xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_dma_helper.h>
41 #include <drm/drm_framebuffer.h>
42 #include <drm/drm_drv.h>
43 #include <drm/drm_print.h>
44 #include <drm/drm_probe_helper.h>
45 #include <drm/drm_vblank.h>
46 
47 #include "vc4_drv.h"
48 #include "vc4_hdmi.h"
49 #include "vc4_regs.h"
50 
51 #define HVS_FIFO_LATENCY_PIX	6
52 
53 #define CRTC_WRITE(offset, val)								\
54 	do {										\
55 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
56 		writel(val, vc4_crtc->regs + (offset));					\
57 	} while (0)
58 
59 #define CRTC_READ(offset)								\
60 	({										\
61 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
62 		readl(vc4_crtc->regs + (offset));					\
63 	})
64 
65 static const struct debugfs_reg32 crtc_regs[] = {
66 	VC4_REG32(PV_CONTROL),
67 	VC4_REG32(PV_V_CONTROL),
68 	VC4_REG32(PV_VSYNCD_EVEN),
69 	VC4_REG32(PV_HORZA),
70 	VC4_REG32(PV_HORZB),
71 	VC4_REG32(PV_VERTA),
72 	VC4_REG32(PV_VERTB),
73 	VC4_REG32(PV_VERTA_EVEN),
74 	VC4_REG32(PV_VERTB_EVEN),
75 	VC4_REG32(PV_INTEN),
76 	VC4_REG32(PV_INTSTAT),
77 	VC4_REG32(PV_STAT),
78 	VC4_REG32(PV_HACT_ACT),
79 };
80 
81 static unsigned int
82 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
83 {
84 	struct vc4_hvs *hvs = vc4->hvs;
85 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
86 	/* Top/base are supposed to be 4-pixel aligned, but the
87 	 * Raspberry Pi firmware fills the low bits (which are
88 	 * presumably ignored).
89 	 */
90 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
91 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
92 
93 	return top - base + 4;
94 }
95 
96 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
97 					  bool in_vblank_irq,
98 					  int *vpos, int *hpos,
99 					  ktime_t *stime, ktime_t *etime,
100 					  const struct drm_display_mode *mode)
101 {
102 	struct drm_device *dev = crtc->dev;
103 	struct vc4_dev *vc4 = to_vc4_dev(dev);
104 	struct vc4_hvs *hvs = vc4->hvs;
105 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
106 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
107 	unsigned int cob_size;
108 	u32 val;
109 	int fifo_lines;
110 	int vblank_lines;
111 	bool ret = false;
112 
113 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
114 
115 	/* Get optional system timestamp before query. */
116 	if (stime)
117 		*stime = ktime_get();
118 
119 	/*
120 	 * Read vertical scanline which is currently composed for our
121 	 * pixelvalve by the HVS, and also the scaler status.
122 	 */
123 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
124 
125 	/* Get optional system timestamp after query. */
126 	if (etime)
127 		*etime = ktime_get();
128 
129 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
130 
131 	/* Vertical position of hvs composed scanline. */
132 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
133 	*hpos = 0;
134 
135 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
136 		*vpos /= 2;
137 
138 		/* Use hpos to correct for field offset in interlaced mode. */
139 		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
140 			*hpos += mode->crtc_htotal / 2;
141 	}
142 
143 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
144 	/* This is the offset we need for translating hvs -> pv scanout pos. */
145 	fifo_lines = cob_size / mode->crtc_hdisplay;
146 
147 	if (fifo_lines > 0)
148 		ret = true;
149 
150 	/* HVS more than fifo_lines into frame for compositing? */
151 	if (*vpos > fifo_lines) {
152 		/*
153 		 * We are in active scanout and can get some meaningful results
154 		 * from HVS. The actual PV scanout can not trail behind more
155 		 * than fifo_lines as that is the fifo's capacity. Assume that
156 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
157 		 * refilling the fifo and PV consuming from the fifo, ie.
158 		 * whenever the PV consumes and frees up a scanline in the
159 		 * fifo, the HVS will immediately refill it, therefore
160 		 * incrementing vpos. Therefore we choose HVS read position -
161 		 * fifo size in scanlines as a estimate of the real scanout
162 		 * position of the PV.
163 		 */
164 		*vpos -= fifo_lines + 1;
165 
166 		return ret;
167 	}
168 
169 	/*
170 	 * Less: This happens when we are in vblank and the HVS, after getting
171 	 * the VSTART restart signal from the PV, just started refilling its
172 	 * fifo with new lines from the top-most lines of the new framebuffers.
173 	 * The PV does not scan out in vblank, so does not remove lines from
174 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
175 	 * We can't get meaningful readings wrt. scanline position of the PV
176 	 * and need to make things up in a approximative but consistent way.
177 	 */
178 	vblank_lines = mode->vtotal - mode->vdisplay;
179 
180 	if (in_vblank_irq) {
181 		/*
182 		 * Assume the irq handler got called close to first
183 		 * line of vblank, so PV has about a full vblank
184 		 * scanlines to go, and as a base timestamp use the
185 		 * one taken at entry into vblank irq handler, so it
186 		 * is not affected by random delays due to lock
187 		 * contention on event_lock or vblank_time lock in
188 		 * the core.
189 		 */
190 		*vpos = -vblank_lines;
191 
192 		if (stime)
193 			*stime = vc4_crtc->t_vblank;
194 		if (etime)
195 			*etime = vc4_crtc->t_vblank;
196 
197 		/*
198 		 * If the HVS fifo is not yet full then we know for certain
199 		 * we are at the very beginning of vblank, as the hvs just
200 		 * started refilling, and the stime and etime timestamps
201 		 * truly correspond to start of vblank.
