xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 8730046c)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * output's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, this file also manages
19  * setup of the VC4 HVS's display elements on the CRTC.
20  *
21  * The 2835 has 3 different pixel valves.  pv0 in the audio power
22  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
23  * image domain can feed either HDMI or the SDTV controller.  The
24  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
25  * SDTV, etc.) according to which output type is chosen in the mux.
26  *
27  * For power management, the pixel valve's registers are all clocked
28  * by the AXI clock, while the timings and FIFOs make use of the
29  * output-specific clock.  Since the encoders also directly consume
30  * the CPRMAN clocks, and know what timings they need, they are the
31  * ones that set the clock.
32  */
33 
34 #include "drm_atomic.h"
35 #include "drm_atomic_helper.h"
36 #include "drm_crtc_helper.h"
37 #include "linux/clk.h"
38 #include "drm_fb_cma_helper.h"
39 #include "linux/component.h"
40 #include "linux/of_device.h"
41 #include "vc4_drv.h"
42 #include "vc4_regs.h"
43 
44 struct vc4_crtc {
45 	struct drm_crtc base;
46 	const struct vc4_crtc_data *data;
47 	void __iomem *regs;
48 
49 	/* Timestamp at start of vblank irq - unaffected by lock delays. */
50 	ktime_t t_vblank;
51 
52 	/* Which HVS channel we're using for our CRTC. */
53 	int channel;
54 
55 	u8 lut_r[256];
56 	u8 lut_g[256];
57 	u8 lut_b[256];
58 	/* Size in pixels of the COB memory allocated to this CRTC. */
59 	u32 cob_size;
60 
61 	struct drm_pending_vblank_event *event;
62 };
63 
64 struct vc4_crtc_state {
65 	struct drm_crtc_state base;
66 	/* Dlist area for this CRTC configuration. */
67 	struct drm_mm_node mm;
68 };
69 
70 static inline struct vc4_crtc *
71 to_vc4_crtc(struct drm_crtc *crtc)
72 {
73 	return (struct vc4_crtc *)crtc;
74 }
75 
76 static inline struct vc4_crtc_state *
77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
78 {
79 	return (struct vc4_crtc_state *)crtc_state;
80 }
81 
82 struct vc4_crtc_data {
83 	/* Which channel of the HVS this pixelvalve sources from. */
84 	int hvs_channel;
85 
86 	enum vc4_encoder_type encoder_types[4];
87 };
88 
89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
91 
92 #define CRTC_REG(reg) { reg, #reg }
93 static const struct {
94 	u32 reg;
95 	const char *name;
96 } crtc_regs[] = {
97 	CRTC_REG(PV_CONTROL),
98 	CRTC_REG(PV_V_CONTROL),
99 	CRTC_REG(PV_VSYNCD_EVEN),
100 	CRTC_REG(PV_HORZA),
101 	CRTC_REG(PV_HORZB),
102 	CRTC_REG(PV_VERTA),
103 	CRTC_REG(PV_VERTB),
104 	CRTC_REG(PV_VERTA_EVEN),
105 	CRTC_REG(PV_VERTB_EVEN),
106 	CRTC_REG(PV_INTEN),
107 	CRTC_REG(PV_INTSTAT),
108 	CRTC_REG(PV_STAT),
109 	CRTC_REG(PV_HACT_ACT),
110 };
111 
112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
113 {
114 	int i;
115 
116 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
117 		DRM_INFO("0x%04x (%s): 0x%08x\n",
118 			 crtc_regs[i].reg, crtc_regs[i].name,
119 			 CRTC_READ(crtc_regs[i].reg));
120 	}
121 }
122 
123 #ifdef CONFIG_DEBUG_FS
124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
125 {
126 	struct drm_info_node *node = (struct drm_info_node *)m->private;
127 	struct drm_device *dev = node->minor->dev;
128 	int crtc_index = (uintptr_t)node->info_ent->data;
129 	struct drm_crtc *crtc;
130 	struct vc4_crtc *vc4_crtc;
131 	int i;
132 
133 	i = 0;
134 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135 		if (i == crtc_index)
136 			break;
137 		i++;
138 	}
139 	if (!crtc)
140 		return 0;
141 	vc4_crtc = to_vc4_crtc(crtc);
142 
