xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision a8fe58ce)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33 
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43 
44 struct vc4_crtc {
45 	struct drm_crtc base;
46 	const struct vc4_crtc_data *data;
47 	void __iomem *regs;
48 
49 	/* Which HVS channel we're using for our CRTC. */
50 	int channel;
51 
52 	/* Pointer to the actual hardware display list memory for the
53 	 * crtc.
54 	 */
55 	u32 __iomem *dlist;
56 
57 	u32 dlist_size; /* in dwords */
58 
59 	struct drm_pending_vblank_event *event;
60 };
61 
62 static inline struct vc4_crtc *
63 to_vc4_crtc(struct drm_crtc *crtc)
64 {
65 	return (struct vc4_crtc *)crtc;
66 }
67 
68 struct vc4_crtc_data {
69 	/* Which channel of the HVS this pixelvalve sources from. */
70 	int hvs_channel;
71 
72 	enum vc4_encoder_type encoder0_type;
73 	enum vc4_encoder_type encoder1_type;
74 };
75 
76 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
77 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
78 
79 #define CRTC_REG(reg) { reg, #reg }
80 static const struct {
81 	u32 reg;
82 	const char *name;
83 } crtc_regs[] = {
84 	CRTC_REG(PV_CONTROL),
85 	CRTC_REG(PV_V_CONTROL),
86 	CRTC_REG(PV_VSYNCD),
87 	CRTC_REG(PV_HORZA),
88 	CRTC_REG(PV_HORZB),
89 	CRTC_REG(PV_VERTA),
90 	CRTC_REG(PV_VERTB),
91 	CRTC_REG(PV_VERTA_EVEN),
92 	CRTC_REG(PV_VERTB_EVEN),
93 	CRTC_REG(PV_INTEN),
94 	CRTC_REG(PV_INTSTAT),
95 	CRTC_REG(PV_STAT),
96 	CRTC_REG(PV_HACT_ACT),
97 };
98 
99 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
100 {
101 	int i;
102 
103 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
104 		DRM_INFO("0x%04x (%s): 0x%08x\n",
105 			 crtc_regs[i].reg, crtc_regs[i].name,
106 			 CRTC_READ(crtc_regs[i].reg));
107 	}
108 }
109 
110 #ifdef CONFIG_DEBUG_FS
111 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
112 {
113 	struct drm_info_node *node = (struct drm_info_node *)m->private;
114 	struct drm_device *dev = node->minor->dev;
115 	int crtc_index = (uintptr_t)node->info_ent->data;
116 	struct drm_crtc *crtc;
117 	struct vc4_crtc *vc4_crtc;
118 	int i;
119 
120 	i = 0;
121 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
122 		if (i == crtc_index)
123 			break;
124 		i++;
125 	}
126 	if (!crtc)
127 		return 0;
128 	vc4_crtc = to_vc4_crtc(crtc);
129 
130 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
131 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
132 			   crtc_regs[i].name, crtc_regs[i].reg,
133 			   CRTC_READ(crtc_regs[i].reg));
134 	}
135 
136 	return 0;
137 }
138 #endif
139 
140 static void vc4_crtc_destroy(struct drm_crtc *crtc)
141 {
142 	drm_crtc_cleanup(crtc);
143 }
144 
145 static u32 vc4_get_fifo_full_level(u32 format)
146 {
147 	static const u32 fifo_len_bytes = 64;
148 	static const u32 hvs_latency_pix = 6;
149 
150 	switch (format) {
151 	case PV_CONTROL_FORMAT_DSIV_16:
152 	case PV_CONTROL_FORMAT_DSIC_16:
153 		return fifo_len_bytes - 2 * hvs_latency_pix;
154 	case PV_CONTROL_FORMAT_DSIV_18:
155 		return fifo_len_bytes - 14;
156 	case PV_CONTROL_FORMAT_24:
157 	case PV_CONTROL_FORMAT_DSIV_24:
158 	default:
159 		return fifo_len_bytes - 3 * hvs_latency_pix;
160 	}
161 }
162 
163 /*
164  * Returns the clock select bit for the connector attached to the
165  * CRTC.