202 		 *
203 		 * Unfortunately there's no way to report this to upper levels
204 		 * and make it more useful.
205 		 */
206 	} else {
207 		/*
208 		 * No clue where we are inside vblank. Return a vpos of zero,
209 		 * which will cause calling code to just return the etime
210 		 * timestamp uncorrected. At least this is no worse than the
211 		 * standard fallback.
212 		 */
213 		*vpos = 0;
214 	}
215 
216 	return ret;
217 }
218 
219 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
220 {
221 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
222 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
223 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
224 	u32 fifo_len_bytes = pv_data->fifo_depth;
225 
226 	/*
227 	 * Pixels are pulled from the HVS if the number of bytes is
228 	 * lower than the FIFO full level.
229 	 *
230 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
231 	 * need to convert those 6 pixels in bytes, depending on the
232 	 * format, and then subtract that from the length of the FIFO
233 	 * to make sure we never end up in a situation where the FIFO
234 	 * is full.
235 	 */
236 	switch (format) {
237 	case PV_CONTROL_FORMAT_DSIV_16:
238 	case PV_CONTROL_FORMAT_DSIC_16:
239 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
240 	case PV_CONTROL_FORMAT_DSIV_18:
241 		return fifo_len_bytes - 14;
242 	case PV_CONTROL_FORMAT_24:
243 	case PV_CONTROL_FORMAT_DSIV_24:
244 	default:
245 		/*
246 		 * For some reason, the pixelvalve4 doesn't work with
247 		 * the usual formula and will only work with 32.
248 		 */
249 		if (crtc_data->hvs_output == 5)
250 			return 32;
251 
252 		/*
253 		 * It looks like in some situations, we will overflow
254 		 * the PixelValve FIFO (with the bit 10 of PV stat being
255 		 * set) and stall the HVS / PV, eventually resulting in
256 		 * a page flip timeout.
257 		 *
258 		 * Displaying the video overlay during a playback with
259 		 * Kodi on an RPi3 seems to be a great solution with a
260 		 * failure rate around 50%.
261 		 *
262 		 * Removing 1 from the FIFO full level however
263 		 * seems to completely remove that issue.
264 		 */
265 		if (!vc4->is_vc5)
266 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
267 
268 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
269 	}
270 }
271 
272 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
273 					     u32 format)
274 {
275 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
276 	u32 ret = 0;
277 
278 	ret |= VC4_SET_FIELD((level >> 6),
279 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
280 
281 	return ret | VC4_SET_FIELD(level & 0x3f,
282 				   PV_CONTROL_FIFO_LEVEL);
283 }
284 
285 /*
286  * Returns the encoder attached to the CRTC.
287  *
288  * VC4 can only scan out to one encoder at a time, while the DRM core
289  * allows drivers to push pixels to more than one encoder from the
290  * same CRTC.
291  */
292 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
293 					 struct drm_crtc_state *state)
294 {
295 	struct drm_encoder *encoder;
296 
297 	WARN_ON(hweight32(state->encoder_mask) > 1);
298 
299 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
300 		return encoder;
301 
302 	return NULL;
303 }
304 
305 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
306 {
307 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
308 	struct drm_device *dev = crtc->dev;
309 	int idx;
310 
311 	if (!drm_dev_enter(dev, &idx))
312 		return;
313 
314 	/* The PV needs to be disabled before it can be flushed */
315 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
316 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
317 
318 	drm_dev_exit(idx);
319 }
320 
321 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
322 			       struct drm_atomic_state *state)
323 {
324 	struct drm_device *dev = crtc->dev;
325 	struct vc4_dev *vc4 = to_vc4_dev(dev);
326 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
327 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
328 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
329 	struct drm_crtc_state *crtc_state = crtc->state;
330 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
331 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
332 	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
333 		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
334 	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
335 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
336 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
337 	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
338 	bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
339 	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
340 	u8 ppc = pv_data->pixels_per_clock;
341 
342 	u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
343 	u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
344 	u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
345 
346 	bool debug_dump_regs = false;
347 	int idx;
348 
349 	if (!drm_dev_enter(dev, &idx))
350 		return;
351 
352 	if (debug_dump_regs) {
353 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
354 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
355 			 drm_crtc_index(crtc));
356 		drm_print_regset32(&p, &vc4_crtc->regset);
357 	}
358 
359 	vc4_crtc_pixelvalve_reset(crtc);
360 
361 	CRTC_WRITE(PV_HORZA,
362 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
363 				 PV_HORZA_HBP) |
364 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
365 				 PV_HORZA_HSYNC));
366 
367 	CRTC_WRITE(PV_HORZB,
368 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
369 				 PV_HORZB_HFP) |
370 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
371 				 PV_HORZB_HACTIVE));
372 
373 	if (interlace) {
374 		bool odd_field_first = false;
375 		u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
376 		u16 vert_bp_even = vert_bp;
377 		u16 vert_fp_even = vert_fp;
378 
379 		if (is_vec) {
380 			/* VEC (composite output) */
381 			++field_delay;
382 			if (mode->htotal == 858) {
383 				/* 525-line mode (NTSC or PAL-M) */
384 				odd_field_first = true;
385 			}
386 		}
387 
388 		if (odd_field_first)
389 			++vert_fp_even;
390 		else
391 			++vert_bp;
392 
393 		CRTC_WRITE(PV_VERTA_EVEN,
394 			   VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
395 			   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
396 		CRTC_WRITE(PV_VERTB_EVEN,
397 			   VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
398 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
399 
400 		/* We set up first field even mode for HDMI and VEC's PAL.
