode->crtc_vdisplay,
422 					 PV_VERTB_VFP) |
423 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
424 
425 		/* We set up first field even mode for HDMI.  VEC's
426 		 * NTSC mode would want first field odd instead, once
427 		 * we support it (to do so, set ODD_FIRST and put the
428 		 * delay in VSYNCD_EVEN instead).
429 		 */
430 		CRTC_WRITE(PV_V_CONTROL,
431 			   PV_VCONTROL_CONTINUOUS |
432 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
433 			   PV_VCONTROL_INTERLACE |
434 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
435 					 PV_VCONTROL_ODD_DELAY));
436 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
437 	} else {
438 		CRTC_WRITE(PV_V_CONTROL,
439 			   PV_VCONTROL_CONTINUOUS |
440 			   (is_dsi ? PV_VCONTROL_DSI : 0));
441 	}
442 
443 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
444 
445 	CRTC_WRITE(PV_CONTROL,
446 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
447 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
448 				 PV_CONTROL_FIFO_LEVEL) |
449 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
450 		   PV_CONTROL_CLR_AT_START |
451 		   PV_CONTROL_TRIGGER_UNDERFLOW |
452 		   PV_CONTROL_WAIT_HSTART |
453 		   VC4_SET_FIELD(vc4_encoder->clock_select,
454 				 PV_CONTROL_CLK_SELECT) |
455 		   PV_CONTROL_FIFO_CLR |
456 		   PV_CONTROL_EN);
457 
458 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
459 		  SCALER_DISPBKGND_AUTOHS |
460 		  SCALER_DISPBKGND_GAMMA |
461 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
462 
463 	/* Reload the LUT, since the SRAMs would have been disabled if
464 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
465 	 */
466 	vc4_crtc_lut_load(crtc);
467 
468 	if (debug_dump_regs) {
469 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
470 		vc4_crtc_dump_regs(vc4_crtc);
471 	}
472 }
473 
474 static void require_hvs_enabled(struct drm_device *dev)
475 {
476 	struct vc4_dev *vc4 = to_vc4_dev(dev);
477 
478 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
479 		     SCALER_DISPCTRL_ENABLE);
480 }
481 
482 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
483 				    struct drm_crtc_state *old_state)
484 {
485 	struct drm_device *dev = crtc->dev;
486 	struct vc4_dev *vc4 = to_vc4_dev(dev);
487 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
488 	u32 chan = vc4_crtc->channel;
489 	int ret;
490 	require_hvs_enabled(dev);
491 
492 	/* Disable vblank irq handling before crtc is disabled. */
493 	drm_crtc_vblank_off(crtc);
494 
495 	CRTC_WRITE(PV_V_CONTROL,
496 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
497 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
498 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
499 
500 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
501 	    SCALER_DISPCTRLX_ENABLE) {
502 		HVS_WRITE(SCALER_DISPCTRLX(chan),
503 			  SCALER_DISPCTRLX_RESET);
504 
505 		/* While the docs say that reset is self-clearing, it
506 		 * seems it doesn't actually.
507 		 */
508 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
509 	}
510 
511 	/* Once we leave, the scaler should be disabled and its fifo empty. */
512 
513 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
514 
515 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
516 				   SCALER_DISPSTATX_MODE) !=
517 		     SCALER_DISPSTATX_MODE_DISABLED);
518 
519 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
520 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
521 		     SCALER_DISPSTATX_EMPTY);
522 
523 	/*
524 	 * Make sure we issue a vblank event after disabling the CRTC if
525 	 * someone was waiting it.
526 	 */
527 	if (crtc->state->event) {
528 		unsigned long flags;
529 
530 		spin_lock_irqsave(&dev->event_lock, flags);
531 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
532 		crtc->state->event = NULL;
533 		spin_unlock_irqrestore(&dev->event_lock, flags);
534 	}
535 }
536 
537 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
538 {
539 	struct drm_device *dev = crtc->dev;
540 	struct vc4_dev *vc4 = to_vc4_dev(dev);
541 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
542 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
543 
544 	if (crtc->state->event) {
545 		unsigned long flags;
546 
547 		crtc->state->event->pipe = drm_crtc_index(crtc);
548 
549 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
550 
551 		spin_lock_irqsave(&dev->event_lock, flags);
552 		vc4_crtc->event = crtc->state->event;
553 		crtc->state->event = NULL;
554 
555 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
556 			  vc4_state->mm.start);
557 
558 		spin_unlock_irqrestore(&dev->event_lock, flags);
559 	} else {
560 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
561 			  vc4_state->mm.start);
562 	}
563 }
564 
565 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
566 				   struct drm_crtc_state *old_state)
567 {
568 	struct drm_device *dev = crtc->dev;
569 	struct vc4_dev *vc4 = to_vc4_dev(dev);
570 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
571 	struct drm_crtc_state *state = crtc->state;
572 	struct drm_display_mode *mode = &state->adjusted_mode;
573 
574 	require_hvs_enabled(dev);
575 
576 	/* Enable vblank irq handling before crtc is started otherwise
577 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
578 	 */
579 	drm_crtc_vblank_on(crtc);
580 	vc4_crtc_update_dlist(crtc);
581 
582 	/* Turn on the scaler, which will wait for vstart to start
583 	 * compositing.
