xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision aac5987a)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33 
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43 
44 struct vc4_crtc {
45 	struct drm_crtc base;
46 	const struct vc4_crtc_data *data;
47 	void __iomem *regs;
48 
49 	/* Timestamp at start of vblank irq - unaffected by lock delays. */
50 	ktime_t t_vblank;
51 
52 	/* Which HVS channel we're using for our CRTC. */
53 	int channel;
54 
55 	u8 lut_r[256];
56 	u8 lut_g[256];
57 	u8 lut_b[256];
58 	/* Size in pixels of the COB memory allocated to this CRTC. */
59 	u32 cob_size;
60 
61 	struct drm_pending_vblank_event *event;
62 };
63 
64 struct vc4_crtc_state {
65 	struct drm_crtc_state base;
66 	/* Dlist area for this CRTC configuration. */
67 	struct drm_mm_node mm;
68 };
69 
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73 	return (struct vc4_crtc *)crtc;
74 }
75 
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79 	return (struct vc4_crtc_state *)crtc_state;
80 }
81 
82 struct vc4_crtc_data {
83 	/* Which channel of the HVS this pixelvalve sources from. */
84 	int hvs_channel;
85 
86 	enum vc4_encoder_type encoder_types[4];
87 };
88 
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91 
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94 	u32 reg;
95 	const char *name;
96 } crtc_regs[] = {
97 	CRTC_REG(PV_CONTROL),
98 	CRTC_REG(PV_V_CONTROL),
99 	CRTC_REG(PV_VSYNCD_EVEN),
100 	CRTC_REG(PV_HORZA),
101 	CRTC_REG(PV_HORZB),
102 	CRTC_REG(PV_VERTA),
103 	CRTC_REG(PV_VERTB),
104 	CRTC_REG(PV_VERTA_EVEN),
105 	CRTC_REG(PV_VERTB_EVEN),
106 	CRTC_REG(PV_INTEN),
107 	CRTC_REG(PV_INTSTAT),
108 	CRTC_REG(PV_STAT),
109 	CRTC_REG(PV_HACT_ACT),
110 };
111 
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113 {
114 	int i;
115 
116 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117 		DRM_INFO("0x%04x (%s): 0x%08x\n",
118 			 crtc_regs[i].reg, crtc_regs[i].name,
119 			 CRTC_READ(crtc_regs[i].reg));
120 	}
121 }
122 
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125 {
126 	struct drm_info_node *node = (struct drm_info_node *)m->private;
127 	struct drm_device *dev = node->minor->dev;
128 	int crtc_index = (uintptr_t)node->info_ent->data;
129 	struct drm_crtc *crtc;
130 	struct vc4_crtc *vc4_crtc;
131 	int i;
132 
133 	i = 0;
134 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135 		if (i == crtc_index)
136 			break;
137 		i++;
138 	}
139 	if (!crtc)
140 		return 0;
141 	vc4_crtc = to_vc4_crtc(crtc);
142 
143 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
145 			   crtc_regs[i].name, crtc_regs[i].reg,
146 			   CRTC_READ(crtc_regs[i].reg));
147 	}
148 
149 	return 0;
150 }
151 #endif
152 
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154 			    unsigned int flags, int *vpos, int *hpos,
155 			    ktime_t *stime, ktime_t *etime,
156 			    const struct drm_display_mode *mode)
157 {
158 	struct vc4_dev *vc4 = to_vc4_dev(dev);
159 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
160 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
161 	u32 val;
162 	int fifo_lines;
163 	int vblank_lines;
164 	int ret = 0;
165 
166 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
167 
168 	/* Get optional system timestamp before query. */
169 	if (stime)
170 		*stime = ktime_get();
171 
172 	/*
173 	 * Read vertical scanline which is currently composed for our
174 	 * pixelvalve by the HVS, and also the scaler status.