401 		 * For NTSC, we need first field odd.
402 		 */
403 		CRTC_WRITE(PV_V_CONTROL,
404 			   PV_VCONTROL_CONTINUOUS |
405 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
406 			   PV_VCONTROL_INTERLACE |
407 			   (odd_field_first
408 				   ? PV_VCONTROL_ODD_FIRST
409 				   : VC4_SET_FIELD(field_delay,
410 						   PV_VCONTROL_ODD_DELAY)));
411 		CRTC_WRITE(PV_VSYNCD_EVEN,
412 			   (odd_field_first ? field_delay : 0));
413 	} else {
414 		CRTC_WRITE(PV_V_CONTROL,
415 			   PV_VCONTROL_CONTINUOUS |
416 			   (is_dsi ? PV_VCONTROL_DSI : 0));
417 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
418 	}
419 
420 	CRTC_WRITE(PV_VERTA,
421 		   VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
422 		   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
423 	CRTC_WRITE(PV_VERTB,
424 		   VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
425 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
426 
427 	if (is_dsi)
428 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
429 
430 	if (vc4->is_vc5)
431 		CRTC_WRITE(PV_MUX_CFG,
432 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
433 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
434 
435 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
436 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
437 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
438 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
439 		   PV_CONTROL_CLR_AT_START |
440 		   PV_CONTROL_TRIGGER_UNDERFLOW |
441 		   PV_CONTROL_WAIT_HSTART |
442 		   VC4_SET_FIELD(vc4_encoder->clock_select,
443 				 PV_CONTROL_CLK_SELECT));
444 
445 	if (debug_dump_regs) {
446 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
447 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
448 			 drm_crtc_index(crtc));
449 		drm_print_regset32(&p, &vc4_crtc->regset);
450 	}
451 
452 	drm_dev_exit(idx);
453 }
454 
455 static void require_hvs_enabled(struct drm_device *dev)
456 {
457 	struct vc4_dev *vc4 = to_vc4_dev(dev);
458 	struct vc4_hvs *hvs = vc4->hvs;
459 
460 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
461 		     SCALER_DISPCTRL_ENABLE);
462 }
463 
464 static int vc4_crtc_disable(struct drm_crtc *crtc,
465 			    struct drm_encoder *encoder,
466 			    struct drm_atomic_state *state,
467 			    unsigned int channel)
468 {
469 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
470 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
471 	struct drm_device *dev = crtc->dev;
472 	struct vc4_dev *vc4 = to_vc4_dev(dev);
473 	int idx, ret;
474 
475 	if (!drm_dev_enter(dev, &idx))
476 		return -ENODEV;
477 
478 	CRTC_WRITE(PV_V_CONTROL,
479 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
480 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
481 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
482 
483 	/*
484 	 * This delay is needed to avoid to get a pixel stuck in an
485 	 * unflushable FIFO between the pixelvalve and the HDMI
486 	 * controllers on the BCM2711.
487 	 *
488 	 * Timing is fairly sensitive here, so mdelay is the safest
489 	 * approach.
490 	 *
491 	 * If it was to be reworked, the stuck pixel happens on a
492 	 * BCM2711 when changing mode with a good probability, so a
493 	 * script that changes mode on a regular basis should trigger
494 	 * the bug after less than 10 attempts. It manifests itself with
495 	 * every pixels being shifted by one to the right, and thus the
496 	 * last pixel of a line actually being displayed as the first
497 	 * pixel on the next line.
498 	 */
499 	mdelay(20);
500 
501 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
502 		vc4_encoder->post_crtc_disable(encoder, state);
503 
504 	vc4_crtc_pixelvalve_reset(crtc);
505 	vc4_hvs_stop_channel(vc4->hvs, channel);
506 
507 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
508 		vc4_encoder->post_crtc_powerdown(encoder, state);
509 
510 	drm_dev_exit(idx);
511 
512 	return 0;
513 }
514 
515 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
516 {
517 	struct drm_device *drm = crtc->dev;
518 	struct vc4_dev *vc4 = to_vc4_dev(drm);
519 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
520 	enum vc4_encoder_type encoder_type;
521 	const struct vc4_pv_data *pv_data;
522 	struct drm_encoder *encoder;
523 	struct vc4_hdmi *vc4_hdmi;
524 	unsigned encoder_sel;
525 	int channel;
526 	int ret;
527 
528 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
529 				      "brcm,bcm2711-pixelvalve2") ||
530 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
531 				      "brcm,bcm2711-pixelvalve4")))
532 		return 0;
533 
534 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
535 		return 0;
536 
537 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
538 		return 0;
539 
540 	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
541 	if (channel < 0)
542 		return 0;
543 
544 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
545 	if (WARN_ON(encoder_sel != 0))
546 		return 0;
547 
548 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
549 	encoder_type = pv_data->encoder_types[encoder_sel];
550 	encoder = vc4_find_encoder_by_type(drm, encoder_type);
551 	if (WARN_ON(!encoder))
552 		return 0;
553 
554 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
555 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
556 	if (ret)
557 		return ret;
558 
559 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
560 	if (ret)
561 		return ret;
562 
563 	/*
564 	 * post_crtc_powerdown will have called pm_runtime_put, so we
565 	 * don't need it here otherwise we'll get the reference counting
566 	 * wrong.