166  */
167 static int vc4_get_clock_select(struct drm_crtc *crtc)
168 {
169 	struct drm_connector *connector;
170 
171 	drm_for_each_connector(connector, crtc->dev) {
172 		if (connector->state->crtc == crtc) {
173 			struct drm_encoder *encoder = connector->encoder;
174 			struct vc4_encoder *vc4_encoder =
175 				to_vc4_encoder(encoder);
176 
177 			return vc4_encoder->clock_select;
178 		}
179 	}
180 
181 	return -1;
182 }
183 
184 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
185 {
186 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
187 	struct drm_crtc_state *state = crtc->state;
188 	struct drm_display_mode *mode = &state->adjusted_mode;
189 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
190 	u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
191 	u32 format = PV_CONTROL_FORMAT_24;
192 	bool debug_dump_regs = false;
193 	int clock_select = vc4_get_clock_select(crtc);
194 
195 	if (debug_dump_regs) {
196 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
197 		vc4_crtc_dump_regs(vc4_crtc);
198 	}
199 
200 	/* Reset the PV fifo. */
201 	CRTC_WRITE(PV_CONTROL, 0);
202 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
203 	CRTC_WRITE(PV_CONTROL, 0);
204 
205 	CRTC_WRITE(PV_HORZA,
206 		   VC4_SET_FIELD(mode->htotal - mode->hsync_end,
207 				 PV_HORZA_HBP) |
208 		   VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
209 				 PV_HORZA_HSYNC));
210 	CRTC_WRITE(PV_HORZB,
211 		   VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
212 				 PV_HORZB_HFP) |
213 		   VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
214 
215 	if (interlace) {
216 		CRTC_WRITE(PV_VERTA_EVEN,
217 			   VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
218 					 PV_VERTA_VBP) |
219 			   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
220 					 PV_VERTA_VSYNC));
221 		CRTC_WRITE(PV_VERTB_EVEN,
222 			   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
223 					 PV_VERTB_VFP) |
224 			   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
225 	}
226 
227 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
228 
229 	CRTC_WRITE(PV_V_CONTROL,
230 		   PV_VCONTROL_CONTINUOUS |
231 		   (interlace ? PV_VCONTROL_INTERLACE : 0));
232 
233 	CRTC_WRITE(PV_CONTROL,
234 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
235 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
236 				 PV_CONTROL_FIFO_LEVEL) |
237 		   PV_CONTROL_CLR_AT_START |
238 		   PV_CONTROL_TRIGGER_UNDERFLOW |
239 		   PV_CONTROL_WAIT_HSTART |
240 		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
241 		   PV_CONTROL_FIFO_CLR |
242 		   PV_CONTROL_EN);
243 
244 	if (debug_dump_regs) {
245 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
246 		vc4_crtc_dump_regs(vc4_crtc);
247 	}
248 }
249 
250 static void require_hvs_enabled(struct drm_device *dev)
251 {
252 	struct vc4_dev *vc4 = to_vc4_dev(dev);
253 
254 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
255 		     SCALER_DISPCTRL_ENABLE);
256 }
257 
258 static void vc4_crtc_disable(struct drm_crtc *crtc)
259 {
260 	struct drm_device *dev = crtc->dev;
261 	struct vc4_dev *vc4 = to_vc4_dev(dev);
262 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
263 	u32 chan = vc4_crtc->channel;
264 	int ret;
265 	require_hvs_enabled(dev);
266 
267 	CRTC_WRITE(PV_V_CONTROL,
268 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
269 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
270 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
271 
272 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
273 	    SCALER_DISPCTRLX_ENABLE) {
274 		HVS_WRITE(SCALER_DISPCTRLX(chan),
275 			  SCALER_DISPCTRLX_RESET);
276 
277 		/* While the docs say that reset is self-clearing, it
278 		 * seems it doesn't actually.