175 	 */
176 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
177 
178 	/* Get optional system timestamp after query. */
179 	if (etime)
180 		*etime = ktime_get();
181 
182 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
183 
184 	/* Vertical position of hvs composed scanline. */
185 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
186 	*hpos = 0;
187 
188 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
189 		*vpos /= 2;
190 
191 		/* Use hpos to correct for field offset in interlaced mode. */
192 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
193 			*hpos += mode->crtc_htotal / 2;
194 	}
195 
196 	/* This is the offset we need for translating hvs -> pv scanout pos. */
197 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
198 
199 	if (fifo_lines > 0)
200 		ret |= DRM_SCANOUTPOS_VALID;
201 
202 	/* HVS more than fifo_lines into frame for compositing? */
203 	if (*vpos > fifo_lines) {
204 		/*
205 		 * We are in active scanout and can get some meaningful results
206 		 * from HVS. The actual PV scanout can not trail behind more
207 		 * than fifo_lines as that is the fifo's capacity. Assume that
208 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
209 		 * refilling the fifo and PV consuming from the fifo, ie.
210 		 * whenever the PV consumes and frees up a scanline in the
211 		 * fifo, the HVS will immediately refill it, therefore
212 		 * incrementing vpos. Therefore we choose HVS read position -
213 		 * fifo size in scanlines as a estimate of the real scanout
214 		 * position of the PV.
215 		 */
216 		*vpos -= fifo_lines + 1;
217 
218 		ret |= DRM_SCANOUTPOS_ACCURATE;
219 		return ret;
220 	}
221 
222 	/*
223 	 * Less: This happens when we are in vblank and the HVS, after getting
224 	 * the VSTART restart signal from the PV, just started refilling its
225 	 * fifo with new lines from the top-most lines of the new framebuffers.
226 	 * The PV does not scan out in vblank, so does not remove lines from
227 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 	 * We can't get meaningful readings wrt. scanline position of the PV
229 	 * and need to make things up in a approximative but consistent way.
230 	 */
231 	ret |= DRM_SCANOUTPOS_IN_VBLANK;
232 	vblank_lines = mode->vtotal - mode->vdisplay;
233 
234 	if (flags & DRM_CALLED_FROM_VBLIRQ) {
235 		/*
236 		 * Assume the irq handler got called close to first
237 		 * line of vblank, so PV has about a full vblank
238 		 * scanlines to go, and as a base timestamp use the
239 		 * one taken at entry into vblank irq handler, so it
240 		 * is not affected by random delays due to lock
241 		 * contention on event_lock or vblank_time lock in
242 		 * the core.
243 		 */
244 		*vpos = -vblank_lines;
245 
246 		if (stime)
247 			*stime = vc4_crtc->t_vblank;
248 		if (etime)
249 			*etime = vc4_crtc->t_vblank;
250 
251 		/*
252 		 * If the HVS fifo is not yet full then we know for certain
253 		 * we are at the very beginning of vblank, as the hvs just
254 		 * started refilling, and the stime and etime timestamps
255 		 * truly correspond to start of vblank.
256 		 */
257 		if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
258 			ret |= DRM_SCANOUTPOS_ACCURATE;
259 	} else {
260 		/*
261 		 * No clue where we are inside vblank. Return a vpos of zero,
262 		 * which will cause calling code to just return the etime
263 		 * timestamp uncorrected. At least this is no worse than the
264 		 * standard fallback.
265 		 */
266 		*vpos = 0;
267 	}
268 
269 	return ret;
270 }
271 
272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
273 				  int *max_error, struct timeval *vblank_time,
274 				  unsigned flags)
275 {
276 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
277 	struct drm_crtc_state *state = crtc->state;
278 
279 	/* Helper routine in DRM core does all the work: */
280 	return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
281 						     vblank_time, flags,
282 						     &state->adjusted_mode);
283 }
284 
285 static void vc4_crtc_destroy(struct drm_crtc *crtc)
286 {
287 	drm_crtc_cleanup(crtc);
288 }
289 
290 static void
291 vc4_crtc_lut_load(struct drm_crtc *crtc)
292 {
293 	struct drm_device *dev = crtc->dev;
294 	struct vc4_dev *vc4 = to_vc4_dev(dev);
295 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
296 	u32 i;
297 
298 	/* The LUT memory is laid out with each HVS channel in order,
299 	 * each of which takes 256 writes for R, 256 for G, then 256
300 	 * for B.