143 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
144 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
145 			   crtc_regs[i].name, crtc_regs[i].reg,
146 			   CRTC_READ(crtc_regs[i].reg));
147 	}
148 
149 	return 0;
150 }
151 #endif
152 
153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
154 			    unsigned int flags, int *vpos, int *hpos,
155 			    ktime_t *stime, ktime_t *etime,
156 			    const struct drm_display_mode *mode)
157 {
158 	struct vc4_dev *vc4 = to_vc4_dev(dev);
159 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
160 	u32 val;
161 	int fifo_lines;
162 	int vblank_lines;
163 	int ret = 0;
164 
165 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
166 
167 	/* Get optional system timestamp before query. */
168 	if (stime)
169 		*stime = ktime_get();
170 
171 	/*
172 	 * Read vertical scanline which is currently composed for our
173 	 * pixelvalve by the HVS, and also the scaler status.
174 	 */
175 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
176 
177 	/* Get optional system timestamp after query. */
178 	if (etime)
179 		*etime = ktime_get();
180 
181 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
182 
183 	/* Vertical position of hvs composed scanline. */
184 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
185 	*hpos = 0;
186 
187 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
188 		*vpos /= 2;
189 
190 		/* Use hpos to correct for field offset in interlaced mode. */
191 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
192 			*hpos += mode->crtc_htotal / 2;
193 	}
194 
195 	/* This is the offset we need for translating hvs -> pv scanout pos. */
196 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
197 
198 	if (fifo_lines > 0)
199 		ret |= DRM_SCANOUTPOS_VALID;
200 
201 	/* HVS more than fifo_lines into frame for compositing? */
202 	if (*vpos > fifo_lines) {
203 		/*
204 		 * We are in active scanout and can get some meaningful results
205 		 * from HVS. The actual PV scanout can not trail behind more
206 		 * than fifo_lines as that is the fifo's capacity. Assume that
207 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
208 		 * refilling the fifo and PV consuming from the fifo, ie.
209 		 * whenever the PV consumes and frees up a scanline in the
210 		 * fifo, the HVS will immediately refill it, therefore
211 		 * incrementing vpos. Therefore we choose HVS read position -
212 		 * fifo size in scanlines as a estimate of the real scanout
213 		 * position of the PV.
214 		 */
215 		*vpos -= fifo_lines + 1;
216 
217 		ret |= DRM_SCANOUTPOS_ACCURATE;
218 		return ret;
219 	}
220 
221 	/*
222 	 * Less: This happens when we are in vblank and the HVS, after getting
223 	 * the VSTART restart signal from the PV, just started refilling its
224 	 * fifo with new lines from the top-most lines of the new framebuffers.
225 	 * The PV does not scan out in vblank, so does not remove lines from
226 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
227 	 * We can't get meaningful readings wrt. scanline position of the PV
228 	 * and need to make things up in a approximative but consistent way.
229 	 */
230 	ret |= DRM_SCANOUTPOS_IN_VBLANK;
231 	vblank_lines = mode->vtotal - mode->vdisplay;
232 
233 	if (flags & DRM_CALLED_FROM_VBLIRQ) {
234 		/*
235 		 * Assume the irq handler got called close to first
236 		 * line of vblank, so PV has about a full vblank
237 		 * scanlines to go, and as a base timestamp use the
238 		 * one taken at entry into vblank irq handler, so it
239 		 * is not affected by random delays due to lock
240 		 * contention on event_lock or vblank_time lock in
241 		 * the core.
