1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/component.h> 34 #include <linux/of_device.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_fb_cma_helper.h> 40 #include <drm/drm_print.h> 41 #include <drm/drm_probe_helper.h> 42 #include <drm/drm_vblank.h> 43 44 #include "vc4_drv.h" 45 #include "vc4_regs.h" 46 47 #define HVS_FIFO_LATENCY_PIX 6 48 49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 51 52 static const struct debugfs_reg32 crtc_regs[] = { 53 VC4_REG32(PV_CONTROL), 54 VC4_REG32(PV_V_CONTROL), 55 VC4_REG32(PV_VSYNCD_EVEN), 56 VC4_REG32(PV_HORZA), 57 VC4_REG32(PV_HORZB), 58 VC4_REG32(PV_VERTA), 59 VC4_REG32(PV_VERTB), 60 VC4_REG32(PV_VERTA_EVEN), 61 VC4_REG32(PV_VERTB_EVEN), 62 VC4_REG32(PV_INTEN), 63 VC4_REG32(PV_INTSTAT), 64 VC4_REG32(PV_STAT), 65 VC4_REG32(PV_HACT_ACT), 66 }; 67 68 static unsigned int 69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) 70 { 71 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); 72 /* Top/base are supposed to be 4-pixel aligned, but the 73 * Raspberry Pi firmware fills the low bits (which are 74 * presumably ignored). 75 */ 76 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 77 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 78 79 return top - base + 4; 80 } 81 82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, 83 bool in_vblank_irq, 84 int *vpos, int *hpos, 85 ktime_t *stime, ktime_t *etime, 86 const struct drm_display_mode *mode) 87 { 88 struct drm_device *dev = crtc->dev; 89 struct vc4_dev *vc4 = to_vc4_dev(dev); 90 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 91 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 92 unsigned int cob_size; 93 u32 val; 94 int fifo_lines; 95 int vblank_lines; 96 bool ret = false; 97 98 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 99 100 /* Get optional system timestamp before query. */ 101 if (stime) 102 *stime = ktime_get(); 103 104 /* 105 * Read vertical scanline which is currently composed for our 106 * pixelvalve by the HVS, and also the scaler status. 107 */ 108 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); 109 110 /* Get optional system timestamp after query. */ 111 if (etime) 112 *etime = ktime_get(); 113 114 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 115 116 /* Vertical position of hvs composed scanline. */ 117 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 118 *hpos = 0; 119 120 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 121 *vpos /= 2; 122 123 /* Use hpos to correct for field offset in interlaced mode. */ 124 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 125 *hpos += mode->crtc_htotal / 2; 126 } 127 128 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); 129 /* This is the offset we need for translating hvs -> pv scanout pos. */ 130 fifo_lines = cob_size / mode->crtc_hdisplay; 131 132 if (fifo_lines > 0) 133 ret = true; 134 135 /* HVS more than fifo_lines into frame for compositing? */ 136 if (*vpos > fifo_lines) { 137 /* 138 * We are in active scanout and can get some meaningful results 139 * from HVS. The actual PV scanout can not trail behind more 140 * than fifo_lines as that is the fifo's capacity. Assume that 141 * in active scanout the HVS and PV work in lockstep wrt. HVS 142 * refilling the fifo and PV consuming from the fifo, ie. 143 * whenever the PV consumes and frees up a scanline in the 144 * fifo, the HVS will immediately refill it, therefore 145 * incrementing vpos. Therefore we choose HVS read position - 146 * fifo size in scanlines as a estimate of the real scanout 147 * position of the PV. 148 */ 149 *vpos -= fifo_lines + 1; 150 151 return ret; 152 } 153 154 /* 155 * Less: This happens when we are in vblank and the HVS, after getting 156 * the VSTART restart signal from the PV, just started refilling its 157 * fifo with new lines from the top-most lines of the new framebuffers. 158 * The PV does not scan out in vblank, so does not remove lines from 159 * the fifo, so the fifo will be full quickly and the HVS has to pause. 