301 	 */
302 	HVS_WRITE(SCALER_GAMADDR,
303 		  SCALER_GAMADDR_AUTOINC |
304 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
305 
306 	for (i = 0; i < crtc->gamma_size; i++)
307 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
308 	for (i = 0; i < crtc->gamma_size; i++)
309 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
310 	for (i = 0; i < crtc->gamma_size; i++)
311 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
312 }
313 
314 static int
315 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
316 		   uint32_t size)
317 {
318 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319 	u32 i;
320 
321 	for (i = 0; i < size; i++) {
322 		vc4_crtc->lut_r[i] = r[i] >> 8;
323 		vc4_crtc->lut_g[i] = g[i] >> 8;
324 		vc4_crtc->lut_b[i] = b[i] >> 8;
325 	}
326 
327 	vc4_crtc_lut_load(crtc);
328 
329 	return 0;
330 }
331 
332 static u32 vc4_get_fifo_full_level(u32 format)
333 {
334 	static const u32 fifo_len_bytes = 64;
335 	static const u32 hvs_latency_pix = 6;
336 
337 	switch (format) {
338 	case PV_CONTROL_FORMAT_DSIV_16:
339 	case PV_CONTROL_FORMAT_DSIC_16:
340 		return fifo_len_bytes - 2 * hvs_latency_pix;
341 	case PV_CONTROL_FORMAT_DSIV_18:
342 		return fifo_len_bytes - 14;
343 	case PV_CONTROL_FORMAT_24:
344 	case PV_CONTROL_FORMAT_DSIV_24:
345 	default:
346 		return fifo_len_bytes - 3 * hvs_latency_pix;
347 	}
348 }
349 
350 /*
351  * Returns the encoder attached to the CRTC.
352  *
353  * VC4 can only scan out to one encoder at a time, while the DRM core
354  * allows drivers to push pixels to more than one encoder from the
355  * same CRTC.
356  */
357 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
358 {
359 	struct drm_connector *connector;
360 
361 	drm_for_each_connector(connector, crtc->dev) {
362 		if (connector->state->crtc == crtc) {
363 			return connector->encoder;
364 		}
365 	}
366 
367 	return NULL;
368 }
369 
370 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
371 {
372 	struct drm_device *dev = crtc->dev;
373 	struct vc4_dev *vc4 = to_vc4_dev(dev);
374 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
375 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
376 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
377 	struct drm_crtc_state *state = crtc->state;
378 	struct drm_display_mode *mode = &state->adjusted_mode;
379 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
380 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
381 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
382 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
383 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
384 	bool debug_dump_regs = false;
385 
386 	if (debug_dump_regs) {
387 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
388 		vc4_crtc_dump_regs(vc4_crtc);
389 	}
390 
391 	/* Reset the PV fifo. */
392 	CRTC_WRITE(PV_CONTROL, 0);
393 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
394 	CRTC_WRITE(PV_CONTROL, 0);
395 
396 	CRTC_WRITE(PV_HORZA,
397 		   VC4_SET_FIELD((mode->htotal -
398 				  mode->hsync_end) * pixel_rep,
399 				 PV_HORZA_HBP) |
400 		   VC4_SET_FIELD((mode->hsync_end -
401 				  mode->hsync_start) * pixel_rep,
402 				 PV_HORZA_HSYNC));
403 	CRTC_WRITE(PV_HORZB,
404 		   VC4_SET_FIELD((mode->hsync_start -
405 				  mode->hdisplay) * pixel_rep,
406 				 PV_HORZB_HFP) |
407 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
408 
409 	CRTC_WRITE(PV_VERTA,
410 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
411 				 PV_VERTA_VBP) |
412 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
413 				 PV_VERTA_VSYNC));
414 	CRTC_WRITE(PV_VERTB,
415 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
416 				 PV_VERTB_VFP) |
417 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
418 
419 	if (interlace) {
420 		CRTC_WRITE(PV_VERTA_EVEN,
421 			   VC4_SET_FIELD(mode->crtc_vtotal -
422 					 mode->crtc_vsync_end - 1,
423 					 PV_VERTA_VBP) |
424 			   VC4_SET_FIELD(mode->crtc_vsync_end -
425 					 mode->crtc_vsync_start,
426 					 PV_VERTA_VSYNC));
427 		CRTC_WRITE(PV_VERTB_EVEN,
428 			   VC4_SET_FIELD(mode->crtc_vsync_start -
429 					 mode->crtc_vdisplay,
430 					 PV_VERTB_VFP) |
431 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
432 
433 		/* We set up first field even mode for HDMI.  VEC's
434 		 * NTSC mode would want first field odd instead, once
435 		 * we support it (to do so, set ODD_FIRST and put the
436 		 * delay in VSYNCD_EVEN instead).