567 	 */
568 
569 	return 0;
570 }
571 
572 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
573 {
574 	struct drm_device *dev = crtc->dev;
575 	unsigned long flags;
576 
577 	if (!crtc->state || !crtc->state->event)
578 		return;
579 
580 	spin_lock_irqsave(&dev->event_lock, flags);
581 	drm_crtc_send_vblank_event(crtc, crtc->state->event);
582 	crtc->state->event = NULL;
583 	spin_unlock_irqrestore(&dev->event_lock, flags);
584 }
585 
586 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
587 				    struct drm_atomic_state *state)
588 {
589 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
590 									 crtc);
591 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
592 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
593 	struct drm_device *dev = crtc->dev;
594 
595 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
596 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
597 
598 	require_hvs_enabled(dev);
599 
600 	/* Disable vblank irq handling before crtc is disabled. */
601 	drm_crtc_vblank_off(crtc);
602 
603 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
604 
605 	/*
606 	 * Make sure we issue a vblank event after disabling the CRTC if
607 	 * someone was waiting it.
608 	 */
609 	vc4_crtc_send_vblank(crtc);
610 }
611 
612 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
613 				   struct drm_atomic_state *state)
614 {
615 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
616 									 crtc);
617 	struct drm_device *dev = crtc->dev;
618 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
619 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
620 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
621 	int idx;
622 
623 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
624 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
625 
626 	if (!drm_dev_enter(dev, &idx))
627 		return;
628 
629 	require_hvs_enabled(dev);
630 
631 	/* Enable vblank irq handling before crtc is started otherwise
632 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
633 	 */
634 	drm_crtc_vblank_on(crtc);
635 
636 	vc4_hvs_atomic_enable(crtc, state);
637 
638 	if (vc4_encoder->pre_crtc_configure)
639 		vc4_encoder->pre_crtc_configure(encoder, state);
640 
641 	vc4_crtc_config_pv(crtc, encoder, state);
642 
643 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
644 
645 	if (vc4_encoder->pre_crtc_enable)
646 		vc4_encoder->pre_crtc_enable(encoder, state);
647 
648 	/* When feeding the transposer block the pixelvalve is unneeded and
649 	 * should not be enabled.
650 	 */
651 	CRTC_WRITE(PV_V_CONTROL,
652 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
653 
654 	if (vc4_encoder->post_crtc_enable)
655 		vc4_encoder->post_crtc_enable(encoder, state);
656 
657 	drm_dev_exit(idx);
658 }
659 
660 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
661 						const struct drm_display_mode *mode)
662 {
663 	/* Do not allow doublescan modes from user space */
664 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
665 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
666 			      crtc->base.id);
667 		return MODE_NO_DBLESCAN;
668 	}
669 
670 	return MODE_OK;
671 }
672 
673 void vc4_crtc_get_margins(struct drm_crtc_state *state,
674 			  unsigned int *left, unsigned int *right,
675 			  unsigned int *top, unsigned int *bottom)
676 {
677 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
678 	struct drm_connector_state *conn_state;
679 	struct drm_connector *conn;
680 	int i;
681 
682 	*left = vc4_state->margins.left;
683 	*right = vc4_state->margins.right;
684 	*top = vc4_state->margins.top;
685 	*bottom = vc4_state->margins.bottom;
686 
687 	/* We have to interate over all new connector states because
688 	 * vc4_crtc_get_margins() might be called before
689 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
690 	 * might be outdated.
691 	 */
692 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
693 		if (conn_state->crtc != state->crtc)
694 			continue;
695 
696 		*left = conn_state->tv.margins.left;
697 		*right = conn_state->tv.margins.right;
698 		*top = conn_state->tv.margins.top;
699 		*bottom = conn_state->tv.margins.bottom;
700 		break;
701 	}
702 }
703 
704 int vc4_crtc_atomic_check(struct drm_crtc *crtc,
705 			  struct drm_atomic_state *state)
706 {
707 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
708 									  crtc);
709 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
710 	struct drm_connector *conn;
711 	struct drm_connector_state *conn_state;
712 	struct drm_encoder *encoder;
713 	int ret, i;
714 
715 	ret = vc4_hvs_atomic_check(crtc, state);
716 	if (ret)
717 		return ret;
718 
719 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
720 	if (encoder) {
721 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
722 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
723 
724 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
725 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
726 						  mode->clock * 9 / 10) * 1000;
727 		} else {
728 			vc4_state->hvs_load = mode->clock * 1000;
729 		}
730 	}
731 
732 	for_each_new_connector_in_state(state, conn, conn_state,
733 					i) {
734 		if (conn_state->crtc != crtc)
735 			continue;
736 
737 		vc4_state->margins.left = conn_state->tv.margins.left;
738 		vc4_state->margins.right = conn_state->tv.margins.right;
739 		vc4_state->margins.top = conn_state->tv.margins.top;
740 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
741 		break;
742 	}
743 
744 	return 0;
745 }
746 
747 static int vc4_enable_vblank(struct drm_crtc *crtc)
748 {
749 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
750 	struct drm_device *dev = crtc->dev;
751 	int idx;
752 
753 	if (!drm_dev_enter(dev, &idx))
754 		return -ENODEV;
755 
756 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
757 
758 	drm_dev_exit(idx);
759 
760 	return 0;
761 }
762 
763 static void vc4_disable_vblank(struct drm_crtc *crtc)
764 {
765 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
766 	struct drm_device *dev = crtc->dev;
767 	int idx;
768 
769 	if (!drm_dev_enter(dev, &idx))
770 		return;
771 
772 	CRTC_WRITE(PV_INTEN, 0);
773 
774 	drm_dev_exit(idx);
775 }
776 
777 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
778 {
779 	struct drm_crtc *crtc = &vc4_crtc->base;
780 	struct drm_device *dev = crtc->dev;
781 	struct vc4_dev *vc4 = to_vc4_dev(dev);
782 	struct vc4_hvs *hvs = vc4->hvs;
783 	u32 chan = vc4_crtc->current_hvs_channel;
784 	unsigned long flags;
785 
786 	spin_lock_irqsave(&dev->event_lock, flags);
787 	spin_lock(&vc4_crtc->irq_lock);
788 	if (vc4_crtc->event &&
789 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
790 	     vc4_crtc->feeds_txp)) {
791 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
792 		vc4_crtc->event = NULL;
793 		drm_crtc_vblank_put(crtc);
794 
795 		/* Wait for the page flip to unmask the underrun to ensure that
796 		 * the display list was updated by the hardware. Before that
797 		 * happens, the HVS will be using the previous display list with
798 		 * the CRTC and encoder already reconfigured, leading to
799 		 * underruns. This can be seen when reconfiguring the CRTC.