242 		 */
243 		*vpos = -vblank_lines;
244 
245 		if (stime)
246 			*stime = vc4_crtc->t_vblank;
247 		if (etime)
248 			*etime = vc4_crtc->t_vblank;
249 
250 		/*
251 		 * If the HVS fifo is not yet full then we know for certain
252 		 * we are at the very beginning of vblank, as the hvs just
253 		 * started refilling, and the stime and etime timestamps
254 		 * truly correspond to start of vblank.
255 		 */
256 		if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL)
257 			ret |= DRM_SCANOUTPOS_ACCURATE;
258 	} else {
259 		/*
260 		 * No clue where we are inside vblank. Return a vpos of zero,
261 		 * which will cause calling code to just return the etime
262 		 * timestamp uncorrected. At least this is no worse than the
263 		 * standard fallback.
264 		 */
265 		*vpos = 0;
266 	}
267 
268 	return ret;
269 }
270 
271 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id,
272 				  int *max_error, struct timeval *vblank_time,
273 				  unsigned flags)
274 {
275 	struct vc4_dev *vc4 = to_vc4_dev(dev);
276 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
277 	struct drm_crtc *crtc = &vc4_crtc->base;
278 	struct drm_crtc_state *state = crtc->state;
279 
280 	/* Helper routine in DRM core does all the work: */
281 	return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error,
282 						     vblank_time, flags,
283 						     &state->adjusted_mode);
284 }
285 
286 static void vc4_crtc_destroy(struct drm_crtc *crtc)
287 {
288 	drm_crtc_cleanup(crtc);
289 }
290 
291 static void
292 vc4_crtc_lut_load(struct drm_crtc *crtc)
293 {
294 	struct drm_device *dev = crtc->dev;
295 	struct vc4_dev *vc4 = to_vc4_dev(dev);
296 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
297 	u32 i;
298 
299 	/* The LUT memory is laid out with each HVS channel in order,
300 	 * each of which takes 256 writes for R, 256 for G, then 256
301 	 * for B.
302 	 */
303 	HVS_WRITE(SCALER_GAMADDR,
304 		  SCALER_GAMADDR_AUTOINC |
305 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
306 
307 	for (i = 0; i < crtc->gamma_size; i++)
308 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
309 	for (i = 0; i < crtc->gamma_size; i++)
310 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
311 	for (i = 0; i < crtc->gamma_size; i++)
312 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
313 }
314 
315 static int
316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
317 		   uint32_t size)
318 {
319 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
320 	u32 i;
321 
322 	for (i = 0; i < size; i++) {
323 		vc4_crtc->lut_r[i] = r[i] >> 8;
324 		vc4_crtc->lut_g[i] = g[i] >> 8;
325 		vc4_crtc->lut_b[i] = b[i] >> 8;
326 	}
327 
328 	vc4_crtc_lut_load(crtc);
329 
330 	return 0;
331 }
332 
333 static u32 vc4_get_fifo_full_level(u32 format)
334 {
335 	static const u32 fifo_len_bytes = 64;
336 	static const u32 hvs_latency_pix = 6;
337 
338 	switch (format) {
339 	case PV_CONTROL_FORMAT_DSIV_16:
340 	case PV_CONTROL_FORMAT_DSIC_16:
341 		return fifo_len_bytes - 2 * hvs_latency_pix;
342 	case PV_CONTROL_FORMAT_DSIV_18:
343 		return fifo_len_bytes - 14;
344 	case PV_CONTROL_FORMAT_24:
345 	case PV_CONTROL_FORMAT_DSIV_24:
346 	default:
347 		return fifo_len_bytes - 3 * hvs_latency_pix;
348 	}
349 }
350 
351 /*
352  * Returns the clock select bit for the connector attached to the
353  * CRTC.