437 		 */
438 		CRTC_WRITE(PV_V_CONTROL,
439 			   PV_VCONTROL_CONTINUOUS |
440 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
441 			   PV_VCONTROL_INTERLACE |
442 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
443 					 PV_VCONTROL_ODD_DELAY));
444 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
445 	} else {
446 		CRTC_WRITE(PV_V_CONTROL,
447 			   PV_VCONTROL_CONTINUOUS |
448 			   (is_dsi ? PV_VCONTROL_DSI : 0));
449 	}
450 
451 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
452 
453 	CRTC_WRITE(PV_CONTROL,
454 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
455 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
456 				 PV_CONTROL_FIFO_LEVEL) |
457 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
458 		   PV_CONTROL_CLR_AT_START |
459 		   PV_CONTROL_TRIGGER_UNDERFLOW |
460 		   PV_CONTROL_WAIT_HSTART |
461 		   VC4_SET_FIELD(vc4_encoder->clock_select,
462 				 PV_CONTROL_CLK_SELECT) |
463 		   PV_CONTROL_FIFO_CLR |
464 		   PV_CONTROL_EN);
465 
466 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
467 		  SCALER_DISPBKGND_AUTOHS |
468 		  SCALER_DISPBKGND_GAMMA |
469 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
470 
471 	/* Reload the LUT, since the SRAMs would have been disabled if
472 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
473 	 */
474 	vc4_crtc_lut_load(crtc);
475 
476 	if (debug_dump_regs) {
477 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
478 		vc4_crtc_dump_regs(vc4_crtc);
479 	}
480 }
481 
482 static void require_hvs_enabled(struct drm_device *dev)
483 {
484 	struct vc4_dev *vc4 = to_vc4_dev(dev);
485 
486 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
487 		     SCALER_DISPCTRL_ENABLE);
488 }
489 
490 static void vc4_crtc_disable(struct drm_crtc *crtc)
491 {
492 	struct drm_device *dev = crtc->dev;
493 	struct vc4_dev *vc4 = to_vc4_dev(dev);
494 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
495 	u32 chan = vc4_crtc->channel;
496 	int ret;
497 	require_hvs_enabled(dev);
498 
499 	/* Disable vblank irq handling before crtc is disabled. */
500 	drm_crtc_vblank_off(crtc);
501 
502 	CRTC_WRITE(PV_V_CONTROL,
503 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
504 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
505 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
506 
507 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
508 	    SCALER_DISPCTRLX_ENABLE) {
509 		HVS_WRITE(SCALER_DISPCTRLX(chan),
510 			  SCALER_DISPCTRLX_RESET);
511 
512 		/* While the docs say that reset is self-clearing, it
513 		 * seems it doesn't actually.
514 		 */
515 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
516 	}
517 
518 	/* Once we leave, the scaler should be disabled and its fifo empty. */
519 
520 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
521 
522 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
523 				   SCALER_DISPSTATX_MODE) !=
524 		     SCALER_DISPSTATX_MODE_DISABLED);
525 
526 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
527 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
528 		     SCALER_DISPSTATX_EMPTY);
529 }
530 
531 static void vc4_crtc_enable(struct drm_crtc *crtc)
532 {
533 	struct drm_device *dev = crtc->dev;
534 	struct vc4_dev *vc4 = to_vc4_dev(dev);
535 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
536 	struct drm_crtc_state *state = crtc->state;
537 	struct drm_display_mode *mode = &state->adjusted_mode;
538 
539 	require_hvs_enabled(dev);
540 
541 	/* Turn on the scaler, which will wait for vstart to start
542 	 * compositing.
