xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 9125f19b)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33 
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43 
44 struct vc4_crtc {
45 	struct drm_crtc base;
46 	const struct vc4_crtc_data *data;
47 	void __iomem *regs;
48 
49 	/* Which HVS channel we're using for our CRTC. */
50 	int channel;
51 
52 	struct drm_pending_vblank_event *event;
53 };
54 
55 struct vc4_crtc_state {
56 	struct drm_crtc_state base;
57 	/* Dlist area for this CRTC configuration. */
58 	struct drm_mm_node mm;
59 };
60 
61 static inline struct vc4_crtc *
62 to_vc4_crtc(struct drm_crtc *crtc)
63 {
64 	return (struct vc4_crtc *)crtc;
65 }
66 
67 static inline struct vc4_crtc_state *
68 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
69 {
70 	return (struct vc4_crtc_state *)crtc_state;
71 }
72 
73 struct vc4_crtc_data {
74 	/* Which channel of the HVS this pixelvalve sources from. */
75 	int hvs_channel;
76 
77 	enum vc4_encoder_type encoder0_type;
78 	enum vc4_encoder_type encoder1_type;
79 };
80 
81 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
82 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
83 
84 #define CRTC_REG(reg) { reg, #reg }
85 static const struct {
86 	u32 reg;
87 	const char *name;
88 } crtc_regs[] = {
89 	CRTC_REG(PV_CONTROL),
90 	CRTC_REG(PV_V_CONTROL),
91 	CRTC_REG(PV_VSYNCD_EVEN),
92 	CRTC_REG(PV_HORZA),
93 	CRTC_REG(PV_HORZB),
94 	CRTC_REG(PV_VERTA),
95 	CRTC_REG(PV_VERTB),
96 	CRTC_REG(PV_VERTA_EVEN),
97 	CRTC_REG(PV_VERTB_EVEN),
98 	CRTC_REG(PV_INTEN),
99 	CRTC_REG(PV_INTSTAT),
100 	CRTC_REG(PV_STAT),
101 	CRTC_REG(PV_HACT_ACT),
102 };
103 
104 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
105 {
106 	int i;
107 
108 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
109 		DRM_INFO("0x%04x (%s): 0x%08x\n",
110 			 crtc_regs[i].reg, crtc_regs[i].name,
111 			 CRTC_READ(crtc_regs[i].reg));
112 	}
113 }
114 
115 #ifdef CONFIG_DEBUG_FS
116 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
117 {
118 	struct drm_info_node *node = (struct drm_info_node *)m->private;
119 	struct drm_device *dev = node->minor->dev;
120 	int crtc_index = (uintptr_t)node->info_ent->data;
121 	struct drm_crtc *crtc;
122 	struct vc4_crtc *vc4_crtc;
123 	int i;
124 
125 	i = 0;
126 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
127 		if (i == crtc_index)
128 			break;
129 		i++;
130 	}
131 	if (!crtc)
132 		return 0;
133 	vc4_crtc = to_vc4_crtc(crtc);
134 
135 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
136 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
137 			   crtc_regs[i].name, crtc_regs[i].reg,
138 			   CRTC_READ(crtc_regs[i].reg));
139 	}
140 
141 	return 0;
142 }
143 #endif
144 
145 static void vc4_crtc_destroy(struct drm_crtc *crtc)
146 {
147 	drm_crtc_cleanup(crtc);
148 }
149 
150 static u32 vc4_get_fifo_full_level(u32 format)
151 {
152 	static const u32 fifo_len_bytes = 64;
153 	static const u32 hvs_latency_pix = 6;
154 
155 	switch (format) {
156 	case PV_CONTROL_FORMAT_DSIV_16:
157 	case PV_CONTROL_FORMAT_DSIC_16:
158 		return fifo_len_bytes - 2 * hvs_latency_pix;
159 	case PV_CONTROL_FORMAT_DSIV_18:
160 		return fifo_len_bytes - 14;
161 	case PV_CONTROL_FORMAT_24:
162 	case PV_CONTROL_FORMAT_DSIV_24:
163 	default:
164 		return fifo_len_bytes - 3 * hvs_latency_pix;
165 	}
166 }
167 
168 /*
169  * Returns the clock select bit for the connector attached to the
170  * CRTC.