160 * We can't get meaningful readings wrt. scanline position of the PV 161 * and need to make things up in a approximative but consistent way. 162 */ 163 vblank_lines = mode->vtotal - mode->vdisplay; 164 165 if (in_vblank_irq) { 166 /* 167 * Assume the irq handler got called close to first 168 * line of vblank, so PV has about a full vblank 169 * scanlines to go, and as a base timestamp use the 170 * one taken at entry into vblank irq handler, so it 171 * is not affected by random delays due to lock 172 * contention on event_lock or vblank_time lock in 173 * the core. 174 */ 175 *vpos = -vblank_lines; 176 177 if (stime) 178 *stime = vc4_crtc->t_vblank; 179 if (etime) 180 *etime = vc4_crtc->t_vblank; 181 182 /* 183 * If the HVS fifo is not yet full then we know for certain 184 * we are at the very beginning of vblank, as the hvs just 185 * started refilling, and the stime and etime timestamps 186 * truly correspond to start of vblank. 187 * 188 * Unfortunately there's no way to report this to upper levels 189 * and make it more useful. 190 */ 191 } else { 192 /* 193 * No clue where we are inside vblank. Return a vpos of zero, 194 * which will cause calling code to just return the etime 195 * timestamp uncorrected. At least this is no worse than the 196 * standard fallback. 197 */ 198 *vpos = 0; 199 } 200 201 return ret; 202 } 203 204 void vc4_crtc_destroy(struct drm_crtc *crtc) 205 { 206 drm_crtc_cleanup(crtc); 207 } 208 209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) 210 { 211 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 212 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 213 u32 fifo_len_bytes = pv_data->fifo_depth; 214 215 /* 216 * Pixels are pulled from the HVS if the number of bytes is 217 * lower than the FIFO full level. 218 * 219 * The latency of the pixel fetch mechanism is 6 pixels, so we 220 * need to convert those 6 pixels in bytes, depending on the 221 * format, and then subtract that from the length of the FIFO 222 * to make sure we never end up in a situation where the FIFO 223 * is full. 224 */ 225 switch (format) { 226 case PV_CONTROL_FORMAT_DSIV_16: 227 case PV_CONTROL_FORMAT_DSIC_16: 228 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; 229 case PV_CONTROL_FORMAT_DSIV_18: 230 return fifo_len_bytes - 14; 231 case PV_CONTROL_FORMAT_24: 232 case PV_CONTROL_FORMAT_DSIV_24: 233 default: 234 /* 235 * For some reason, the pixelvalve4 doesn't work with 236 * the usual formula and will only work with 32. 237 */ 238 if (crtc_data->hvs_output == 5) 239 return 32; 240 241 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; 242 } 243 } 244 245 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, 246 u32 format) 247 { 248 u32 level = vc4_get_fifo_full_level(vc4_crtc, format); 249 u32 ret = 0; 250 251 ret |= VC4_SET_FIELD((level >> 6), 252 PV5_CONTROL_FIFO_LEVEL_HIGH); 253 254 return ret | VC4_SET_FIELD(level & 0x3f, 255 PV_CONTROL_FIFO_LEVEL); 256 } 257 258 /* 259 * Returns the encoder attached to the CRTC. 260 * 261 * VC4 can only scan out to one encoder at a time, while the DRM core 262 * allows drivers to push pixels to more than one encoder from the 263 * same CRTC. 264 */ 265 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 266 { 267 struct drm_connector *connector; 268 struct drm_connector_list_iter conn_iter; 269 270 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 271 drm_for_each_connector_iter(connector, &conn_iter) { 272 if (connector->state->crtc == crtc) { 273 drm_connector_list_iter_end(&conn_iter); 274 return connector->encoder; 275 } 276 } 277 drm_connector_list_iter_end(&conn_iter); 278 279 return NULL; 280 } 281 282 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) 283 { 284 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 285 286 /* The PV needs to be disabled before it can be flushed */ 287 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); 288 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); 289 } 290 291 static void vc4_crtc_config_pv(struct drm_crtc *crtc) 292 { 293 struct drm_device *dev = crtc->dev; 294 struct vc4_dev *vc4 = to_vc4_dev(dev); 295 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 296 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 298 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 299 struct drm_crtc_state *state = crtc->state; 300 struct drm_display_mode *mode = &state->adjusted_mode; 301 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 302 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 303 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 304 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 305 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 306 u8 ppc = pv_data->pixels_per_clock; 307 bool debug_dump_regs = false; 308 309 if (debug_dump_regs) { 310 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 