354  */
355 static int vc4_get_clock_select(struct drm_crtc *crtc)
356 {
357 	struct drm_connector *connector;
358 
359 	drm_for_each_connector(connector, crtc->dev) {
360 		if (connector->state->crtc == crtc) {
361 			struct drm_encoder *encoder = connector->encoder;
362 			struct vc4_encoder *vc4_encoder =
363 				to_vc4_encoder(encoder);
364 
365 			return vc4_encoder->clock_select;
366 		}
367 	}
368 
369 	return -1;
370 }
371 
372 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
373 {
374 	struct drm_device *dev = crtc->dev;
375 	struct vc4_dev *vc4 = to_vc4_dev(dev);
376 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
377 	struct drm_crtc_state *state = crtc->state;
378 	struct drm_display_mode *mode = &state->adjusted_mode;
379 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
380 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
381 	u32 format = PV_CONTROL_FORMAT_24;
382 	bool debug_dump_regs = false;
383 	int clock_select = vc4_get_clock_select(crtc);
384 
385 	if (debug_dump_regs) {
386 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
387 		vc4_crtc_dump_regs(vc4_crtc);
388 	}
389 
390 	/* Reset the PV fifo. */
391 	CRTC_WRITE(PV_CONTROL, 0);
392 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
393 	CRTC_WRITE(PV_CONTROL, 0);
394 
395 	CRTC_WRITE(PV_HORZA,
396 		   VC4_SET_FIELD((mode->htotal -
397 				  mode->hsync_end) * pixel_rep,
398 				 PV_HORZA_HBP) |
399 		   VC4_SET_FIELD((mode->hsync_end -
400 				  mode->hsync_start) * pixel_rep,
401 				 PV_HORZA_HSYNC));
402 	CRTC_WRITE(PV_HORZB,
403 		   VC4_SET_FIELD((mode->hsync_start -
404 				  mode->hdisplay) * pixel_rep,
405 				 PV_HORZB_HFP) |
406 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
407 
408 	CRTC_WRITE(PV_VERTA,
409 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
410 				 PV_VERTA_VBP) |
411 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
412 				 PV_VERTA_VSYNC));
413 	CRTC_WRITE(PV_VERTB,
414 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
415 				 PV_VERTB_VFP) |
416 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
417 
418 	if (interlace) {
419 		CRTC_WRITE(PV_VERTA_EVEN,
420 			   VC4_SET_FIELD(mode->crtc_vtotal -
421 					 mode->crtc_vsync_end - 1,
422 					 PV_VERTA_VBP) |
423 			   VC4_SET_FIELD(mode->crtc_vsync_end -
424 					 mode->crtc_vsync_start,
425 					 PV_VERTA_VSYNC));
426 		CRTC_WRITE(PV_VERTB_EVEN,
427 			   VC4_SET_FIELD(mode->crtc_vsync_start -
428 					 mode->crtc_vdisplay,
429 					 PV_VERTB_VFP) |
430 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
431 
432 		/* We set up first field even mode for HDMI.  VEC's
433 		 * NTSC mode would want first field odd instead, once
434 		 * we support it (to do so, set ODD_FIRST and put the
435 		 * delay in VSYNCD_EVEN instead).