584 	 */
585 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
586 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
587 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
588 		  SCALER_DISPCTRLX_ENABLE);
589 
590 	/* Turn on the pixel valve, which will emit the vstart signal. */
591 	CRTC_WRITE(PV_V_CONTROL,
592 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
593 }
594 
595 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
596 						const struct drm_display_mode *mode)
597 {
598 	/* Do not allow doublescan modes from user space */
599 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
600 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
601 			      crtc->base.id);
602 		return MODE_NO_DBLESCAN;
603 	}
604 
605 	return MODE_OK;
606 }
607 
608 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
609 				 struct drm_crtc_state *state)
610 {
611 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
612 	struct drm_device *dev = crtc->dev;
613 	struct vc4_dev *vc4 = to_vc4_dev(dev);
614 	struct drm_plane *plane;
615 	unsigned long flags;
616 	const struct drm_plane_state *plane_state;
617 	u32 dlist_count = 0;
618 	int ret;
619 
620 	/* The pixelvalve can only feed one encoder (and encoders are
621 	 * 1:1 with connectors.)
622 	 */
623 	if (hweight32(state->connector_mask) > 1)
624 		return -EINVAL;
625 
626 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
627 		dlist_count += vc4_plane_dlist_size(plane_state);
628 
629 	dlist_count++; /* Account for SCALER_CTL0_END. */
630 
631 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
632 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
633 				 dlist_count);
634 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
635 	if (ret)
636 		return ret;
637 
638 	return 0;
639 }
640 
641 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
642 				  struct drm_crtc_state *old_state)
643 {
644 	struct drm_device *dev = crtc->dev;
645 	struct vc4_dev *vc4 = to_vc4_dev(dev);
646 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
647 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
648 	struct drm_plane *plane;
649 	struct vc4_plane_state *vc4_plane_state;
650 	bool debug_dump_regs = false;
651 	bool enable_bg_fill = false;
652 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
653 	u32 __iomem *dlist_next = dlist_start;
654 
655 	if (debug_dump_regs) {
656 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
657 		vc4_hvs_dump_state(dev);
658 	}
659 
660 	/* Copy all the active planes' dlist contents to the hardware dlist. */
661 	drm_atomic_crtc_for_each_plane(plane, crtc) {
662 		/* Is this the first active plane? */
663 		if (dlist_next == dlist_start) {
664 			/* We need to enable background fill when a plane
665 			 * could be alpha blending from the background, i.e.
666 			 * where no other plane is underneath. It suffices to
667 			 * consider the first active plane here since we set
668 			 * needs_bg_fill such that either the first plane
669 			 * already needs it or all planes on top blend from
670 			 * the first or a lower plane.
671 			 */
672 			vc4_plane_state = to_vc4_plane_state(plane->state);
673 			enable_bg_fill = vc4_plane_state->needs_bg_fill;
674 		}
675 
676 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
677 	}
678 
679 	writel(SCALER_CTL0_END, dlist_next);
680 	dlist_next++;
681 
682 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
683 
684 	if (enable_bg_fill)
685 		/* This sets a black background color fill, as is the case
686 		 * with other DRM drivers.
687 		 */
688 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
689 			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
690 			  SCALER_DISPBKGND_FILL);
691 
692 	/* Only update DISPLIST if the CRTC was already running and is not
693 	 * being disabled.
694 	 * vc4_crtc_enable() takes care of updating the dlist just after
695 	 * re-enabling VBLANK interrupts and before enabling the engine.
696 	 * If the CRTC is being disabled, there's no point in updating this
697 	 * information.