279 		 */
280 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
281 	}
282 
283 	/* Once we leave, the scaler should be disabled and its fifo empty. */
284 
285 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
286 
287 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
288 				   SCALER_DISPSTATX_MODE) !=
289 		     SCALER_DISPSTATX_MODE_DISABLED);
290 
291 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
292 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
293 		     SCALER_DISPSTATX_EMPTY);
294 }
295 
296 static void vc4_crtc_enable(struct drm_crtc *crtc)
297 {
298 	struct drm_device *dev = crtc->dev;
299 	struct vc4_dev *vc4 = to_vc4_dev(dev);
300 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
301 	struct drm_crtc_state *state = crtc->state;
302 	struct drm_display_mode *mode = &state->adjusted_mode;
303 
304 	require_hvs_enabled(dev);
305 
306 	/* Turn on the scaler, which will wait for vstart to start
307 	 * compositing.
308 	 */
309 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
310 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
311 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
312 		  SCALER_DISPCTRLX_ENABLE);
313 
314 	/* Turn on the pixel valve, which will emit the vstart signal. */
315 	CRTC_WRITE(PV_V_CONTROL,
316 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
317 }
318 
319 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
320 				 struct drm_crtc_state *state)
321 {
322 	struct drm_device *dev = crtc->dev;
323 	struct vc4_dev *vc4 = to_vc4_dev(dev);
324 	struct drm_plane *plane;
325 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
326 	u32 dlist_count = 0;
327 
328 	/* The pixelvalve can only feed one encoder (and encoders are
329 	 * 1:1 with connectors.)
330 	 */
331 	if (hweight32(state->connector_mask) > 1)
332 		return -EINVAL;
333 
334 	drm_atomic_crtc_state_for_each_plane(plane, state) {
335 		struct drm_plane_state *plane_state =
336 			state->state->plane_states[drm_plane_index(plane)];
337 
338 		/* plane might not have changed, in which case take
339 		 * current state:
340 		 */
341 		if (!plane_state)
342 			plane_state = plane->state;
343 
344 		dlist_count += vc4_plane_dlist_size(plane_state);
345 	}
346 
347 	dlist_count++; /* Account for SCALER_CTL0_END. */
348 
349 	if (!vc4_crtc->dlist || dlist_count > vc4_crtc->dlist_size) {
350 		vc4_crtc->dlist = ((u32 __iomem *)vc4->hvs->dlist +
351 				   HVS_BOOTLOADER_DLIST_END);
352 		vc4_crtc->dlist_size = ((SCALER_DLIST_SIZE >> 2) -
353 					HVS_BOOTLOADER_DLIST_END);
354 
355 		if (dlist_count > vc4_crtc->dlist_size) {
356 			DRM_DEBUG_KMS("dlist too large for CRTC (%d > %d).\n",
357 				      dlist_count, vc4_crtc->dlist_size);
358 			return -EINVAL;
359 		}
360 	}
361 
362 	return 0;
363 }
364 
365 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
366 				  struct drm_crtc_state *old_state)
367 {
368 	struct drm_device *dev = crtc->dev;
369 	struct vc4_dev *vc4 = to_vc4_dev(dev);
370 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
371 	struct drm_plane *plane;
372 	bool debug_dump_regs = false;
373 	u32 __iomem *dlist_next = vc4_crtc->dlist;
374 
375 	if (debug_dump_regs) {
376 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
377 		vc4_hvs_dump_state(dev);
378 	}
379 
380 	/* Copy all the active planes' dlist contents to the hardware dlist.
381 	 *
382 	 * XXX: If the new display list was large enough that it
383 	 * overlapped a currently-read display list, we need to do
384 	 * something like disable scanout before putting in the new
385 	 * list.  For now, we're safe because we only have the two
386 	 * planes.