171  */
172 static int vc4_get_clock_select(struct drm_crtc *crtc)
173 {
174 	struct drm_connector *connector;
175 
176 	drm_for_each_connector(connector, crtc->dev) {
177 		if (connector->state->crtc == crtc) {
178 			struct drm_encoder *encoder = connector->encoder;
179 			struct vc4_encoder *vc4_encoder =
180 				to_vc4_encoder(encoder);
181 
182 			return vc4_encoder->clock_select;
183 		}
184 	}
185 
186 	return -1;
187 }
188 
189 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
190 {
191 	struct drm_device *dev = crtc->dev;
192 	struct vc4_dev *vc4 = to_vc4_dev(dev);
193 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
194 	struct drm_crtc_state *state = crtc->state;
195 	struct drm_display_mode *mode = &state->adjusted_mode;
196 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
197 	u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0));
198 	u32 format = PV_CONTROL_FORMAT_24;
199 	bool debug_dump_regs = false;
200 	int clock_select = vc4_get_clock_select(crtc);
201 
202 	if (debug_dump_regs) {
203 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
204 		vc4_crtc_dump_regs(vc4_crtc);
205 	}
206 
207 	/* Reset the PV fifo. */
208 	CRTC_WRITE(PV_CONTROL, 0);
209 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
210 	CRTC_WRITE(PV_CONTROL, 0);
211 
212 	CRTC_WRITE(PV_HORZA,
213 		   VC4_SET_FIELD(mode->htotal - mode->hsync_end,
214 				 PV_HORZA_HBP) |
215 		   VC4_SET_FIELD(mode->hsync_end - mode->hsync_start,
216 				 PV_HORZA_HSYNC));
217 	CRTC_WRITE(PV_HORZB,
218 		   VC4_SET_FIELD(mode->hsync_start - mode->hdisplay,
219 				 PV_HORZB_HFP) |
220 		   VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE));
221 
222 	CRTC_WRITE(PV_VERTA,
223 		   VC4_SET_FIELD(mode->vtotal - mode->vsync_end,
224 				 PV_VERTA_VBP) |
225 		   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
226 				 PV_VERTA_VSYNC));
227 	CRTC_WRITE(PV_VERTB,
228 		   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
229 				 PV_VERTB_VFP) |
230 		   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
231 
232 	if (interlace) {
233 		CRTC_WRITE(PV_VERTA_EVEN,
234 			   VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1,
235 					 PV_VERTA_VBP) |
236 			   VC4_SET_FIELD(mode->vsync_end - mode->vsync_start,
237 					 PV_VERTA_VSYNC));
238 		CRTC_WRITE(PV_VERTB_EVEN,
239 			   VC4_SET_FIELD(mode->vsync_start - mode->vdisplay,
240 					 PV_VERTB_VFP) |
241 			   VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE));
242 	}
243 
244 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay);
245 
246 	CRTC_WRITE(PV_V_CONTROL,
247 		   PV_VCONTROL_CONTINUOUS |
248 		   (interlace ? PV_VCONTROL_INTERLACE : 0));
249 
250 	CRTC_WRITE(PV_CONTROL,
251 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
252 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
253 				 PV_CONTROL_FIFO_LEVEL) |
254 		   PV_CONTROL_CLR_AT_START |
255 		   PV_CONTROL_TRIGGER_UNDERFLOW |
256 		   PV_CONTROL_WAIT_HSTART |
257 		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
258 		   PV_CONTROL_FIFO_CLR |
259 		   PV_CONTROL_EN);
260 
261 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
262 		  SCALER_DISPBKGND_AUTOHS |
263 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
264 
265 	if (debug_dump_regs) {
266 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
267 		vc4_crtc_dump_regs(vc4_crtc);
268 	}
269 }
270 
271 static void require_hvs_enabled(struct drm_device *dev)
272 {
273 	struct vc4_dev *vc4 = to_vc4_dev(dev);
274 
275 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
276 		     SCALER_DISPCTRL_ENABLE);
277 }
278 
279 static void vc4_crtc_disable(struct drm_crtc *crtc)
280 {
281 	struct drm_device *dev = crtc->dev;
282 	struct vc4_dev *vc4 = to_vc4_dev(dev);
283 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
284 	u32 chan = vc4_crtc->channel;
285 	int ret;
286 	require_hvs_enabled(dev);
287 
288 	CRTC_WRITE(PV_V_CONTROL,
289 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
290 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
291 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
292 
293 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
294 	    SCALER_DISPCTRLX_ENABLE) {
295 		HVS_WRITE(SCALER_DISPCTRLX(chan),
296 			  SCALER_DISPCTRLX_RESET);
297 
298 		/* While the docs say that reset is self-clearing, it
299 		 * seems it doesn't actually.