543 	 */
544 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
545 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
546 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
547 		  SCALER_DISPCTRLX_ENABLE);
548 
549 	/* Turn on the pixel valve, which will emit the vstart signal. */
550 	CRTC_WRITE(PV_V_CONTROL,
551 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
552 
553 	/* Enable vblank irq handling after crtc is started. */
554 	drm_crtc_vblank_on(crtc);
555 }
556 
557 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
558 				const struct drm_display_mode *mode,
559 				struct drm_display_mode *adjusted_mode)
560 {
561 	/* Do not allow doublescan modes from user space */
562 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
563 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
564 			      crtc->base.id);
565 		return false;
566 	}
567 
568 	return true;
569 }
570 
571 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
572 				 struct drm_crtc_state *state)
573 {
574 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
575 	struct drm_device *dev = crtc->dev;
576 	struct vc4_dev *vc4 = to_vc4_dev(dev);
577 	struct drm_plane *plane;
578 	unsigned long flags;
579 	const struct drm_plane_state *plane_state;
580 	u32 dlist_count = 0;
581 	int ret;
582 
583 	/* The pixelvalve can only feed one encoder (and encoders are
584 	 * 1:1 with connectors.)
585 	 */
586 	if (hweight32(state->connector_mask) > 1)
587 		return -EINVAL;
588 
589 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
590 		dlist_count += vc4_plane_dlist_size(plane_state);
591 
592 	dlist_count++; /* Account for SCALER_CTL0_END. */
593 
594 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
595 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
596 				 dlist_count);
597 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
598 	if (ret)
599 		return ret;
600 
601 	return 0;
602 }
603 
604 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
605 				  struct drm_crtc_state *old_state)
606 {
607 	struct drm_device *dev = crtc->dev;
608 	struct vc4_dev *vc4 = to_vc4_dev(dev);
609 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
610 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
611 	struct drm_plane *plane;
612 	bool debug_dump_regs = false;
613 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
614 	u32 __iomem *dlist_next = dlist_start;
615 
616 	if (debug_dump_regs) {
617 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
618 		vc4_hvs_dump_state(dev);
619 	}
620 
621 	/* Copy all the active planes' dlist contents to the hardware dlist. */
622 	drm_atomic_crtc_for_each_plane(plane, crtc) {
623 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
624 	}
625 
626 	writel(SCALER_CTL0_END, dlist_next);
627 	dlist_next++;
628 
629 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
630 
631 	if (crtc->state->event) {
632 		unsigned long flags;
633 
634 		crtc->state->event->pipe = drm_crtc_index(crtc);
635 
636 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
637 
638 		spin_lock_irqsave(&dev->event_lock, flags);
639 		vc4_crtc->event = crtc->state->event;
640 		crtc->state->event = NULL;
641 
642 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
643 			  vc4_state->mm.start);
644 
645 		spin_unlock_irqrestore(&dev->event_lock, flags);
646 	} else {
647 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
648 			  vc4_state->mm.start);
649 	}
650 
651 	if (debug_dump_regs) {
652 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
653 		vc4_hvs_dump_state(dev);
654 	}
655 }
656 
657 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
658 {
659 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
660 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
661 
662 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
663 
664 	return 0;
665 }
666 
667 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
668 {
669 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
670 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