800 		 */
801 		vc4_hvs_unmask_underrun(hvs, chan);
802 	}
803 	spin_unlock(&vc4_crtc->irq_lock);
804 	spin_unlock_irqrestore(&dev->event_lock, flags);
805 }
806 
807 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
808 {
809 	crtc->t_vblank = ktime_get();
810 	drm_crtc_handle_vblank(&crtc->base);
811 	vc4_crtc_handle_page_flip(crtc);
812 }
813 
814 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
815 {
816 	struct vc4_crtc *vc4_crtc = data;
817 	u32 stat = CRTC_READ(PV_INTSTAT);
818 	irqreturn_t ret = IRQ_NONE;
819 
820 	if (stat & PV_INT_VFP_START) {
821 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
822 		vc4_crtc_handle_vblank(vc4_crtc);
823 		ret = IRQ_HANDLED;
824 	}
825 
826 	return ret;
827 }
828 
829 struct vc4_async_flip_state {
830 	struct drm_crtc *crtc;
831 	struct drm_framebuffer *fb;
832 	struct drm_framebuffer *old_fb;
833 	struct drm_pending_vblank_event *event;
834 
835 	union {
836 		struct dma_fence_cb fence;
837 		struct vc4_seqno_cb seqno;
838 	} cb;
839 };
840 
841 /* Called when the V3D execution for the BO being flipped to is done, so that
842  * we can actually update the plane's address to point to it.
843  */
844 static void
845 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
846 {
847 	struct drm_crtc *crtc = flip_state->crtc;
848 	struct drm_device *dev = crtc->dev;
849 	struct drm_plane *plane = crtc->primary;
850 
851 	vc4_plane_async_set_fb(plane, flip_state->fb);
852 	if (flip_state->event) {
853 		unsigned long flags;
854 
855 		spin_lock_irqsave(&dev->event_lock, flags);
856 		drm_crtc_send_vblank_event(crtc, flip_state->event);
857 		spin_unlock_irqrestore(&dev->event_lock, flags);
858 	}
859 
860 	drm_crtc_vblank_put(crtc);
861 	drm_framebuffer_put(flip_state->fb);
862 
863 	if (flip_state->old_fb)
864 		drm_framebuffer_put(flip_state->old_fb);
865 
866 	kfree(flip_state);
867 }
868 
869 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
870 {
871 	struct vc4_async_flip_state *flip_state =
872 		container_of(cb, struct vc4_async_flip_state, cb.seqno);
873 	struct vc4_bo *bo = NULL;
874 
875 	if (flip_state->old_fb) {
876 		struct drm_gem_dma_object *dma_bo =
877 			drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
878 		bo = to_vc4_bo(&dma_bo->base);
879 	}
880 
881 	vc4_async_page_flip_complete(flip_state);
882 
883 	/*
884 	 * Decrement the BO usecnt in order to keep the inc/dec
885 	 * calls balanced when the planes are updated through
886 	 * the async update path.
887 	 *
888 	 * FIXME: we should move to generic async-page-flip when
889 	 * it's available, so that we can get rid of this
890 	 * hand-made cleanup_fb() logic.
891 	 */
892 	if (bo)
893 		vc4_bo_dec_usecnt(bo);
894 }
895 
896 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
897 					       struct dma_fence_cb *cb)
898 {
899 	struct vc4_async_flip_state *flip_state =
900 		container_of(cb, struct vc4_async_flip_state, cb.fence);
901 
902 	vc4_async_page_flip_complete(flip_state);
903 	dma_fence_put(fence);
904 }
905 
906 static int vc4_async_set_fence_cb(struct drm_device *dev,
907 				  struct vc4_async_flip_state *flip_state)
908 {
909 	struct drm_framebuffer *fb = flip_state->fb;
910 	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
911 	struct vc4_dev *vc4 = to_vc4_dev(dev);
912 	struct dma_fence *fence;
913 	int ret;
914 
915 	if (!vc4->is_vc5) {
916 		struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
917 
918 		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
919 					  vc4_async_page_flip_seqno_complete);
920 	}
921 
922 	ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
923 	if (ret)
924 		return ret;
925 
926 	/* If there's no fence, complete the page flip immediately */
927 	if (!fence) {
928 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
929 		return 0;
930 	}
931 
932 	/* If the fence has already been completed, complete the page flip */
933 	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
934 				   vc4_async_page_flip_fence_complete))
935 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
936 
937 	return 0;
938 }
939 
940 static int
941 vc4_async_page_flip_common(struct drm_crtc *crtc,
942 			   struct drm_framebuffer *fb,
943 			   struct drm_pending_vblank_event *event,
944 			   uint32_t flags)
945 {
946 	struct drm_device *dev = crtc->dev;
947 	struct drm_plane *plane = crtc->primary;
948 	struct vc4_async_flip_state *flip_state;
949 
950 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
951 	if (!flip_state)
952 		return -ENOMEM;
953 
954 	drm_framebuffer_get(fb);
955 	flip_state->fb = fb;
956 	flip_state->crtc = crtc;
957 	flip_state->event = event;
958 
959 	/* Save the current FB before it's replaced by the new one in
960 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
961 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
962 	 * it consistent.