300 		 */
301 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
302 	}
303 
304 	/* Once we leave, the scaler should be disabled and its fifo empty. */
305 
306 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
307 
308 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
309 				   SCALER_DISPSTATX_MODE) !=
310 		     SCALER_DISPSTATX_MODE_DISABLED);
311 
312 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
313 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
314 		     SCALER_DISPSTATX_EMPTY);
315 }
316 
317 static void vc4_crtc_enable(struct drm_crtc *crtc)
318 {
319 	struct drm_device *dev = crtc->dev;
320 	struct vc4_dev *vc4 = to_vc4_dev(dev);
321 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
322 	struct drm_crtc_state *state = crtc->state;
323 	struct drm_display_mode *mode = &state->adjusted_mode;
324 
325 	require_hvs_enabled(dev);
326 
327 	/* Turn on the scaler, which will wait for vstart to start
328 	 * compositing.
329 	 */
330 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
331 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
332 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
333 		  SCALER_DISPCTRLX_ENABLE);
334 
335 	/* Turn on the pixel valve, which will emit the vstart signal. */
336 	CRTC_WRITE(PV_V_CONTROL,
337 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
338 }
339 
340 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
341 				 struct drm_crtc_state *state)
342 {
343 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
344 	struct drm_device *dev = crtc->dev;
345 	struct vc4_dev *vc4 = to_vc4_dev(dev);
346 	struct drm_plane *plane;
347 	unsigned long flags;
348 	u32 dlist_count = 0;
349 	int ret;
350 
351 	/* The pixelvalve can only feed one encoder (and encoders are
352 	 * 1:1 with connectors.)
353 	 */
354 	if (hweight32(state->connector_mask) > 1)
355 		return -EINVAL;
356 
357 	drm_atomic_crtc_state_for_each_plane(plane, state) {
358 		struct drm_plane_state *plane_state =
359 			state->state->plane_states[drm_plane_index(plane)];
360 
361 		/* plane might not have changed, in which case take
362 		 * current state:
363 		 */
364 		if (!plane_state)
365 			plane_state = plane->state;
366 
367 		dlist_count += vc4_plane_dlist_size(plane_state);
368 	}
369 
370 	dlist_count++; /* Account for SCALER_CTL0_END. */
371 
372 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
373 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
374 				 dlist_count, 1, 0);
375 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
376 	if (ret)
377 		return ret;
378 
379 	return 0;
380 }
381 
382 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
383 				  struct drm_crtc_state *old_state)
384 {
385 	struct drm_device *dev = crtc->dev;
386 	struct vc4_dev *vc4 = to_vc4_dev(dev);
387 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
388 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389 	struct drm_plane *plane;
390 	bool debug_dump_regs = false;
391 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
392 	u32 __iomem *dlist_next = dlist_start;
393 
394 	if (debug_dump_regs) {
395 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
396 		vc4_hvs_dump_state(dev);
397 	}
398 
399 	/* Copy all the active planes' dlist contents to the hardware dlist. */
400 	drm_atomic_crtc_for_each_plane(plane, crtc) {
401 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
402 	}
403 
404 	writel(SCALER_CTL0_END, dlist_next);
405 	dlist_next++;
406 
407 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
408 
409 	HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
410 		  vc4_state->mm.start);
411 
412 	if (debug_dump_regs) {
413 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
414 		vc4_hvs_dump_state(dev);
415 	}
416 
417 	if (crtc->state->event) {
418 		unsigned long flags;
419 
420 		crtc->state->event->pipe = drm_crtc_index(crtc);
421 
422 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
423 
424 		spin_lock_irqsave(&dev->event_lock, flags);