671 
672 	CRTC_WRITE(PV_INTEN, 0);
673 }
674 
675 /* Must be called with the event lock held */
676 bool vc4_event_pending(struct drm_crtc *crtc)
677 {
678 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
679 
680 	return !!vc4_crtc->event;
681 }
682 
683 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
684 {
685 	struct drm_crtc *crtc = &vc4_crtc->base;
686 	struct drm_device *dev = crtc->dev;
687 	struct vc4_dev *vc4 = to_vc4_dev(dev);
688 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689 	u32 chan = vc4_crtc->channel;
690 	unsigned long flags;
691 
692 	spin_lock_irqsave(&dev->event_lock, flags);
693 	if (vc4_crtc->event &&
694 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
695 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
696 		vc4_crtc->event = NULL;
697 		drm_crtc_vblank_put(crtc);
698 	}
699 	spin_unlock_irqrestore(&dev->event_lock, flags);
700 }
701 
702 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
703 {
704 	struct vc4_crtc *vc4_crtc = data;
705 	u32 stat = CRTC_READ(PV_INTSTAT);
706 	irqreturn_t ret = IRQ_NONE;
707 
708 	if (stat & PV_INT_VFP_START) {
709 		vc4_crtc->t_vblank = ktime_get();
710 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
711 		drm_crtc_handle_vblank(&vc4_crtc->base);
712 		vc4_crtc_handle_page_flip(vc4_crtc);
713 		ret = IRQ_HANDLED;
714 	}
715 
716 	return ret;
717 }
718 
719 struct vc4_async_flip_state {
720 	struct drm_crtc *crtc;
721 	struct drm_framebuffer *fb;
722 	struct drm_pending_vblank_event *event;
723 
724 	struct vc4_seqno_cb cb;
725 };
726 
727 /* Called when the V3D execution for the BO being flipped to is done, so that
728  * we can actually update the plane's address to point to it.
729  */
730 static void
731 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
732 {
733 	struct vc4_async_flip_state *flip_state =
734 		container_of(cb, struct vc4_async_flip_state, cb);
735 	struct drm_crtc *crtc = flip_state->crtc;
736 	struct drm_device *dev = crtc->dev;
737 	struct vc4_dev *vc4 = to_vc4_dev(dev);
738 	struct drm_plane *plane = crtc->primary;
739 
740 	vc4_plane_async_set_fb(plane, flip_state->fb);
741 	if (flip_state->event) {
742 		unsigned long flags;
743 
744 		spin_lock_irqsave(&dev->event_lock, flags);
745 		drm_crtc_send_vblank_event(crtc, flip_state->event);
746 		spin_unlock_irqrestore(&dev->event_lock, flags);
747 	}
748 
749 	drm_crtc_vblank_put(crtc);
750 	drm_framebuffer_unreference(flip_state->fb);
751 	kfree(flip_state);
752 
753 	up(&vc4->async_modeset);
754 }
755 
756 /* Implements async (non-vblank-synced) page flips.
757  *
758  * The page flip ioctl needs to return immediately, so we grab the
759  * modeset semaphore on the pipe, and queue the address update for
760  * when V3D is done with the BO being flipped to.
761  */
762 static int vc4_async_page_flip(struct drm_crtc *crtc,
763 			       struct drm_framebuffer *fb,
764 			       struct drm_pending_vblank_event *event,
765 			       uint32_t flags)
766 {
767 	struct drm_device *dev = crtc->dev;
768 	struct vc4_dev *vc4 = to_vc4_dev(dev);
769 	struct drm_plane *plane = crtc->primary;
770 	int ret = 0;
771 	struct vc4_async_flip_state *flip_state;
772 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
773 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
774 
775 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
776 	if (!flip_state)
777 		return -ENOMEM;
778 
779 	drm_framebuffer_reference(fb);
780 	flip_state->fb = fb;
781 	flip_state->crtc = crtc;
782 	flip_state->event = event;
783 
784 	/* Make sure all other async modesetes have landed. */
785 	ret = down_interruptible(&vc4->async_modeset);
786 	if (ret) {
787 		drm_framebuffer_unreference(fb);
788 		kfree(flip_state);
789 		return ret;
790 	}
791 
792 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
793 
794 	/* Immediately update the plane's legacy fb pointer, so that later
795 	 * modeset prep sees the state that will be present when the semaphore
796 	 * is released.