387 	 */
388 	drm_atomic_crtc_for_each_plane(plane, crtc) {
389 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
390 	}
391 
392 	if (dlist_next == vc4_crtc->dlist) {
393 		/* If no planes were enabled, use the SCALER_CTL0_END
394 		 * at the start of the display list memory (in the
395 		 * bootloader section).  We'll rewrite that
396 		 * SCALER_CTL0_END, just in case, though.
397 		 */
398 		writel(SCALER_CTL0_END, vc4->hvs->dlist);
399 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 0);
400 	} else {
401 		writel(SCALER_CTL0_END, dlist_next);
402 		dlist_next++;
403 
404 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
405 			  (u32 __iomem *)vc4_crtc->dlist -
406 			  (u32 __iomem *)vc4->hvs->dlist);
407 
408 		/* Make the next display list start after ours. */
409 		vc4_crtc->dlist_size -= (dlist_next - vc4_crtc->dlist);
410 		vc4_crtc->dlist = dlist_next;
411 	}
412 
413 	if (debug_dump_regs) {
414 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
415 		vc4_hvs_dump_state(dev);
416 	}
417 
418 	if (crtc->state->event) {
419 		unsigned long flags;
420 
421 		crtc->state->event->pipe = drm_crtc_index(crtc);
422 
423 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
424 
425 		spin_lock_irqsave(&dev->event_lock, flags);
426 		vc4_crtc->event = crtc->state->event;
427 		spin_unlock_irqrestore(&dev->event_lock, flags);
428 		crtc->state->event = NULL;
429 	}
430 }
431 
432 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
433 {
434 	struct vc4_dev *vc4 = to_vc4_dev(dev);
435 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
436 
437 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
438 
439 	return 0;
440 }
441 
442 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
443 {
444 	struct vc4_dev *vc4 = to_vc4_dev(dev);
445 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
446 
447 	CRTC_WRITE(PV_INTEN, 0);
448 }
449 
450 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
451 {
452 	struct drm_crtc *crtc = &vc4_crtc->base;
453 	struct drm_device *dev = crtc->dev;
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&dev->event_lock, flags);
457 	if (vc4_crtc->event) {
458 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
459 		vc4_crtc->event = NULL;
460 	}
461 	spin_unlock_irqrestore(&dev->event_lock, flags);
462 }
463 
464 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
465 {
466 	struct vc4_crtc *vc4_crtc = data;
467 	u32 stat = CRTC_READ(PV_INTSTAT);
468 	irqreturn_t ret = IRQ_NONE;
469 
470 	if (stat & PV_INT_VFP_START) {
471 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
472 		drm_crtc_handle_vblank(&vc4_crtc->base);
473 		vc4_crtc_handle_page_flip(vc4_crtc);
474 		ret = IRQ_HANDLED;
475 	}
476 
477 	return ret;
478 }
479 
480 struct vc4_async_flip_state {
481 	struct drm_crtc *crtc;
482 	struct drm_framebuffer *fb;
483 	struct drm_pending_vblank_event *event;
484 
485 	struct vc4_seqno_cb cb;
486 };
487 
488 /* Called when the V3D execution for the BO being flipped to is done, so that
489  * we can actually update the plane's address to point to it.
490  */
491 static void
492 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
493 {
494 	struct vc4_async_flip_state *flip_state =
495 		container_of(cb, struct vc4_async_flip_state, cb);
496 	struct drm_crtc *crtc = flip_state->crtc;
497 	struct drm_device *dev = crtc->dev;
498 	struct vc4_dev *vc4 = to_vc4_dev(dev);
499 	struct drm_plane *plane = crtc->primary;
500 
501 	vc4_plane_async_set_fb(plane, flip_state->fb);
502 	if (flip_state->event) {
503 		unsigned long flags;
504 
505 		spin_lock_irqsave(&dev->event_lock, flags);
506 		drm_crtc_send_vblank_event(crtc, flip_state->event);
507 		spin_unlock_irqrestore(&dev->event_lock, flags);
508 	}
509 
510 	drm_framebuffer_unreference(flip_state->fb);
511 	kfree(flip_state);
512 
513 	up(&vc4->async_modeset);
514 }
515 
516 /* Implements async (non-vblank-synced) page flips.