311 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 312 drm_crtc_index(crtc)); 313 drm_print_regset32(&p, &vc4_crtc->regset); 314 } 315 316 vc4_crtc_pixelvalve_reset(crtc); 317 318 CRTC_WRITE(PV_HORZA, 319 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, 320 PV_HORZA_HBP) | 321 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, 322 PV_HORZA_HSYNC)); 323 324 CRTC_WRITE(PV_HORZB, 325 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, 326 PV_HORZB_HFP) | 327 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, 328 PV_HORZB_HACTIVE)); 329 330 CRTC_WRITE(PV_VERTA, 331 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 332 PV_VERTA_VBP) | 333 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 334 PV_VERTA_VSYNC)); 335 CRTC_WRITE(PV_VERTB, 336 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 337 PV_VERTB_VFP) | 338 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 339 340 if (interlace) { 341 CRTC_WRITE(PV_VERTA_EVEN, 342 VC4_SET_FIELD(mode->crtc_vtotal - 343 mode->crtc_vsync_end - 1, 344 PV_VERTA_VBP) | 345 VC4_SET_FIELD(mode->crtc_vsync_end - 346 mode->crtc_vsync_start, 347 PV_VERTA_VSYNC)); 348 CRTC_WRITE(PV_VERTB_EVEN, 349 VC4_SET_FIELD(mode->crtc_vsync_start - 350 mode->crtc_vdisplay, 351 PV_VERTB_VFP) | 352 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 353 354 /* We set up first field even mode for HDMI. VEC's 355 * NTSC mode would want first field odd instead, once 356 * we support it (to do so, set ODD_FIRST and put the 357 * delay in VSYNCD_EVEN instead). 358 */ 359 CRTC_WRITE(PV_V_CONTROL, 360 PV_VCONTROL_CONTINUOUS | 361 (is_dsi ? PV_VCONTROL_DSI : 0) | 362 PV_VCONTROL_INTERLACE | 363 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 364 PV_VCONTROL_ODD_DELAY)); 365 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 366 } else { 367 CRTC_WRITE(PV_V_CONTROL, 368 PV_VCONTROL_CONTINUOUS | 369 (is_dsi ? PV_VCONTROL_DSI : 0)); 370 } 371 372 if (is_dsi) 373 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 374 375 if (vc4->hvs->hvs5) 376 CRTC_WRITE(PV_MUX_CFG, 377 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, 378 PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); 379 380 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | 381 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | 382 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 383 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 384 PV_CONTROL_CLR_AT_START | 385 PV_CONTROL_TRIGGER_UNDERFLOW | 386 PV_CONTROL_WAIT_HSTART | 387 VC4_SET_FIELD(vc4_encoder->clock_select, 388 PV_CONTROL_CLK_SELECT)); 389 390 if (debug_dump_regs) { 391 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 392 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 393 drm_crtc_index(crtc)); 394 drm_print_regset32(&p, &vc4_crtc->regset); 395 } 396 } 397 398 static void require_hvs_enabled(struct drm_device *dev) 399 { 400 struct vc4_dev *vc4 = to_vc4_dev(dev); 401 402 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 403 SCALER_DISPCTRL_ENABLE); 404 } 405 406 static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel) 407 { 408 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 409 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 410 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 411 struct drm_device *dev = crtc->dev; 412 int ret; 413 414 CRTC_WRITE(PV_V_CONTROL, 415 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 416 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 417 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 418 419 /* 420 * This delay is needed to avoid to get a pixel stuck in an 421 * unflushable FIFO between the pixelvalve and the HDMI 422 * controllers on the BCM2711. 423 * 424 * Timing is fairly sensitive here, so mdelay is the safest 425 * approach. 