797 	 */
798 	drm_atomic_set_fb_for_plane(plane->state, fb);
799 	plane->fb = fb;
800 
801 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
802 			   vc4_async_page_flip_complete);
803 
804 	/* Driver takes ownership of state on successful async commit. */
805 	return 0;
806 }
807 
808 static int vc4_page_flip(struct drm_crtc *crtc,
809 			 struct drm_framebuffer *fb,
810 			 struct drm_pending_vblank_event *event,
811 			 uint32_t flags)
812 {
813 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
814 		return vc4_async_page_flip(crtc, fb, event, flags);
815 	else
816 		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
817 }
818 
819 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
820 {
821 	struct vc4_crtc_state *vc4_state;
822 
823 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
824 	if (!vc4_state)
825 		return NULL;
826 
827 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
828 	return &vc4_state->base;
829 }
830 
831 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
832 				   struct drm_crtc_state *state)
833 {
834 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
835 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
836 
837 	if (vc4_state->mm.allocated) {
838 		unsigned long flags;
839 
840 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
841 		drm_mm_remove_node(&vc4_state->mm);
842 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
843 
844 	}
845 
846 	drm_atomic_helper_crtc_destroy_state(crtc, state);
847 }
848 
849 static const struct drm_crtc_funcs vc4_crtc_funcs = {
850 	.set_config = drm_atomic_helper_set_config,
851 	.destroy = vc4_crtc_destroy,
852 	.page_flip = vc4_page_flip,
853 	.set_property = NULL,
854 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
855 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
856 	.reset = drm_atomic_helper_crtc_reset,
857 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
858 	.atomic_destroy_state = vc4_crtc_destroy_state,
859 	.gamma_set = vc4_crtc_gamma_set,
860 };
861 
862 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
863 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
864 	.disable = vc4_crtc_disable,
865 	.enable = vc4_crtc_enable,
866 	.mode_fixup = vc4_crtc_mode_fixup,
867 	.atomic_check = vc4_crtc_atomic_check,
868 	.atomic_flush = vc4_crtc_atomic_flush,
869 };
870 
871 static const struct vc4_crtc_data pv0_data = {
872 	.hvs_channel = 0,
873 	.encoder_types = {
874 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
875 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
876 	},
877 };
878 
879 static const struct vc4_crtc_data pv1_data = {
880 	.hvs_channel = 2,
881 	.encoder_types = {
882 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
883 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
884 	},
885 };
886 
887 static const struct vc4_crtc_data pv2_data = {
888 	.hvs_channel = 1,
889 	.encoder_types = {
890 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
891 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
892 	},
893 };
894 
895 static const struct of_device_id vc4_crtc_dt_match[] = {
896 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
897 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
898 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
899 	{}
900 };
901 
902 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
903 					struct drm_crtc *crtc)
904 {
905 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
906 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
907 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
908 	struct drm_encoder *encoder;
909 
910 	drm_for_each_encoder(encoder, drm) {
911 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
912 		int i;
913 
914 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
915 			if (vc4_encoder->type == encoder_types[i]) {
916 				vc4_encoder->clock_select = i;
917 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
918 				break;
919 			}
920 		}
921 	}
922 }
923 
924 static void
925 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
926 {
927 	struct drm_device *drm = vc4_crtc->base.dev;
928 	struct vc4_dev *vc4 = to_vc4_dev(drm);
929 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
930 	/* Top/base are supposed to be 4-pixel aligned, but the
931 	 * Raspberry Pi firmware fills the low bits (which are
932 	 * presumably ignored).
933 	 */
934 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
935 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
936 
937 	vc4_crtc->cob_size = top - base + 4;
938 }
939 
940 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
941 {
942 	struct platform_device *pdev = to_platform_device(dev);
943 	struct drm_device *drm = dev_get_drvdata(master);
944 	struct vc4_crtc *vc4_crtc;
945 	struct drm_crtc *crtc;
946 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
947 	const struct of_device_id *match;
948 	int ret, i;
949 
950 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
951 	if (!vc4_crtc)
952 		return -ENOMEM;
953 	crtc = &vc4_crtc->base;
954 
955 	match = of_match_device(vc4_crtc_dt_match, dev);
956 	if (!match)
957 		return -ENODEV;
958 	vc4_crtc->data = match->data;
959 
960 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
961 	if (IS_ERR(vc4_crtc->regs))
962 		return PTR_ERR(vc4_crtc->regs);
963 
964 	/* For now, we create just the primary and the legacy cursor
965 	 * planes.  We should be able to stack more planes on easily,
966 	 * but to do that we would need to compute the bandwidth
967 	 * requirement of the plane configuration, and reject ones
968 	 * that will take too much.