425 		vc4_crtc->event = crtc->state->event;
426 		spin_unlock_irqrestore(&dev->event_lock, flags);
427 		crtc->state->event = NULL;
428 	}
429 }
430 
431 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
432 {
433 	struct vc4_dev *vc4 = to_vc4_dev(dev);
434 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
435 
436 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
437 
438 	return 0;
439 }
440 
441 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
442 {
443 	struct vc4_dev *vc4 = to_vc4_dev(dev);
444 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
445 
446 	CRTC_WRITE(PV_INTEN, 0);
447 }
448 
449 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
450 {
451 	struct drm_crtc *crtc = &vc4_crtc->base;
452 	struct drm_device *dev = crtc->dev;
453 	unsigned long flags;
454 
455 	spin_lock_irqsave(&dev->event_lock, flags);
456 	if (vc4_crtc->event) {
457 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
458 		vc4_crtc->event = NULL;
459 	}
460 	spin_unlock_irqrestore(&dev->event_lock, flags);
461 }
462 
463 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
464 {
465 	struct vc4_crtc *vc4_crtc = data;
466 	u32 stat = CRTC_READ(PV_INTSTAT);
467 	irqreturn_t ret = IRQ_NONE;
468 
469 	if (stat & PV_INT_VFP_START) {
470 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
471 		drm_crtc_handle_vblank(&vc4_crtc->base);
472 		vc4_crtc_handle_page_flip(vc4_crtc);
473 		ret = IRQ_HANDLED;
474 	}
475 
476 	return ret;
477 }
478 
479 struct vc4_async_flip_state {
480 	struct drm_crtc *crtc;
481 	struct drm_framebuffer *fb;
482 	struct drm_pending_vblank_event *event;
483 
484 	struct vc4_seqno_cb cb;
485 };
486 
487 /* Called when the V3D execution for the BO being flipped to is done, so that
488  * we can actually update the plane's address to point to it.
489  */
490 static void
491 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
492 {
493 	struct vc4_async_flip_state *flip_state =
494 		container_of(cb, struct vc4_async_flip_state, cb);
495 	struct drm_crtc *crtc = flip_state->crtc;
496 	struct drm_device *dev = crtc->dev;
497 	struct vc4_dev *vc4 = to_vc4_dev(dev);
498 	struct drm_plane *plane = crtc->primary;
499 
500 	vc4_plane_async_set_fb(plane, flip_state->fb);
501 	if (flip_state->event) {
502 		unsigned long flags;
503 
504 		spin_lock_irqsave(&dev->event_lock, flags);
505 		drm_crtc_send_vblank_event(crtc, flip_state->event);
506 		spin_unlock_irqrestore(&dev->event_lock, flags);
507 	}
508 
509 	drm_framebuffer_unreference(flip_state->fb);
510 	kfree(flip_state);
511 
512 	up(&vc4->async_modeset);
513 }
514 
515 /* Implements async (non-vblank-synced) page flips.
516  *
517  * The page flip ioctl needs to return immediately, so we grab the
518  * modeset semaphore on the pipe, and queue the address update for
519  * when V3D is done with the BO being flipped to.
520  */
521 static int vc4_async_page_flip(struct drm_crtc *crtc,
522 			       struct drm_framebuffer *fb,
523 			       struct drm_pending_vblank_event *event,
524 			       uint32_t flags)
525 {
526 	struct drm_device *dev = crtc->dev;
527 	struct vc4_dev *vc4 = to_vc4_dev(dev);
528 	struct drm_plane *plane = crtc->primary;
529 	int ret = 0;
530 	struct vc4_async_flip_state *flip_state;
531 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
532 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
533 
534 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
535 	if (!flip_state)
536 		return -ENOMEM;
537 
538 	drm_framebuffer_reference(fb);
539 	flip_state->fb = fb;
540 	flip_state->crtc = crtc;
541 	flip_state->event = event;
542 
543 	/* Make sure all other async modesetes have landed. */
544 	ret = down_interruptible(&vc4->async_modeset);
545 	if (ret) {
546 		drm_framebuffer_unreference(fb);
547 		kfree(flip_state);
548 		return ret;
549 	}
550 
551 	/* Immediately update the plane's legacy fb pointer, so that later
552 	 * modeset prep sees the state that will be present when the semaphore
553 	 * is released.