963 	 * FIXME: we should move to generic async-page-flip when it's
964 	 * available, so that we can get rid of this hand-made cleanup_fb()
965 	 * logic.
966 	 */
967 	flip_state->old_fb = plane->state->fb;
968 	if (flip_state->old_fb)
969 		drm_framebuffer_get(flip_state->old_fb);
970 
971 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
972 
973 	/* Immediately update the plane's legacy fb pointer, so that later
974 	 * modeset prep sees the state that will be present when the semaphore
975 	 * is released.
976 	 */
977 	drm_atomic_set_fb_for_plane(plane->state, fb);
978 
979 	vc4_async_set_fence_cb(dev, flip_state);
980 
981 	/* Driver takes ownership of state on successful async commit. */
982 	return 0;
983 }
984 
985 /* Implements async (non-vblank-synced) page flips.
986  *
987  * The page flip ioctl needs to return immediately, so we grab the
988  * modeset semaphore on the pipe, and queue the address update for
989  * when V3D is done with the BO being flipped to.
990  */
991 static int vc4_async_page_flip(struct drm_crtc *crtc,
992 			       struct drm_framebuffer *fb,
993 			       struct drm_pending_vblank_event *event,
994 			       uint32_t flags)
995 {
996 	struct drm_device *dev = crtc->dev;
997 	struct vc4_dev *vc4 = to_vc4_dev(dev);
998 	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
999 	struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1000 	int ret;
1001 
1002 	if (WARN_ON_ONCE(vc4->is_vc5))
1003 		return -ENODEV;
1004 
1005 	/*
1006 	 * Increment the BO usecnt here, so that we never end up with an
1007 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1008 	 * plane is later updated through the non-async path.
1009 	 *
1010 	 * FIXME: we should move to generic async-page-flip when
1011 	 * it's available, so that we can get rid of this
1012 	 * hand-made prepare_fb() logic.
1013 	 */
1014 	ret = vc4_bo_inc_usecnt(bo);
1015 	if (ret)
1016 		return ret;
1017 
1018 	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1019 	if (ret) {
1020 		vc4_bo_dec_usecnt(bo);
1021 		return ret;
1022 	}
1023 
1024 	return 0;
1025 }
1026 
1027 static int vc5_async_page_flip(struct drm_crtc *crtc,
1028 			       struct drm_framebuffer *fb,
1029 			       struct drm_pending_vblank_event *event,
1030 			       uint32_t flags)
1031 {
1032 	return vc4_async_page_flip_common(crtc, fb, event, flags);
1033 }
1034 
1035 int vc4_page_flip(struct drm_crtc *crtc,
1036 		  struct drm_framebuffer *fb,
1037 		  struct drm_pending_vblank_event *event,
1038 		  uint32_t flags,
1039 		  struct drm_modeset_acquire_ctx *ctx)
1040 {
1041 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1042 		struct drm_device *dev = crtc->dev;
1043 		struct vc4_dev *vc4 = to_vc4_dev(dev);
1044 
1045 		if (vc4->is_vc5)
1046 			return vc5_async_page_flip(crtc, fb, event, flags);
1047 		else
1048 			return vc4_async_page_flip(crtc, fb, event, flags);
1049 	} else {
1050 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1051 	}
1052 }
1053 
1054 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1055 {
1056 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1057 
1058 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1059 	if (!vc4_state)
1060 		return NULL;
1061 
1062 	old_vc4_state = to_vc4_crtc_state(crtc->state);
1063 	vc4_state->margins = old_vc4_state->margins;
1064 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1065 
1066 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1067 	return &vc4_state->base;
1068 }
1069 
1070 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1071 			    struct drm_crtc_state *state)
1072 {
1073 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1074 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1075 
1076 	if (drm_mm_node_allocated(&vc4_state->mm)) {
1077 		unsigned long flags;
1078 
1079 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1080 		drm_mm_remove_node(&vc4_state->mm);
1081 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1082 
1083 	}
1084 
1085 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1086 }
1087 
1088 void vc4_crtc_reset(struct drm_crtc *crtc)
1089 {
1090 	struct vc4_crtc_state *vc4_crtc_state;
1091 
1092 	if (crtc->state)
1093 		vc4_crtc_destroy_state(crtc, crtc->state);
1094 
1095 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1096 	if (!vc4_crtc_state) {
1097 		crtc->state = NULL;
1098 		return;
1099 	}
1100 
1101 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1102 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1103 }
1104 
1105 int vc4_crtc_late_register(struct drm_crtc *crtc)
1106 {
1107 	struct drm_device *drm = crtc->dev;
1108 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1109 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1110 
1111 	vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1112 				 &vc4_crtc->regset);
1113 
1114 	return 0;
1115 }
1116 
1117 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1118 	.set_config = drm_atomic_helper_set_config,
1119 	.page_flip = vc4_page_flip,
1120 	.set_property = NULL,
1121 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1122 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1123 	.reset = vc4_crtc_reset,
1124 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1125 	.atomic_destroy_state = vc4_crtc_destroy_state,
1126 	.enable_vblank = vc4_enable_vblank,
1127 	.disable_vblank = vc4_disable_vblank,