426 * 427 * If it was to be reworked, the stuck pixel happens on a 428 * BCM2711 when changing mode with a good probability, so a 429 * script that changes mode on a regular basis should trigger 430 * the bug after less than 10 attempts. It manifests itself with 431 * every pixels being shifted by one to the right, and thus the 432 * last pixel of a line actually being displayed as the first 433 * pixel on the next line. 434 */ 435 mdelay(20); 436 437 if (vc4_encoder && vc4_encoder->post_crtc_disable) 438 vc4_encoder->post_crtc_disable(encoder); 439 440 vc4_crtc_pixelvalve_reset(crtc); 441 vc4_hvs_stop_channel(dev, channel); 442 443 if (vc4_encoder && vc4_encoder->post_crtc_powerdown) 444 vc4_encoder->post_crtc_powerdown(encoder); 445 446 return 0; 447 } 448 449 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) 450 { 451 struct drm_device *drm = crtc->dev; 452 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 453 int channel; 454 455 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 456 "brcm,bcm2711-pixelvalve2") || 457 of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 458 "brcm,bcm2711-pixelvalve4"))) 459 return 0; 460 461 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) 462 return 0; 463 464 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) 465 return 0; 466 467 channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output); 468 if (channel < 0) 469 return 0; 470 471 return vc4_crtc_disable(crtc, channel); 472 } 473 474 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 475 struct drm_atomic_state *state) 476 { 477 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 478 crtc); 479 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); 480 struct drm_device *dev = crtc->dev; 481 482 require_hvs_enabled(dev); 483 484 /* Disable vblank irq handling before crtc is disabled. */ 485 drm_crtc_vblank_off(crtc); 486 487 vc4_crtc_disable(crtc, old_vc4_state->assigned_channel); 488 489 /* 490 * Make sure we issue a vblank event after disabling the CRTC if 491 * someone was waiting it. 492 */ 493 if (crtc->state->event) { 494 unsigned long flags; 495 496 spin_lock_irqsave(&dev->event_lock, flags); 497 drm_crtc_send_vblank_event(crtc, crtc->state->event); 498 crtc->state->event = NULL; 499 spin_unlock_irqrestore(&dev->event_lock, flags); 500 } 501 } 502 503 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 504 struct drm_atomic_state *state) 505 { 506 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 507 crtc); 508 struct drm_device *dev = crtc->dev; 509 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 510 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 511 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 512 513 require_hvs_enabled(dev); 514 515 /* Enable vblank irq handling before crtc is started otherwise 516 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 517 */ 518 drm_crtc_vblank_on(crtc); 519 520 vc4_hvs_atomic_enable(crtc, old_state); 521 522 if (vc4_encoder->pre_crtc_configure) 523 vc4_encoder->pre_crtc_configure(encoder); 524 525 vc4_crtc_config_pv(crtc); 526 527 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); 528 529 if (vc4_encoder->pre_crtc_enable) 530 vc4_encoder->pre_crtc_enable(encoder); 531 532 /* When feeding the transposer block the pixelvalve is unneeded and 533 * should not be enabled. 534 */ 535 CRTC_WRITE(PV_V_CONTROL, 536 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 537 538 if (vc4_encoder->post_crtc_enable) 539 vc4_encoder->post_crtc_enable(encoder); 540 } 541 542 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 543 const struct drm_display_mode *mode) 544 { 545 /* Do not allow doublescan modes from user space */ 546 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 547 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 548 crtc->base.id); 549 return MODE_NO_DBLESCAN; 550 } 551 552 return MODE_OK; 553 } 554 555 void vc4_crtc_get_margins(struct drm_crtc_state *state, 556 unsigned int *left, unsigned int *right, 557 unsigned int *top, unsigned int *bottom) 558 { 559 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 560 struct drm_connector_state *conn_state; 561 struct drm_connector *conn; 562 int i; 563 564 *left = vc4_state->margins.left; 565 *right = vc4_state->margins.right; 566 *top = vc4_state->margins.top; 567 *bottom = vc4_state->margins.bottom; 568 569 /* We have to interate over all new connector states because 570 * vc4_crtc_get_margins() might be called before 571 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 572 * might be outdated. 