554 	 */
555 	drm_atomic_set_fb_for_plane(plane->state, fb);
556 	plane->fb = fb;
557 
558 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
559 			   vc4_async_page_flip_complete);
560 
561 	/* Driver takes ownership of state on successful async commit. */
562 	return 0;
563 }
564 
565 static int vc4_page_flip(struct drm_crtc *crtc,
566 			 struct drm_framebuffer *fb,
567 			 struct drm_pending_vblank_event *event,
568 			 uint32_t flags)
569 {
570 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
571 		return vc4_async_page_flip(crtc, fb, event, flags);
572 	else
573 		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
574 }
575 
576 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
577 {
578 	struct vc4_crtc_state *vc4_state;
579 
580 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
581 	if (!vc4_state)
582 		return NULL;
583 
584 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
585 	return &vc4_state->base;
586 }
587 
588 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
589 				   struct drm_crtc_state *state)
590 {
591 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
592 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
593 
594 	if (vc4_state->mm.allocated) {
595 		unsigned long flags;
596 
597 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
598 		drm_mm_remove_node(&vc4_state->mm);
599 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
600 
601 	}
602 
603 	__drm_atomic_helper_crtc_destroy_state(crtc, state);
604 }
605 
606 static const struct drm_crtc_funcs vc4_crtc_funcs = {
607 	.set_config = drm_atomic_helper_set_config,
608 	.destroy = vc4_crtc_destroy,
609 	.page_flip = vc4_page_flip,
610 	.set_property = NULL,
611 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
612 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
613 	.reset = drm_atomic_helper_crtc_reset,
614 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
615 	.atomic_destroy_state = vc4_crtc_destroy_state,
616 };
617 
618 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
619 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
620 	.disable = vc4_crtc_disable,
621 	.enable = vc4_crtc_enable,
622 	.atomic_check = vc4_crtc_atomic_check,
623 	.atomic_flush = vc4_crtc_atomic_flush,
624 };
625 
626 static const struct vc4_crtc_data pv0_data = {
627 	.hvs_channel = 0,
628 	.encoder0_type = VC4_ENCODER_TYPE_DSI0,
629 	.encoder1_type = VC4_ENCODER_TYPE_DPI,
630 };
631 
632 static const struct vc4_crtc_data pv1_data = {
633 	.hvs_channel = 2,
634 	.encoder0_type = VC4_ENCODER_TYPE_DSI1,
635 	.encoder1_type = VC4_ENCODER_TYPE_SMI,
636 };
637 
638 static const struct vc4_crtc_data pv2_data = {
639 	.hvs_channel = 1,
640 	.encoder0_type = VC4_ENCODER_TYPE_VEC,
641 	.encoder1_type = VC4_ENCODER_TYPE_HDMI,
642 };
643 
644 static const struct of_device_id vc4_crtc_dt_match[] = {
645 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
646 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
647 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
648 	{}
649 };
650 
651 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
652 					struct drm_crtc *crtc)
653 {
654 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
655 	struct drm_encoder *encoder;
656 
657 	drm_for_each_encoder(encoder, drm) {
658 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
659 
660 		if (vc4_encoder->type == vc4_crtc->data->encoder0_type) {
661 			vc4_encoder->clock_select = 0;
662 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
663 		} else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) {
664 			vc4_encoder->clock_select = 1;
665 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
666 		}
667 	}
668 }
669 
670 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
671 {
672 	struct platform_device *pdev = to_platform_device(dev);
673 	struct drm_device *drm = dev_get_drvdata(master);
674 	struct vc4_dev *vc4 = to_vc4_dev(drm);
675 	struct vc4_crtc *vc4_crtc;
676 	struct drm_crtc *crtc;
677 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
678 	const struct of_device_id *match;
679 	int ret, i;
680 
681 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
682 	if (!vc4_crtc)
683 		return -ENOMEM;
684 	crtc = &vc4_crtc->base;
685 
686 	match = of_match_device(vc4_crtc_dt_match, dev);
687 	if (!match)
688 		return -ENODEV;
689 	vc4_crtc->data = match->data;
690 
691 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
692 	if (IS_ERR(vc4_crtc->regs))
693 		return PTR_ERR(vc4_crtc->regs);
694 
695 	/* For now, we create just the primary and the legacy cursor
696 	 * planes.  We should be able to stack more planes on easily,
697 	 * but to do that we would need to compute the bandwidth
698 	 * requirement of the plane configuration, and reject ones
699 	 * that will take too much.