1128 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1129 	.late_register = vc4_crtc_late_register,
1130 };
1131 
1132 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1133 	.mode_valid = vc4_crtc_mode_valid,
1134 	.atomic_check = vc4_crtc_atomic_check,
1135 	.atomic_begin = vc4_hvs_atomic_begin,
1136 	.atomic_flush = vc4_hvs_atomic_flush,
1137 	.atomic_enable = vc4_crtc_atomic_enable,
1138 	.atomic_disable = vc4_crtc_atomic_disable,
1139 	.get_scanout_position = vc4_crtc_get_scanout_position,
1140 };
1141 
1142 const struct vc4_pv_data bcm2835_pv0_data = {
1143 	.base = {
1144 		.name = "pixelvalve-0",
1145 		.debugfs_name = "crtc0_regs",
1146 		.hvs_available_channels = BIT(0),
1147 		.hvs_output = 0,
1148 	},
1149 	.fifo_depth = 64,
1150 	.pixels_per_clock = 1,
1151 	.encoder_types = {
1152 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1153 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1154 	},
1155 };
1156 
1157 const struct vc4_pv_data bcm2835_pv1_data = {
1158 	.base = {
1159 		.name = "pixelvalve-1",
1160 		.debugfs_name = "crtc1_regs",
1161 		.hvs_available_channels = BIT(2),
1162 		.hvs_output = 2,
1163 	},
1164 	.fifo_depth = 64,
1165 	.pixels_per_clock = 1,
1166 	.encoder_types = {
1167 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1168 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1169 	},
1170 };
1171 
1172 const struct vc4_pv_data bcm2835_pv2_data = {
1173 	.base = {
1174 		.name = "pixelvalve-2",
1175 		.debugfs_name = "crtc2_regs",
1176 		.hvs_available_channels = BIT(1),
1177 		.hvs_output = 1,
1178 	},
1179 	.fifo_depth = 64,
1180 	.pixels_per_clock = 1,
1181 	.encoder_types = {
1182 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1183 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1184 	},
1185 };
1186 
1187 const struct vc4_pv_data bcm2711_pv0_data = {
1188 	.base = {
1189 		.name = "pixelvalve-0",
1190 		.debugfs_name = "crtc0_regs",
1191 		.hvs_available_channels = BIT(0),
1192 		.hvs_output = 0,
1193 	},
1194 	.fifo_depth = 64,
1195 	.pixels_per_clock = 1,
1196 	.encoder_types = {
1197 		[0] = VC4_ENCODER_TYPE_DSI0,
1198 		[1] = VC4_ENCODER_TYPE_DPI,
1199 	},
1200 };
1201 
1202 const struct vc4_pv_data bcm2711_pv1_data = {
1203 	.base = {
1204 		.name = "pixelvalve-1",
1205 		.debugfs_name = "crtc1_regs",
1206 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1207 		.hvs_output = 3,
1208 	},
1209 	.fifo_depth = 64,
1210 	.pixels_per_clock = 1,
1211 	.encoder_types = {
1212 		[0] = VC4_ENCODER_TYPE_DSI1,
1213 		[1] = VC4_ENCODER_TYPE_SMI,
1214 	},
1215 };
1216 
1217 const struct vc4_pv_data bcm2711_pv2_data = {
1218 	.base = {
1219 		.name = "pixelvalve-2",
1220 		.debugfs_name = "crtc2_regs",
1221 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1222 		.hvs_output = 4,
1223 	},
1224 	.fifo_depth = 256,
1225 	.pixels_per_clock = 2,
1226 	.encoder_types = {
1227 		[0] = VC4_ENCODER_TYPE_HDMI0,
1228 	},
1229 };
1230 
1231 const struct vc4_pv_data bcm2711_pv3_data = {
1232 	.base = {
1233 		.name = "pixelvalve-3",
1234 		.debugfs_name = "crtc3_regs",
1235 		.hvs_available_channels = BIT(1),
1236 		.hvs_output = 1,
1237 	},
1238 	.fifo_depth = 64,
1239 	.pixels_per_clock = 1,
1240 	.encoder_types = {
1241 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1242 	},
1243 };
1244 
1245 const struct vc4_pv_data bcm2711_pv4_data = {
1246 	.base = {
1247 		.name = "pixelvalve-4",
1248 		.debugfs_name = "crtc4_regs",
1249 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1250 		.hvs_output = 5,
1251 	},
1252 	.fifo_depth = 64,
1253 	.pixels_per_clock = 2,
1254 	.encoder_types = {
1255 		[0] = VC4_ENCODER_TYPE_HDMI1,
1256 	},
1257 };
1258 
1259 static const struct of_device_id vc4_crtc_dt_match[] = {
1260 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1261 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1262 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1263 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1264 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1265 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1266 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1267 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1268 	{}
1269 };
1270 
1271 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1272 					struct drm_crtc *crtc)
1273 {
1274 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1275 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1276 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1277 	struct drm_encoder *encoder;
1278 
1279 	drm_for_each_encoder(encoder, drm) {
1280 		struct vc4_encoder *vc4_encoder;
1281 		int i;
1282 
1283 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1284 			continue;
1285 
1286 		vc4_encoder = to_vc4_encoder(encoder);
1287 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1288 			if (vc4_encoder->type == encoder_types[i]) {
1289 				vc4_encoder->clock_select = i;
1290 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1291 				break;
1292 			}
1293 		}
1294 	}
1295 }
1296 
1297 /**
1298  * __vc4_crtc_init - Initializes a CRTC
1299  * @drm: DRM Device
1300  * @pdev: CRTC Platform Device
1301  * @vc4_crtc: CRTC Object to Initialize
1302  * @data: Configuration data associated with this CRTC
1303  * @primary_plane: Primary plane for CRTC
1304  * @crtc_funcs: Callbacks for the new CRTC
1305  * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1306  * @feeds_txp: Is this CRTC connected to the TXP?