573 */ 574 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 575 if (conn_state->crtc != state->crtc) 576 continue; 577 578 *left = conn_state->tv.margins.left; 579 *right = conn_state->tv.margins.right; 580 *top = conn_state->tv.margins.top; 581 *bottom = conn_state->tv.margins.bottom; 582 break; 583 } 584 } 585 586 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 587 struct drm_crtc_state *state) 588 { 589 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 590 struct drm_connector *conn; 591 struct drm_connector_state *conn_state; 592 int ret, i; 593 594 ret = vc4_hvs_atomic_check(crtc, state); 595 if (ret) 596 return ret; 597 598 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 599 if (conn_state->crtc != crtc) 600 continue; 601 602 vc4_state->margins.left = conn_state->tv.margins.left; 603 vc4_state->margins.right = conn_state->tv.margins.right; 604 vc4_state->margins.top = conn_state->tv.margins.top; 605 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 606 break; 607 } 608 609 return 0; 610 } 611 612 static int vc4_enable_vblank(struct drm_crtc *crtc) 613 { 614 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 615 616 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 617 618 return 0; 619 } 620 621 static void vc4_disable_vblank(struct drm_crtc *crtc) 622 { 623 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 624 625 CRTC_WRITE(PV_INTEN, 0); 626 } 627 628 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 629 { 630 struct drm_crtc *crtc = &vc4_crtc->base; 631 struct drm_device *dev = crtc->dev; 632 struct vc4_dev *vc4 = to_vc4_dev(dev); 633 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 634 u32 chan = vc4_state->assigned_channel; 635 unsigned long flags; 636 637 spin_lock_irqsave(&dev->event_lock, flags); 638 if (vc4_crtc->event && 639 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 640 vc4_state->feed_txp)) { 641 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 642 vc4_crtc->event = NULL; 643 drm_crtc_vblank_put(crtc); 644 645 /* Wait for the page flip to unmask the underrun to ensure that 646 * the display list was updated by the hardware. Before that 647 * happens, the HVS will be using the previous display list with 648 * the CRTC and encoder already reconfigured, leading to 649 * underruns. This can be seen when reconfiguring the CRTC. 650 */ 651 vc4_hvs_unmask_underrun(dev, chan); 652 } 653 spin_unlock_irqrestore(&dev->event_lock, flags); 654 } 655 656 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 657 { 658 crtc->t_vblank = ktime_get(); 659 drm_crtc_handle_vblank(&crtc->base); 660 vc4_crtc_handle_page_flip(crtc); 661 } 662 663 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 664 { 665 struct vc4_crtc *vc4_crtc = data; 666 u32 stat = CRTC_READ(PV_INTSTAT); 667 irqreturn_t ret = IRQ_NONE; 668 669 if (stat & PV_INT_VFP_START) { 670 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 671 vc4_crtc_handle_vblank(vc4_crtc); 672 ret = IRQ_HANDLED; 673 } 674 675 return ret; 676 } 677 678 struct vc4_async_flip_state { 679 struct drm_crtc *crtc; 680 struct drm_framebuffer *fb; 681 struct drm_framebuffer *old_fb; 682 struct drm_pending_vblank_event *event; 683 684 struct vc4_seqno_cb cb; 685 }; 686 687 /* Called when the V3D execution for the BO being flipped to is done, so that 688 * we can actually update the plane's address to point to it. 689 */ 690 static void 691 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 692 { 693 struct vc4_async_flip_state *flip_state = 694 container_of(cb, struct vc4_async_flip_state, cb); 695 struct drm_crtc *crtc = flip_state->crtc; 696 struct drm_device *dev = crtc->dev; 697 struct vc4_dev *vc4 = to_vc4_dev(dev); 698 struct drm_plane *plane = crtc->primary; 699 700 vc4_plane_async_set_fb(plane, flip_state->fb); 701 if (flip_state->event) { 702 unsigned long flags; 703 704 spin_lock_irqsave(&dev->event_lock, flags); 705 drm_crtc_send_vblank_event(crtc, flip_state->event); 706 spin_unlock_irqrestore(&dev->event_lock, flags); 707 } 708 709 drm_crtc_vblank_put(crtc); 710 drm_framebuffer_put(flip_state->fb); 711 712 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 713 * when the planes are updated through the async update path. 714 * FIXME: we should move to generic async-page-flip when it's 715 * available, so that we can get rid of this hand-made cleanup_fb() 716 * logic. 717 */ 718 if (flip_state->old_fb) { 719 struct drm_gem_cma_object *cma_bo; 720 struct vc4_bo *bo; 721 722 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 723 bo = to_vc4_bo(&cma_bo->base); 724 vc4_bo_dec_usecnt(bo); 725 drm_framebuffer_put(flip_state->old_fb); 726 } 727 728 kfree(flip_state); 729 730 up(&vc4->async_modeset); 731 } 732 733 /* Implements async (non-vblank-synced) page flips. 