700 	 */
701 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
702 	if (IS_ERR(primary_plane)) {
703 		dev_err(dev, "failed to construct primary plane\n");
704 		ret = PTR_ERR(primary_plane);
705 		goto err;
706 	}
707 
708 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
709 				  &vc4_crtc_funcs, NULL);
710 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
711 	primary_plane->crtc = crtc;
712 	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
713 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
714 
715 	/* Set up some arbitrary number of planes.  We're not limited
716 	 * by a set number of physical registers, just the space in
717 	 * the HVS (16k) and how small an plane can be (28 bytes).
718 	 * However, each plane we set up takes up some memory, and
719 	 * increases the cost of looping over planes, which atomic
720 	 * modesetting does quite a bit.  As a result, we pick a
721 	 * modest number of planes to expose, that should hopefully
722 	 * still cover any sane usecase.
723 	 */
724 	for (i = 0; i < 8; i++) {
725 		struct drm_plane *plane =
726 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
727 
728 		if (IS_ERR(plane))
729 			continue;
730 
731 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
732 	}
733 
734 	/* Set up the legacy cursor after overlay initialization,
735 	 * since we overlay planes on the CRTC in the order they were
736 	 * initialized.
737 	 */
738 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
739 	if (!IS_ERR(cursor_plane)) {
740 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
741 		cursor_plane->crtc = crtc;
742 		crtc->cursor = cursor_plane;
743 	}
744 
745 	CRTC_WRITE(PV_INTEN, 0);
746 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
747 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
748 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
749 	if (ret)
750 		goto err_destroy_planes;
751 
752 	vc4_set_crtc_possible_masks(drm, crtc);
753 
754 	platform_set_drvdata(pdev, vc4_crtc);
755 
756 	return 0;
757 
758 err_destroy_planes:
759 	list_for_each_entry_safe(destroy_plane, temp,
760 				 &drm->mode_config.plane_list, head) {
761 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
762 		    destroy_plane->funcs->destroy(destroy_plane);
763 	}
764 err:
765 	return ret;
766 }
767 
768 static void vc4_crtc_unbind(struct device *dev, struct device *master,
769 			    void *data)
770 {
771 	struct platform_device *pdev = to_platform_device(dev);
772 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
773 
774 	vc4_crtc_destroy(&vc4_crtc->base);
775 
776 	CRTC_WRITE(PV_INTEN, 0);
777 
778 	platform_set_drvdata(pdev, NULL);
779 }
780 
781 static const struct component_ops vc4_crtc_ops = {
782 	.bind   = vc4_crtc_bind,
783 	.unbind = vc4_crtc_unbind,
784 };
785 
786 static int vc4_crtc_dev_probe(struct platform_device *pdev)
787 {
788 	return component_add(&pdev->dev, &vc4_crtc_ops);
789 }
790 
791 static int vc4_crtc_dev_remove(struct platform_device *pdev)
792 {
793 	component_del(&pdev->dev, &vc4_crtc_ops);
794 	return 0;
795 }
796 
797 struct platform_driver vc4_crtc_driver = {
798 	.probe = vc4_crtc_dev_probe,
799 	.remove = vc4_crtc_dev_remove,
800 	.driver = {
801 		.name = "vc4_crtc",
802 		.of_match_table = vc4_crtc_dt_match,
803 	},
804 };
805