1307  *
1308  * Initializes our private CRTC structure. This function is mostly
1309  * relevant for KUnit testing, all other users should use
1310  * vc4_crtc_init() instead.
1311  *
1312  * Returns:
1313  * 0 on success, a negative error code on failure.
1314  */
1315 int __vc4_crtc_init(struct drm_device *drm,
1316 		    struct platform_device *pdev,
1317 		    struct vc4_crtc *vc4_crtc,
1318 		    const struct vc4_crtc_data *data,
1319 		    struct drm_plane *primary_plane,
1320 		    const struct drm_crtc_funcs *crtc_funcs,
1321 		    const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1322 		    bool feeds_txp)
1323 {
1324 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1325 	struct drm_crtc *crtc = &vc4_crtc->base;
1326 	unsigned int i;
1327 	int ret;
1328 
1329 	vc4_crtc->data = data;
1330 	vc4_crtc->pdev = pdev;
1331 	vc4_crtc->feeds_txp = feeds_txp;
1332 	spin_lock_init(&vc4_crtc->irq_lock);
1333 	ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1334 					 crtc_funcs, data->name);
1335 	if (ret)
1336 		return ret;
1337 
1338 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1339 
1340 	if (!vc4->is_vc5) {
1341 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1342 
1343 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1344 
1345 		/* We support CTM, but only for one CRTC at a time. It's therefore
1346 		 * implemented as private driver state in vc4_kms, not here.
1347 		 */
1348 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1349 	}
1350 
1351 	for (i = 0; i < crtc->gamma_size; i++) {
1352 		vc4_crtc->lut_r[i] = i;
1353 		vc4_crtc->lut_g[i] = i;
1354 		vc4_crtc->lut_b[i] = i;
1355 	}
1356 
1357 	return 0;
1358 }
1359 
1360 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1361 		  struct vc4_crtc *vc4_crtc,
1362 		  const struct vc4_crtc_data *data,
1363 		  const struct drm_crtc_funcs *crtc_funcs,
1364 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1365 		  bool feeds_txp)
1366 {
1367 	struct drm_plane *primary_plane;
1368 
1369 	/* For now, we create just the primary and the legacy cursor
1370 	 * planes.  We should be able to stack more planes on easily,
1371 	 * but to do that we would need to compute the bandwidth
1372 	 * requirement of the plane configuration, and reject ones
1373 	 * that will take too much.
1374 	 */
1375 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1376 	if (IS_ERR(primary_plane)) {
1377 		dev_err(drm->dev, "failed to construct primary plane\n");
1378 		return PTR_ERR(primary_plane);
1379 	}
1380 
1381 	return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1382 			       crtc_funcs, crtc_helper_funcs, feeds_txp);
1383 }
1384 
1385 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1386 {
1387 	struct platform_device *pdev = to_platform_device(dev);
1388 	struct drm_device *drm = dev_get_drvdata(master);
1389 	const struct vc4_pv_data *pv_data;
1390 	struct vc4_crtc *vc4_crtc;
1391 	struct drm_crtc *crtc;
1392 	int ret;
1393 
1394 	vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1395 	if (!vc4_crtc)
1396 		return -ENOMEM;
1397 	crtc = &vc4_crtc->base;
1398 
1399 	pv_data = of_device_get_match_data(dev);
1400 	if (!pv_data)
1401 		return -ENODEV;
1402 
1403 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1404 	if (IS_ERR(vc4_crtc->regs))
1405 		return PTR_ERR(vc4_crtc->regs);
1406 
1407 	vc4_crtc->regset.base = vc4_crtc->regs;
1408 	vc4_crtc->regset.regs = crtc_regs;
1409 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1410 
1411 	ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1412 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1413 			    false);
1414 	if (ret)
1415 		return ret;
1416 	vc4_set_crtc_possible_masks(drm, crtc);
1417 
1418 	CRTC_WRITE(PV_INTEN, 0);
1419 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1420 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1421 			       vc4_crtc_irq_handler,
1422 			       IRQF_SHARED,
1423 			       "vc4 crtc", vc4_crtc);
1424 	if (ret)
1425 		return ret;
1426 
1427 	platform_set_drvdata(pdev, vc4_crtc);
1428 
1429 	return 0;
1430 }
1431 
1432 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1433 			    void *data)
1434 {
1435 	struct platform_device *pdev = to_platform_device(dev);
1436 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1437 
1438 	CRTC_WRITE(PV_INTEN, 0);
1439 
1440 	platform_set_drvdata(pdev, NULL);
1441 }
1442 
1443 static const struct component_ops vc4_crtc_ops = {
1444 	.bind   = vc4_crtc_bind,
1445 	.unbind = vc4_crtc_unbind,
1446 };
1447 
1448 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1449 {
1450 	return component_add(&pdev->dev, &vc4_crtc_ops);
1451 }
1452 
1453 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1454 {
1455 	component_del(&pdev->dev, &vc4_crtc_ops);
1456 	return 0;
1457 }
1458 
1459 struct platform_driver vc4_crtc_driver = {
1460 	.probe = vc4_crtc_dev_probe,
1461 	.remove = vc4_crtc_dev_remove,
1462 	.driver = {
1463 		.name = "vc4_crtc",
1464 		.of_match_table = vc4_crtc_dt_match,
1465 	},
1466 };
1467