517  *
518  * The page flip ioctl needs to return immediately, so we grab the
519  * modeset semaphore on the pipe, and queue the address update for
520  * when V3D is done with the BO being flipped to.
521  */
522 static int vc4_async_page_flip(struct drm_crtc *crtc,
523 			       struct drm_framebuffer *fb,
524 			       struct drm_pending_vblank_event *event,
525 			       uint32_t flags)
526 {
527 	struct drm_device *dev = crtc->dev;
528 	struct vc4_dev *vc4 = to_vc4_dev(dev);
529 	struct drm_plane *plane = crtc->primary;
530 	int ret = 0;
531 	struct vc4_async_flip_state *flip_state;
532 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
533 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
534 
535 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
536 	if (!flip_state)
537 		return -ENOMEM;
538 
539 	drm_framebuffer_reference(fb);
540 	flip_state->fb = fb;
541 	flip_state->crtc = crtc;
542 	flip_state->event = event;
543 
544 	/* Make sure all other async modesetes have landed. */
545 	ret = down_interruptible(&vc4->async_modeset);
546 	if (ret) {
547 		kfree(flip_state);
548 		return ret;
549 	}
550 
551 	/* Immediately update the plane's legacy fb pointer, so that later
552 	 * modeset prep sees the state that will be present when the semaphore
553 	 * is released.
554 	 */
555 	drm_atomic_set_fb_for_plane(plane->state, fb);
556 	plane->fb = fb;
557 
558 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
559 			   vc4_async_page_flip_complete);
560 
561 	/* Driver takes ownership of state on successful async commit. */
562 	return 0;
563 }
564 
565 static int vc4_page_flip(struct drm_crtc *crtc,
566 			 struct drm_framebuffer *fb,
567 			 struct drm_pending_vblank_event *event,
568 			 uint32_t flags)
569 {
570 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
571 		return vc4_async_page_flip(crtc, fb, event, flags);
572 	else
573 		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
574 }
575 
576 static const struct drm_crtc_funcs vc4_crtc_funcs = {
577 	.set_config = drm_atomic_helper_set_config,
578 	.destroy = vc4_crtc_destroy,
579 	.page_flip = vc4_page_flip,
580 	.set_property = NULL,
581 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
582 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
583 	.reset = drm_atomic_helper_crtc_reset,
584 	.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
585 	.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
586 };
587 
588 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
589 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
590 	.disable = vc4_crtc_disable,
591 	.enable = vc4_crtc_enable,
592 	.atomic_check = vc4_crtc_atomic_check,
593 	.atomic_flush = vc4_crtc_atomic_flush,
594 };
595 
596 static const struct vc4_crtc_data pv0_data = {
597 	.hvs_channel = 0,
598 	.encoder0_type = VC4_ENCODER_TYPE_DSI0,
599 	.encoder1_type = VC4_ENCODER_TYPE_DPI,
600 };
601 
602 static const struct vc4_crtc_data pv1_data = {
603 	.hvs_channel = 2,
604 	.encoder0_type = VC4_ENCODER_TYPE_DSI1,
605 	.encoder1_type = VC4_ENCODER_TYPE_SMI,
606 };
607 
608 static const struct vc4_crtc_data pv2_data = {
609 	.hvs_channel = 1,
610 	.encoder0_type = VC4_ENCODER_TYPE_VEC,
611 	.encoder1_type = VC4_ENCODER_TYPE_HDMI,
612 };
613 
614 static const struct of_device_id vc4_crtc_dt_match[] = {
615 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
616 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
617 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
618 	{}
619 };
620 
621 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
622 					struct drm_crtc *crtc)
623 {
624 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
625 	struct drm_encoder *encoder;
626 
627 	drm_for_each_encoder(encoder, drm) {
628 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