436 		 */
437 		CRTC_WRITE(PV_V_CONTROL,
438 			   PV_VCONTROL_CONTINUOUS |
439 			   PV_VCONTROL_INTERLACE |
440 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
441 					 PV_VCONTROL_ODD_DELAY));
442 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
443 	} else {
444 		CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS);
445 	}
446 
447 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
448 
449 
450 	CRTC_WRITE(PV_CONTROL,
451 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
452 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
453 				 PV_CONTROL_FIFO_LEVEL) |
454 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
455 		   PV_CONTROL_CLR_AT_START |
456 		   PV_CONTROL_TRIGGER_UNDERFLOW |
457 		   PV_CONTROL_WAIT_HSTART |
458 		   VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) |
459 		   PV_CONTROL_FIFO_CLR |
460 		   PV_CONTROL_EN);
461 
462 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
463 		  SCALER_DISPBKGND_AUTOHS |
464 		  SCALER_DISPBKGND_GAMMA |
465 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
466 
467 	/* Reload the LUT, since the SRAMs would have been disabled if
468 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
469 	 */
470 	vc4_crtc_lut_load(crtc);
471 
472 	if (debug_dump_regs) {
473 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
474 		vc4_crtc_dump_regs(vc4_crtc);
475 	}
476 }
477 
478 static void require_hvs_enabled(struct drm_device *dev)
479 {
480 	struct vc4_dev *vc4 = to_vc4_dev(dev);
481 
482 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
483 		     SCALER_DISPCTRL_ENABLE);
484 }
485 
486 static void vc4_crtc_disable(struct drm_crtc *crtc)
487 {
488 	struct drm_device *dev = crtc->dev;
489 	struct vc4_dev *vc4 = to_vc4_dev(dev);
490 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
491 	u32 chan = vc4_crtc->channel;
492 	int ret;
493 	require_hvs_enabled(dev);
494 
495 	/* Disable vblank irq handling before crtc is disabled. */
496 	drm_crtc_vblank_off(crtc);
497 
498 	CRTC_WRITE(PV_V_CONTROL,
499 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
500 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
501 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
502 
503 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
504 	    SCALER_DISPCTRLX_ENABLE) {
505 		HVS_WRITE(SCALER_DISPCTRLX(chan),
506 			  SCALER_DISPCTRLX_RESET);
507 
508 		/* While the docs say that reset is self-clearing, it
509 		 * seems it doesn't actually.
510 		 */
511 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
512 	}
513 
514 	/* Once we leave, the scaler should be disabled and its fifo empty. */
515 
516 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
517 
518 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
519 				   SCALER_DISPSTATX_MODE) !=
520 		     SCALER_DISPSTATX_MODE_DISABLED);
521 
522 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
523 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
524 		     SCALER_DISPSTATX_EMPTY);
525 }
526 
527 static void vc4_crtc_enable(struct drm_crtc *crtc)
528 {
529 	struct drm_device *dev = crtc->dev;
530 	struct vc4_dev *vc4 = to_vc4_dev(dev);
531 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
532 	struct drm_crtc_state *state = crtc->state;
533 	struct drm_display_mode *mode = &state->adjusted_mode;
534 
535 	require_hvs_enabled(dev);
536 
537 	/* Turn on the scaler, which will wait for vstart to start
538 	 * compositing.
539 	 */
540 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
541 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
542 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
543 		  SCALER_DISPCTRLX_ENABLE);
544 
545 	/* Turn on the pixel valve, which will emit the vstart signal. */
546 	CRTC_WRITE(PV_V_CONTROL,
547 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
548 
549 	/* Enable vblank irq handling after crtc is started. */
550 	drm_crtc_vblank_on(crtc);
551 }
552 
553 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
554 				const struct drm_display_mode *mode,
555 				struct drm_display_mode *adjusted_mode)
556 {
557 	/* Do not allow doublescan modes from user space */
558 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
559 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
560 			      crtc->base.id);
561 		return false;
562 	}
563 
564 	return true;
565 }
566 
567 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
568 				 struct drm_crtc_state *state)
569 {
570 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
571 	struct drm_device *dev = crtc->dev;
572 	struct vc4_dev *vc4 = to_vc4_dev(dev);
573 	struct drm_plane *plane;
574 	unsigned long flags;
575 	const struct drm_plane_state *plane_state;
576 	u32 dlist_count = 0;
577 	int ret;
578 
579 	/* The pixelvalve can only feed one encoder (and encoders are
580 	 * 1:1 with connectors.)