734 * 735 * The page flip ioctl needs to return immediately, so we grab the 736 * modeset semaphore on the pipe, and queue the address update for 737 * when V3D is done with the BO being flipped to. 738 */ 739 static int vc4_async_page_flip(struct drm_crtc *crtc, 740 struct drm_framebuffer *fb, 741 struct drm_pending_vblank_event *event, 742 uint32_t flags) 743 { 744 struct drm_device *dev = crtc->dev; 745 struct vc4_dev *vc4 = to_vc4_dev(dev); 746 struct drm_plane *plane = crtc->primary; 747 int ret = 0; 748 struct vc4_async_flip_state *flip_state; 749 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 750 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 751 752 /* Increment the BO usecnt here, so that we never end up with an 753 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 754 * plane is later updated through the non-async path. 755 * FIXME: we should move to generic async-page-flip when it's 756 * available, so that we can get rid of this hand-made prepare_fb() 757 * logic. 758 */ 759 ret = vc4_bo_inc_usecnt(bo); 760 if (ret) 761 return ret; 762 763 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 764 if (!flip_state) { 765 vc4_bo_dec_usecnt(bo); 766 return -ENOMEM; 767 } 768 769 drm_framebuffer_get(fb); 770 flip_state->fb = fb; 771 flip_state->crtc = crtc; 772 flip_state->event = event; 773 774 /* Make sure all other async modesetes have landed. */ 775 ret = down_interruptible(&vc4->async_modeset); 776 if (ret) { 777 drm_framebuffer_put(fb); 778 vc4_bo_dec_usecnt(bo); 779 kfree(flip_state); 780 return ret; 781 } 782 783 /* Save the current FB before it's replaced by the new one in 784 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 785 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 786 * it consistent. 787 * FIXME: we should move to generic async-page-flip when it's 788 * available, so that we can get rid of this hand-made cleanup_fb() 789 * logic. 790 */ 791 flip_state->old_fb = plane->state->fb; 792 if (flip_state->old_fb) 793 drm_framebuffer_get(flip_state->old_fb); 794 795 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 796 797 /* Immediately update the plane's legacy fb pointer, so that later 798 * modeset prep sees the state that will be present when the semaphore 799 * is released. 800 */ 801 drm_atomic_set_fb_for_plane(plane->state, fb); 802 803 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 804 vc4_async_page_flip_complete); 805 806 /* Driver takes ownership of state on successful async commit. */ 807 return 0; 808 } 809 810 int vc4_page_flip(struct drm_crtc *crtc, 811 struct drm_framebuffer *fb, 812 struct drm_pending_vblank_event *event, 813 uint32_t flags, 814 struct drm_modeset_acquire_ctx *ctx) 815 { 816 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 817 return vc4_async_page_flip(crtc, fb, event, flags); 818 else 819 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 820 } 821 822 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 823 { 824 struct vc4_crtc_state *vc4_state, *old_vc4_state; 825 826 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 827 if (!vc4_state) 828 return NULL; 829 830 old_vc4_state = to_vc4_crtc_state(crtc->state); 831 vc4_state->feed_txp = old_vc4_state->feed_txp; 832 vc4_state->margins = old_vc4_state->margins; 833 vc4_state->assigned_channel = old_vc4_state->assigned_channel; 834 835 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 836 return &vc4_state->base; 837 } 838 839 void vc4_crtc_destroy_state(struct drm_crtc *crtc, 840 struct drm_crtc_state *state) 841 { 842 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 843 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 844 845 if (drm_mm_node_allocated(&vc4_state->mm)) { 846 unsigned long flags; 847 848 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 849 drm_mm_remove_node(&vc4_state->mm); 850 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 851 852 } 853 854 drm_atomic_helper_crtc_destroy_state(crtc, state); 855 } 856 857 void vc4_crtc_reset(struct drm_crtc *crtc) 858 { 859 if (crtc->state) 860 vc4_crtc_destroy_state(crtc, crtc->state); 861 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 862 if (crtc->state) 863 __drm_atomic_helper_crtc_reset(crtc, crtc->state); 864 } 865 866 static const struct drm_crtc_funcs vc4_crtc_funcs = { 867 .set_config = drm_atomic_helper_set_config, 868 .destroy = vc4_crtc_destroy, 869 .page_flip = vc4_page_flip, 870 .set_property = NULL, 871 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 872 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 873 .reset = vc4_crtc_reset, 874 .atomic_duplicate_state = vc4_crtc_duplicate_state, 875 .atomic_destroy_state = vc4_crtc_destroy_state, 876 .gamma_set = drm_atomic_helper_legacy_gamma_set, 877 .enable_vblank = vc4_enable_vblank, 878 .disable_vblank = vc4_disable_vblank, 879 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 880 }; 881 882 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 883 .mode_valid = vc4_crtc_mode_valid, 884 .atomic_check = vc4_crtc_atomic_check, 885 .atomic_flush = vc4_hvs_atomic_flush, 886 .atomic_enable = vc4_crtc_atomic_enable, 887 .atomic_disable = vc4_crtc_atomic_disable, 888 .get_scanout_position = vc4_crtc_get_scanout_position, 889 }; 890 891 static const struct vc4_pv_data bcm2835_pv0_data = { 892 .base = { 893 .hvs_available_channels = BIT(0), 894 .hvs_output = 0, 895 }, 896 .debugfs_name = "crtc0_regs", 897 .fifo_depth = 64, 898 .pixels_per_clock = 1, 899 .encoder_types = { 900 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 901 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 902 }, 903 }; 904 905 static const struct vc4_pv_data bcm2835_pv1_data = { 906 .base = { 907 .hvs_available_channels = BIT(2), 908 .hvs_output = 2, 909 }, 910 .debugfs_name = "crtc1_regs", 911 .fifo_depth = 64, 912 .pixels_per_clock = 1, 913 .encoder_types = { 914 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 915 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 916 }, 917 }; 918 919 static const struct vc4_pv_data bcm2835_pv2_data = { 920 .base = { 921 .hvs_available_channels = BIT(1), 922 .hvs_output = 1, 923 }, 924 .debugfs_name = "crtc2_regs", 925 .fifo_depth = 64, 926 .pixels_per_clock = 1, 927 .encoder_types = { 928 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, 929 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 930 }, 931 }; 932 933 static const struct vc4_pv_data bcm2711_pv0_data = { 934 .base = { 935 .hvs_available_channels = BIT(0), 936 .hvs_output = 0, 937 }, 938 .debugfs_name = "crtc0_regs", 939 .fifo_depth = 64, 940 .pixels_per_clock = 1, 941 .encoder_types = { 942 [0] = VC4_ENCODER_TYPE_DSI0, 943 [1] = VC4_ENCODER_TYPE_DPI, 944 }, 945 }; 946 947 static const struct vc4_pv_data bcm2711_pv1_data = { 948 .base = { 949 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 950 .hvs_output = 3, 951 }, 952 .debugfs_name = "crtc1_regs", 953 .fifo_depth = 64, 954 .pixels_per_clock = 1, 955 .encoder_types = { 956 [0] = VC4_ENCODER_TYPE_DSI1, 957 [1] = VC4_ENCODER_TYPE_SMI, 958 }, 959 }; 960 961 static const struct vc4_pv_data bcm2711_pv2_data = { 962 .base = { 963 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 964 .hvs_output = 4, 965 }, 966 .debugfs_name = "crtc2_regs", 967 .fifo_depth = 256, 968 .pixels_per_clock = 2, 969 .encoder_types = { 970 [0] = VC4_ENCODER_TYPE_HDMI0, 971 }, 972 }; 973 974 static const struct vc4_pv_data bcm2711_pv3_data = { 975 .base = { 976 .hvs_available_channels = BIT(1), 977 .hvs_output = 1, 978 }, 979 .debugfs_name = "crtc3_regs", 980 .fifo_depth = 64, 981 .pixels_per_clock = 1, 982 .encoder_types = { 983 [0] = VC4_ENCODER_TYPE_VEC, 984 }, 985 }; 986 987 static const struct vc4_pv_data bcm2711_pv4_data = { 988 .base = { 989 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 990 .hvs_output = 5, 991 }, 992 .debugfs_name = "crtc4_regs", 993 .fifo_depth = 64, 994 .pixels_per_clock = 2, 995 .encoder_types = { 996 [0] = VC4_ENCODER_TYPE_HDMI1, 997 }, 998 }; 999 1000 static const struct of_device_id vc4_crtc_dt_match[] = { 1001 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, 1002 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, 1003 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, 1004 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, 1005 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, 1006 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, 1007 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, 1008 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, 1009 {} 1010 }; 1011 1012 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1013 struct drm_crtc *crtc) 1014 { 1015 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1016 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 1017 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; 1018 struct drm_encoder *encoder; 1019 1020 drm_for_each_encoder(encoder, drm) { 1021 struct vc4_encoder *vc4_encoder; 1022 int i; 1023 1024 vc4_encoder = to_vc4_encoder(encoder); 1025 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { 1026 