698 	 */
699 	if (crtc->state->active && old_state->active)
700 		vc4_crtc_update_dlist(crtc);
701 
702 	if (debug_dump_regs) {
703 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
704 		vc4_hvs_dump_state(dev);
705 	}
706 }
707 
708 static int vc4_enable_vblank(struct drm_crtc *crtc)
709 {
710 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
711 
712 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
713 
714 	return 0;
715 }
716 
717 static void vc4_disable_vblank(struct drm_crtc *crtc)
718 {
719 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
720 
721 	CRTC_WRITE(PV_INTEN, 0);
722 }
723 
724 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
725 {
726 	struct drm_crtc *crtc = &vc4_crtc->base;
727 	struct drm_device *dev = crtc->dev;
728 	struct vc4_dev *vc4 = to_vc4_dev(dev);
729 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
730 	u32 chan = vc4_crtc->channel;
731 	unsigned long flags;
732 
733 	spin_lock_irqsave(&dev->event_lock, flags);
734 	if (vc4_crtc->event &&
735 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
736 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
737 		vc4_crtc->event = NULL;
738 		drm_crtc_vblank_put(crtc);
739 	}
740 	spin_unlock_irqrestore(&dev->event_lock, flags);
741 }
742 
743 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
744 {
745 	struct vc4_crtc *vc4_crtc = data;
746 	u32 stat = CRTC_READ(PV_INTSTAT);
747 	irqreturn_t ret = IRQ_NONE;
748 
749 	if (stat & PV_INT_VFP_START) {
750 		vc4_crtc->t_vblank = ktime_get();
751 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
752 		drm_crtc_handle_vblank(&vc4_crtc->base);
753 		vc4_crtc_handle_page_flip(vc4_crtc);
754 		ret = IRQ_HANDLED;
755 	}
756 
757 	return ret;
758 }
759 
760 struct vc4_async_flip_state {
761 	struct drm_crtc *crtc;
762 	struct drm_framebuffer *fb;
763 	struct drm_pending_vblank_event *event;
764 
765 	struct vc4_seqno_cb cb;
766 };
767 
768 /* Called when the V3D execution for the BO being flipped to is done, so that
769  * we can actually update the plane's address to point to it.
770  */
771 static void
772 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
773 {
774 	struct vc4_async_flip_state *flip_state =
775 		container_of(cb, struct vc4_async_flip_state, cb);
776 	struct drm_crtc *crtc = flip_state->crtc;
777 	struct drm_device *dev = crtc->dev;
778 	struct vc4_dev *vc4 = to_vc4_dev(dev);
779 	struct drm_plane *plane = crtc->primary;
780 
781 	vc4_plane_async_set_fb(plane, flip_state->fb);
782 	if (flip_state->event) {
783 		unsigned long flags;
784 
785 		spin_lock_irqsave(&dev->event_lock, flags);
786 		drm_crtc_send_vblank_event(crtc, flip_state->event);
787 		spin_unlock_irqrestore(&dev->event_lock, flags);
788 	}
789 
790 	drm_crtc_vblank_put(crtc);
791 	drm_framebuffer_put(flip_state->fb);
792 	kfree(flip_state);
793 
794 	up(&vc4->async_modeset);
795 }
796 
797 /* Implements async (non-vblank-synced) page flips.
798  *
799  * The page flip ioctl needs to return immediately, so we grab the
800  * modeset semaphore on the pipe, and queue the address update for
801  * when V3D is done with the BO being flipped to.
802  */
803 static int vc4_async_page_flip(struct drm_crtc *crtc,
804 			       struct drm_framebuffer *fb,
805 			       struct drm_pending_vblank_event *event,
806 			       uint32_t flags)
807 {
808 	struct drm_device *dev = crtc->dev;
809 	struct vc4_dev *vc4 = to_vc4_dev(dev);
810 	struct drm_plane *plane = crtc->primary;
811 	int ret = 0;
812 	struct vc4_async_flip_state *flip_state;
813 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
814 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
815 
816 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
817 	if (!flip_state)
818 		return -ENOMEM;
819 
820 	drm_framebuffer_get(fb);
821 	flip_state->fb = fb;
822 	flip_state->crtc = crtc;
823 	flip_state->event = event;
824 
825 	/* Make sure all other async modesetes have landed. */
826 	ret = down_interruptible(&vc4->async_modeset);
827 	if (ret) {
828 		drm_framebuffer_put(fb);
829 		kfree(flip_state);
830 		return ret;
831 	}
832 
833 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
834 
835 	/* Immediately update the plane's legacy fb pointer, so that later
836 	 * modeset prep sees the state that will be present when the semaphore
837 	 * is released.