581 	 */
582 	if (hweight32(state->connector_mask) > 1)
583 		return -EINVAL;
584 
585 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
586 		dlist_count += vc4_plane_dlist_size(plane_state);
587 
588 	dlist_count++; /* Account for SCALER_CTL0_END. */
589 
590 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
591 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
592 				 dlist_count, 1, 0);
593 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
594 	if (ret)
595 		return ret;
596 
597 	return 0;
598 }
599 
600 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
601 				  struct drm_crtc_state *old_state)
602 {
603 	struct drm_device *dev = crtc->dev;
604 	struct vc4_dev *vc4 = to_vc4_dev(dev);
605 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
606 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
607 	struct drm_plane *plane;
608 	bool debug_dump_regs = false;
609 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
610 	u32 __iomem *dlist_next = dlist_start;
611 
612 	if (debug_dump_regs) {
613 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
614 		vc4_hvs_dump_state(dev);
615 	}
616 
617 	/* Copy all the active planes' dlist contents to the hardware dlist. */
618 	drm_atomic_crtc_for_each_plane(plane, crtc) {
619 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
620 	}
621 
622 	writel(SCALER_CTL0_END, dlist_next);
623 	dlist_next++;
624 
625 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
626 
627 	if (crtc->state->event) {
628 		unsigned long flags;
629 
630 		crtc->state->event->pipe = drm_crtc_index(crtc);
631 
632 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
633 
634 		spin_lock_irqsave(&dev->event_lock, flags);
635 		vc4_crtc->event = crtc->state->event;
636 		crtc->state->event = NULL;
637 
638 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
639 			  vc4_state->mm.start);
640 
641 		spin_unlock_irqrestore(&dev->event_lock, flags);
642 	} else {
643 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
644 			  vc4_state->mm.start);
645 	}
646 
647 	if (debug_dump_regs) {
648 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
649 		vc4_hvs_dump_state(dev);
650 	}
651 }
652 
653 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id)
654 {
655 	struct vc4_dev *vc4 = to_vc4_dev(dev);
656 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
657 
658 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
659 
660 	return 0;
661 }
662 
663 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id)
664 {
665 	struct vc4_dev *vc4 = to_vc4_dev(dev);
666 	struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id];
667 
668 	CRTC_WRITE(PV_INTEN, 0);
669 }
670 
671 /* Must be called with the event lock held */
672 bool vc4_event_pending(struct drm_crtc *crtc)
673 {
674 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
675 
676 	return !!vc4_crtc->event;
677 }
678 
679 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
680 {
681 	struct drm_crtc *crtc = &vc4_crtc->base;
682 	struct drm_device *dev = crtc->dev;
683 	struct vc4_dev *vc4 = to_vc4_dev(dev);
684 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
685 	u32 chan = vc4_crtc->channel;
686 	unsigned long flags;
687 
688 	spin_lock_irqsave(&dev->event_lock, flags);
689 	if (vc4_crtc->event &&
690 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
691 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
692 		vc4_crtc->event = NULL;
693 		drm_crtc_vblank_put(crtc);
694 	}
695 	spin_unlock_irqrestore(&dev->event_lock, flags);
696 }
697 
698 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
699 {
700 	struct vc4_crtc *vc4_crtc = data;
701 	u32 stat = CRTC_READ(PV_INTSTAT);
702 	irqreturn_t ret = IRQ_NONE;
703 
704 	if (stat & PV_INT_VFP_START) {
705 		vc4_crtc->t_vblank = ktime_get();
706 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
707 		drm_crtc_handle_vblank(&vc4_crtc->base);
708 		vc4_crtc_handle_page_flip(vc4_crtc);
709 		ret = IRQ_HANDLED;
710 	}
711 
712 	return ret;
713 }
714 
715 struct vc4_async_flip_state {
716 	struct drm_crtc *crtc;
717 	struct drm_framebuffer *fb;
718 	struct drm_pending_vblank_event *event;
719 
720 	struct vc4_seqno_cb cb;
721 };
722 
723 /* Called when the V3D execution for the BO being flipped to is done, so that
724  * we can actually update the plane's address to point to it.