629 
630 		if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
631 			vc4_encoder->clock_select = 0;
632 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
633 		} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
634 			vc4_encoder->clock_select = 1;
635 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
636 		}
637 	}
638 }
639 
640 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
641 {
642 	struct platform_device *pdev = to_platform_device(dev);
643 	struct drm_device *drm = dev_get_drvdata(master);
644 	struct vc4_dev *vc4 = to_vc4_dev(drm);
645 	struct vc4_crtc *vc4_crtc;
646 	struct drm_crtc *crtc;
647 	struct drm_plane *primary_plane, *cursor_plane;
648 	const struct of_device_id *match;
649 	int ret;
650 
651 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
652 	if (!vc4_crtc)
653 		return -ENOMEM;
654 	crtc = &vc4_crtc->base;
655 
656 	match = of_match_device(vc4_crtc_dt_match, dev);
657 	if (!match)
658 		return -ENODEV;
659 	vc4_crtc->data = match->data;
660 
661 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
662 	if (IS_ERR(vc4_crtc->regs))
663 		return PTR_ERR(vc4_crtc->regs);
664 
665 	/* For now, we create just the primary and the legacy cursor
666 	 * planes.  We should be able to stack more planes on easily,
667 	 * but to do that we would need to compute the bandwidth
668 	 * requirement of the plane configuration, and reject ones
669 	 * that will take too much.
670 	 */
671 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
672 	if (IS_ERR(primary_plane)) {
673 		dev_err(dev, "failed to construct primary plane\n");
674 		ret = PTR_ERR(primary_plane);
675 		goto err;
676 	}
677 
678 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
679 	if (IS_ERR(cursor_plane)) {
680 		dev_err(dev, "failed to construct cursor plane\n");
681 		ret = PTR_ERR(cursor_plane);
682 		goto err_primary;
683 	}
684 
685 	drm_crtc_init_with_planes(drm, crtc, primary_plane, cursor_plane,
686 				  &vc4_crtc_funcs, NULL);
687 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
688 	primary_plane->crtc = crtc;
689 	cursor_plane->crtc = crtc;
690 	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
691 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
692 
693 	CRTC_WRITE(PV_INTEN, 0);
694 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
695 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
696 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
697 	if (ret)
698 		goto err_cursor;
699 
700 	vc4_set_crtc_possible_masks(drm, crtc);
701 
702 	platform_set_drvdata(pdev, vc4_crtc);
703 
704 	return 0;
705 
706 err_cursor:
707 	cursor_plane->funcs->destroy(cursor_plane);
708 err_primary:
709 	primary_plane->funcs->destroy(primary_plane);
710 err:
711 	return ret;
712 }
713 
714 static void vc4_crtc_unbind(struct device *dev, struct device *master,
715 			    void *data)
716 {
717 	struct platform_device *pdev = to_platform_device(dev);
718 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
719 
720 	vc4_crtc_destroy(&vc4_crtc->base);
721 
722 	CRTC_WRITE(PV_INTEN, 0);
723 
724 	platform_set_drvdata(pdev, NULL);
725 }
726 
727 static const struct component_ops vc4_crtc_ops = {
728 	.bind   = vc4_crtc_bind,
729 	.unbind = vc4_crtc_unbind,
730 };
731 
732 static int vc4_crtc_dev_probe(struct platform_device *pdev)
733 {
734 	return component_add(&pdev->dev, &vc4_crtc_ops);
735 }
736 
737 static int vc4_crtc_dev_remove(struct platform_device *pdev)
738 {
739 	component_del(&pdev->dev, &vc4_crtc_ops);
740 	return 0;
741 }
742 
743 struct platform_driver vc4_crtc_driver = {
744 	.probe = vc4_crtc_dev_probe,
745 	.remove = vc4_crtc_dev_remove,
746 	.driver = {
747 		.name = "vc4_crtc",
748 		.of_match_table = vc4_crtc_dt_match,
749 	},
750 };
751