838 	 */
839 	drm_atomic_set_fb_for_plane(plane->state, fb);
840 	plane->fb = fb;
841 
842 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
843 			   vc4_async_page_flip_complete);
844 
845 	/* Driver takes ownership of state on successful async commit. */
846 	return 0;
847 }
848 
849 static int vc4_page_flip(struct drm_crtc *crtc,
850 			 struct drm_framebuffer *fb,
851 			 struct drm_pending_vblank_event *event,
852 			 uint32_t flags,
853 			 struct drm_modeset_acquire_ctx *ctx)
854 {
855 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
856 		return vc4_async_page_flip(crtc, fb, event, flags);
857 	else
858 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
859 }
860 
861 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
862 {
863 	struct vc4_crtc_state *vc4_state;
864 
865 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
866 	if (!vc4_state)
867 		return NULL;
868 
869 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
870 	return &vc4_state->base;
871 }
872 
873 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
874 				   struct drm_crtc_state *state)
875 {
876 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
877 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
878 
879 	if (vc4_state->mm.allocated) {
880 		unsigned long flags;
881 
882 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
883 		drm_mm_remove_node(&vc4_state->mm);
884 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
885 
886 	}
887 
888 	drm_atomic_helper_crtc_destroy_state(crtc, state);
889 }
890 
891 static void
892 vc4_crtc_reset(struct drm_crtc *crtc)
893 {
894 	if (crtc->state)
895 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
896 
897 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
898 	if (crtc->state)
899 		crtc->state->crtc = crtc;
900 }
901 
902 static const struct drm_crtc_funcs vc4_crtc_funcs = {
903 	.set_config = drm_atomic_helper_set_config,
904 	.destroy = vc4_crtc_destroy,
905 	.page_flip = vc4_page_flip,
906 	.set_property = NULL,
907 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
908 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
909 	.reset = vc4_crtc_reset,
910 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
911 	.atomic_destroy_state = vc4_crtc_destroy_state,
912 	.gamma_set = vc4_crtc_gamma_set,
913 	.enable_vblank = vc4_enable_vblank,
914 	.disable_vblank = vc4_disable_vblank,
915 };
916 
917 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
918 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
919 	.mode_valid = vc4_crtc_mode_valid,
920 	.atomic_check = vc4_crtc_atomic_check,
921 	.atomic_flush = vc4_crtc_atomic_flush,
922 	.atomic_enable = vc4_crtc_atomic_enable,
923 	.atomic_disable = vc4_crtc_atomic_disable,
924 };
925 
926 static const struct vc4_crtc_data pv0_data = {
927 	.hvs_channel = 0,
928 	.encoder_types = {
929 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
930 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
931 	},
932 };
933 
934 static const struct vc4_crtc_data pv1_data = {
935 	.hvs_channel = 2,
936 	.encoder_types = {
937 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
938 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
939 	},
940 };
941 
942 static const struct vc4_crtc_data pv2_data = {
943 	.hvs_channel = 1,
944 	.encoder_types = {
945 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
946 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
947 	},
948 };
949 
950 static const struct of_device_id vc4_crtc_dt_match[] = {
951 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
952 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
953 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
954 	{}
955 };
956 
957 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
958 					struct drm_crtc *crtc)
959 {
960 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
961 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
962 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
963 	struct drm_encoder *encoder;
964 
965 	drm_for_each_encoder(encoder, drm) {
966 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
967 		int i;
968 
969 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
970 			if (vc4_encoder->type == encoder_types[i]) {
971 				vc4_encoder->clock_select = i;
972 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
973 				break;
974 			}
975 		}
976 	}
977 }
978 
979 static void
980 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
981 {
982 	struct drm_device *drm = vc4_crtc->base.dev;
983 	struct vc4_dev *vc4 = to_vc4_dev(drm);
984 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
985 	/* Top/base are supposed to be 4-pixel aligned, but the
986 	 * Raspberry Pi firmware fills the low bits (which are
987 	 * presumably ignored).