725  */
726 static void
727 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
728 {
729 	struct vc4_async_flip_state *flip_state =
730 		container_of(cb, struct vc4_async_flip_state, cb);
731 	struct drm_crtc *crtc = flip_state->crtc;
732 	struct drm_device *dev = crtc->dev;
733 	struct vc4_dev *vc4 = to_vc4_dev(dev);
734 	struct drm_plane *plane = crtc->primary;
735 
736 	vc4_plane_async_set_fb(plane, flip_state->fb);
737 	if (flip_state->event) {
738 		unsigned long flags;
739 
740 		spin_lock_irqsave(&dev->event_lock, flags);
741 		drm_crtc_send_vblank_event(crtc, flip_state->event);
742 		spin_unlock_irqrestore(&dev->event_lock, flags);
743 	}
744 
745 	drm_crtc_vblank_put(crtc);
746 	drm_framebuffer_unreference(flip_state->fb);
747 	kfree(flip_state);
748 
749 	up(&vc4->async_modeset);
750 }
751 
752 /* Implements async (non-vblank-synced) page flips.
753  *
754  * The page flip ioctl needs to return immediately, so we grab the
755  * modeset semaphore on the pipe, and queue the address update for
756  * when V3D is done with the BO being flipped to.
757  */
758 static int vc4_async_page_flip(struct drm_crtc *crtc,
759 			       struct drm_framebuffer *fb,
760 			       struct drm_pending_vblank_event *event,
761 			       uint32_t flags)
762 {
763 	struct drm_device *dev = crtc->dev;
764 	struct vc4_dev *vc4 = to_vc4_dev(dev);
765 	struct drm_plane *plane = crtc->primary;
766 	int ret = 0;
767 	struct vc4_async_flip_state *flip_state;
768 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
769 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
770 
771 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
772 	if (!flip_state)
773 		return -ENOMEM;
774 
775 	drm_framebuffer_reference(fb);
776 	flip_state->fb = fb;
777 	flip_state->crtc = crtc;
778 	flip_state->event = event;
779 
780 	/* Make sure all other async modesetes have landed. */
781 	ret = down_interruptible(&vc4->async_modeset);
782 	if (ret) {
783 		drm_framebuffer_unreference(fb);
784 		kfree(flip_state);
785 		return ret;
786 	}
787 
788 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
789 
790 	/* Immediately update the plane's legacy fb pointer, so that later
791 	 * modeset prep sees the state that will be present when the semaphore
792 	 * is released.
793 	 */
794 	drm_atomic_set_fb_for_plane(plane->state, fb);
795 	plane->fb = fb;
796 
797 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
798 			   vc4_async_page_flip_complete);
799 
800 	/* Driver takes ownership of state on successful async commit. */
801 	return 0;
802 }
803 
804 static int vc4_page_flip(struct drm_crtc *crtc,
805 			 struct drm_framebuffer *fb,
806 			 struct drm_pending_vblank_event *event,
807 			 uint32_t flags)
808 {
809 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
810 		return vc4_async_page_flip(crtc, fb, event, flags);
811 	else
812 		return drm_atomic_helper_page_flip(crtc, fb, event, flags);
813 }
814 
815 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
816 {
817 	struct vc4_crtc_state *vc4_state;
818 
819 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
820 	if (!vc4_state)
821 		return NULL;
822 
823 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
824 	return &vc4_state->base;
825 }
826 
827 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
828 				   struct drm_crtc_state *state)
829 {
830 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
831 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
832 
833 	if (vc4_state->mm.allocated) {
834 		unsigned long flags;
835 
836 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
837 		drm_mm_remove_node(&vc4_state->mm);
838 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
839 
840 	}
841 
842 	__drm_atomic_helper_crtc_destroy_state(state);
843 }
844 
845 static const struct drm_crtc_funcs vc4_crtc_funcs = {
846 	.set_config = drm_atomic_helper_set_config,
847 	.destroy = vc4_crtc_destroy,
848 	.page_flip = vc4_page_flip,
849 	.set_property = NULL,
850 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
851 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
852 	.reset = drm_atomic_helper_crtc_reset,
853 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
854 	.atomic_destroy_state = vc4_crtc_destroy_state,
855 	.gamma_set = vc4_crtc_gamma_set,
856 };
857 
858 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
859 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
860 	.disable = vc4_crtc_disable,
861 	.enable = vc4_crtc_enable,