if (vc4_encoder->type == encoder_types[i]) { 1027 vc4_encoder->clock_select = i; 1028 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1029 break; 1030 } 1031 } 1032 } 1033 } 1034 1035 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc, 1036 const struct drm_crtc_funcs *crtc_funcs, 1037 const struct drm_crtc_helper_funcs *crtc_helper_funcs) 1038 { 1039 struct vc4_dev *vc4 = to_vc4_dev(drm); 1040 struct drm_crtc *crtc = &vc4_crtc->base; 1041 struct drm_plane *primary_plane; 1042 unsigned int i; 1043 1044 /* For now, we create just the primary and the legacy cursor 1045 * planes. We should be able to stack more planes on easily, 1046 * but to do that we would need to compute the bandwidth 1047 * requirement of the plane configuration, and reject ones 1048 * that will take too much. 1049 */ 1050 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1051 if (IS_ERR(primary_plane)) { 1052 dev_err(drm->dev, "failed to construct primary plane\n"); 1053 return PTR_ERR(primary_plane); 1054 } 1055 1056 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1057 crtc_funcs, NULL); 1058 drm_crtc_helper_add(crtc, crtc_helper_funcs); 1059 1060 if (!vc4->hvs->hvs5) { 1061 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1062 1063 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1064 1065 /* We support CTM, but only for one CRTC at a time. It's therefore 1066 * implemented as private driver state in vc4_kms, not here. 1067 */ 1068 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1069 } 1070 1071 for (i = 0; i < crtc->gamma_size; i++) { 1072 vc4_crtc->lut_r[i] = i; 1073 vc4_crtc->lut_g[i] = i; 1074 vc4_crtc->lut_b[i] = i; 1075 } 1076 1077 return 0; 1078 } 1079 1080 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1081 { 1082 struct platform_device *pdev = to_platform_device(dev); 1083 struct drm_device *drm = dev_get_drvdata(master); 1084 const struct vc4_pv_data *pv_data; 1085 struct vc4_crtc *vc4_crtc; 1086 struct drm_crtc *crtc; 1087 struct drm_plane *destroy_plane, *temp; 1088 int ret; 1089 1090 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1091 if (!vc4_crtc) 1092 return -ENOMEM; 1093 crtc = &vc4_crtc->base; 1094 1095 pv_data = of_device_get_match_data(dev); 1096 if (!pv_data) 1097 return -ENODEV; 1098 vc4_crtc->data = &pv_data->base; 1099 vc4_crtc->pdev = pdev; 1100 1101 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1102 if (IS_ERR(vc4_crtc->regs)) 1103 return PTR_ERR(vc4_crtc->regs); 1104 1105 vc4_crtc->regset.base = vc4_crtc->regs; 1106 vc4_crtc->regset.regs = crtc_regs; 1107 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1108 1109 ret = vc4_crtc_init(drm, vc4_crtc, 1110 &vc4_crtc_funcs, &vc4_crtc_helper_funcs); 1111 if (ret) 1112 return ret; 1113 vc4_set_crtc_possible_masks(drm, crtc); 1114 1115 CRTC_WRITE(PV_INTEN, 0); 1116 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1117 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1118 vc4_crtc_irq_handler, 1119 IRQF_SHARED, 1120 "vc4 crtc", vc4_crtc); 1121 if (ret) 1122 goto err_destroy_planes; 1123 1124 platform_set_drvdata(pdev, vc4_crtc); 1125 1126 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name, 1127 &vc4_crtc->regset); 1128 1129 return 0; 1130 1131 err_destroy_planes: 1132 list_for_each_entry_safe(destroy_plane, temp, 1133 &drm->mode_config.plane_list, head) { 1134 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1135 destroy_plane->funcs->destroy(destroy_plane); 1136 } 1137 1138 return ret; 1139 } 1140 1141 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1142 void *data) 1143 { 1144 struct platform_device *pdev = to_platform_device(dev); 1145 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1146 1147 vc4_crtc_destroy(&vc4_crtc->base); 1148 1149 CRTC_WRITE(PV_INTEN, 0); 1150 1151 platform_set_drvdata(pdev, NULL); 1152 } 1153 1154 static const struct component_ops vc4_crtc_ops = { 1155 .bind = vc4_crtc_bind, 1156 .unbind = vc4_crtc_unbind, 1157 }; 1158 1159 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1160 { 1161 return component_add(&pdev->dev, &vc4_crtc_ops); 1162 } 1163 1164 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1165 { 1166 component_del(&pdev->dev, &vc4_crtc_ops); 1167 return 0; 1168 } 1169 1170 struct platform_driver vc4_crtc_driver = { 1171 .probe = vc4_crtc_dev_probe, 1172 .remove = vc4_crtc_dev_remove, 1173 .driver = { 1174 .name = "vc4_crtc", 1175 .of_match_table = vc4_crtc_dt_match, 1176 }, 1177 }; 1178