988 	 */
989 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
990 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
991 
992 	vc4_crtc->cob_size = top - base + 4;
993 }
994 
995 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
996 {
997 	struct platform_device *pdev = to_platform_device(dev);
998 	struct drm_device *drm = dev_get_drvdata(master);
999 	struct vc4_crtc *vc4_crtc;
1000 	struct drm_crtc *crtc;
1001 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1002 	const struct of_device_id *match;
1003 	int ret, i;
1004 
1005 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1006 	if (!vc4_crtc)
1007 		return -ENOMEM;
1008 	crtc = &vc4_crtc->base;
1009 
1010 	match = of_match_device(vc4_crtc_dt_match, dev);
1011 	if (!match)
1012 		return -ENODEV;
1013 	vc4_crtc->data = match->data;
1014 
1015 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1016 	if (IS_ERR(vc4_crtc->regs))
1017 		return PTR_ERR(vc4_crtc->regs);
1018 
1019 	/* For now, we create just the primary and the legacy cursor
1020 	 * planes.  We should be able to stack more planes on easily,
1021 	 * but to do that we would need to compute the bandwidth
1022 	 * requirement of the plane configuration, and reject ones
1023 	 * that will take too much.
1024 	 */
1025 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1026 	if (IS_ERR(primary_plane)) {
1027 		dev_err(dev, "failed to construct primary plane\n");
1028 		ret = PTR_ERR(primary_plane);
1029 		goto err;
1030 	}
1031 
1032 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1033 				  &vc4_crtc_funcs, NULL);
1034 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1035 	primary_plane->crtc = crtc;
1036 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1037 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1038 
1039 	/* Set up some arbitrary number of planes.  We're not limited
1040 	 * by a set number of physical registers, just the space in
1041 	 * the HVS (16k) and how small an plane can be (28 bytes).
1042 	 * However, each plane we set up takes up some memory, and
1043 	 * increases the cost of looping over planes, which atomic
1044 	 * modesetting does quite a bit.  As a result, we pick a
1045 	 * modest number of planes to expose, that should hopefully
1046 	 * still cover any sane usecase.
1047 	 */
1048 	for (i = 0; i < 8; i++) {
1049 		struct drm_plane *plane =
1050 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1051 
1052 		if (IS_ERR(plane))
1053 			continue;
1054 
1055 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1056 	}
1057 
1058 	/* Set up the legacy cursor after overlay initialization,
1059 	 * since we overlay planes on the CRTC in the order they were
1060 	 * initialized.
1061 	 */
1062 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1063 	if (!IS_ERR(cursor_plane)) {
1064 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1065 		cursor_plane->crtc = crtc;
1066 		crtc->cursor = cursor_plane;
1067 	}
1068 
1069 	vc4_crtc_get_cob_allocation(vc4_crtc);
1070 
1071 	CRTC_WRITE(PV_INTEN, 0);
1072 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1073 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1074 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1075 	if (ret)
1076 		goto err_destroy_planes;
1077 
1078 	vc4_set_crtc_possible_masks(drm, crtc);
1079 
1080 	for (i = 0; i < crtc->gamma_size; i++) {
1081 		vc4_crtc->lut_r[i] = i;
1082 		vc4_crtc->lut_g[i] = i;
1083 		vc4_crtc->lut_b[i] = i;
1084 	}
1085 
1086 	platform_set_drvdata(pdev, vc4_crtc);
1087 
1088 	return 0;
1089 
1090 err_destroy_planes:
1091 	list_for_each_entry_safe(destroy_plane, temp,
1092 				 &drm->mode_config.plane_list, head) {
1093 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1094 		    destroy_plane->funcs->destroy(destroy_plane);
1095 	}
1096 err:
1097 	return ret;
1098 }
1099 
1100 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1101 			    void *data)
1102 {
1103 	struct platform_device *pdev = to_platform_device(dev);
1104 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1105 
1106 	vc4_crtc_destroy(&vc4_crtc->base);
1107 
1108 	CRTC_WRITE(PV_INTEN, 0);
1109 
1110 	platform_set_drvdata(pdev, NULL);
1111 }
1112 
1113 static const struct component_ops vc4_crtc_ops = {
1114 	.bind   = vc4_crtc_bind,
1115 	.unbind = vc4_crtc_unbind,
1116 };
1117 
1118 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1119 {
1120 	return component_add(&pdev->dev, &vc4_crtc_ops);
1121 }
1122 
1123 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1124 {
1125 	component_del(&pdev->dev, &vc4_crtc_ops);
1126 	return 0;
1127 }
1128 
1129 struct platform_driver vc4_crtc_driver = {
1130 	.probe = vc4_crtc_dev_probe,
1131 	.remove = vc4_crtc_dev_remove,
1132 	.driver = {
1133 		.name = "vc4_crtc",
1134 		.of_match_table = vc4_crtc_dt_match,
1135 	},
1136 };
1137