969 	 */
970 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
971 	if (IS_ERR(primary_plane)) {
972 		dev_err(dev, "failed to construct primary plane\n");
973 		ret = PTR_ERR(primary_plane);
974 		goto err;
975 	}
976 
977 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
978 				  &vc4_crtc_funcs, NULL);
979 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
980 	primary_plane->crtc = crtc;
981 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
982 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
983 
984 	/* Set up some arbitrary number of planes.  We're not limited
985 	 * by a set number of physical registers, just the space in
986 	 * the HVS (16k) and how small an plane can be (28 bytes).
987 	 * However, each plane we set up takes up some memory, and
988 	 * increases the cost of looping over planes, which atomic
989 	 * modesetting does quite a bit.  As a result, we pick a
990 	 * modest number of planes to expose, that should hopefully
991 	 * still cover any sane usecase.
992 	 */
993 	for (i = 0; i < 8; i++) {
994 		struct drm_plane *plane =
995 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
996 
997 		if (IS_ERR(plane))
998 			continue;
999 
1000 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1001 	}
1002 
1003 	/* Set up the legacy cursor after overlay initialization,
1004 	 * since we overlay planes on the CRTC in the order they were
1005 	 * initialized.
1006 	 */
1007 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1008 	if (!IS_ERR(cursor_plane)) {
1009 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1010 		cursor_plane->crtc = crtc;
1011 		crtc->cursor = cursor_plane;
1012 	}
1013 
1014 	vc4_crtc_get_cob_allocation(vc4_crtc);
1015 
1016 	CRTC_WRITE(PV_INTEN, 0);
1017 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1018 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1019 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1020 	if (ret)
1021 		goto err_destroy_planes;
1022 
1023 	vc4_set_crtc_possible_masks(drm, crtc);
1024 
1025 	for (i = 0; i < crtc->gamma_size; i++) {
1026 		vc4_crtc->lut_r[i] = i;
1027 		vc4_crtc->lut_g[i] = i;
1028 		vc4_crtc->lut_b[i] = i;
1029 	}
1030 
1031 	platform_set_drvdata(pdev, vc4_crtc);
1032 
1033 	return 0;
1034 
1035 err_destroy_planes:
1036 	list_for_each_entry_safe(destroy_plane, temp,
1037 				 &drm->mode_config.plane_list, head) {
1038 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1039 		    destroy_plane->funcs->destroy(destroy_plane);
1040 	}
1041 err:
1042 	return ret;
1043 }
1044 
1045 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1046 			    void *data)
1047 {
1048 	struct platform_device *pdev = to_platform_device(dev);
1049 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1050 
1051 	vc4_crtc_destroy(&vc4_crtc->base);
1052 
1053 	CRTC_WRITE(PV_INTEN, 0);
1054 
1055 	platform_set_drvdata(pdev, NULL);
1056 }
1057 
1058 static const struct component_ops vc4_crtc_ops = {
1059 	.bind   = vc4_crtc_bind,
1060 	.unbind = vc4_crtc_unbind,
1061 };
1062 
1063 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1064 {
1065 	return component_add(&pdev->dev, &vc4_crtc_ops);
1066 }
1067 
1068 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1069 {
1070 	component_del(&pdev->dev, &vc4_crtc_ops);
1071 	return 0;
1072 }
1073 
1074 struct platform_driver vc4_crtc_driver = {
1075 	.probe = vc4_crtc_dev_probe,
1076 	.remove = vc4_crtc_dev_remove,
1077 	.driver = {
1078 		.name = "vc4_crtc",
1079 		.of_match_table = vc4_crtc_dt_match,
1080 	},
1081 };
1082