862 	.mode_fixup = vc4_crtc_mode_fixup,
863 	.atomic_check = vc4_crtc_atomic_check,
864 	.atomic_flush = vc4_crtc_atomic_flush,
865 };
866 
867 static const struct vc4_crtc_data pv0_data = {
868 	.hvs_channel = 0,
869 	.encoder_types = {
870 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
871 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
872 	},
873 };
874 
875 static const struct vc4_crtc_data pv1_data = {
876 	.hvs_channel = 2,
877 	.encoder_types = {
878 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
879 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
880 	},
881 };
882 
883 static const struct vc4_crtc_data pv2_data = {
884 	.hvs_channel = 1,
885 	.encoder_types = {
886 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
887 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
888 	},
889 };
890 
891 static const struct of_device_id vc4_crtc_dt_match[] = {
892 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
893 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
894 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
895 	{}
896 };
897 
898 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
899 					struct drm_crtc *crtc)
900 {
901 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
902 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
903 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
904 	struct drm_encoder *encoder;
905 
906 	drm_for_each_encoder(encoder, drm) {
907 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
908 		int i;
909 
910 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
911 			if (vc4_encoder->type == encoder_types[i]) {
912 				vc4_encoder->clock_select = i;
913 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
914 				break;
915 			}
916 		}
917 	}
918 }
919 
920 static void
921 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
922 {
923 	struct drm_device *drm = vc4_crtc->base.dev;
924 	struct vc4_dev *vc4 = to_vc4_dev(drm);
925 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
926 	/* Top/base are supposed to be 4-pixel aligned, but the
927 	 * Raspberry Pi firmware fills the low bits (which are
928 	 * presumably ignored).
929 	 */
930 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
931 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
932 
933 	vc4_crtc->cob_size = top - base + 4;
934 }
935 
936 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
937 {
938 	struct platform_device *pdev = to_platform_device(dev);
939 	struct drm_device *drm = dev_get_drvdata(master);
940 	struct vc4_dev *vc4 = to_vc4_dev(drm);
941 	struct vc4_crtc *vc4_crtc;
942 	struct drm_crtc *crtc;
943 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
944 	const struct of_device_id *match;
945 	int ret, i;
946 
947 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
948 	if (!vc4_crtc)
949 		return -ENOMEM;
950 	crtc = &vc4_crtc->base;
951 
952 	match = of_match_device(vc4_crtc_dt_match, dev);
953 	if (!match)
954 		return -ENODEV;
955 	vc4_crtc->data = match->data;
956 
957 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
958 	if (IS_ERR(vc4_crtc->regs))
959 		return PTR_ERR(vc4_crtc->regs);
960 
961 	/* For now, we create just the primary and the legacy cursor
962 	 * planes.  We should be able to stack more planes on easily,
963 	 * but to do that we would need to compute the bandwidth
964 	 * requirement of the plane configuration, and reject ones
965 	 * that will take too much.
966 	 */
967 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
968 	if (IS_ERR(primary_plane)) {
969 		dev_err(dev, "failed to construct primary plane\n");
970 		ret = PTR_ERR(primary_plane);
971 		goto err;
972 	}
973 
974 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
975 				  &vc4_crtc_funcs, NULL);
976 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
977 	primary_plane->crtc = crtc;
978 	vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc;
979 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
980 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
981 
982 	/* Set up some arbitrary number of planes.  We're not limited
983 	 * by a set number of physical registers, just the space in
984 	 * the HVS (16k) and how small an plane can be (28 bytes).
985 	 * However, each plane we set up takes up some memory, and
986 	 * increases the cost of looping over planes, which atomic
987 	 * modesetting does quite a bit.  As a result, we pick a
988 	 * modest number of planes to expose, that should hopefully
989 	 * still cover any sane usecase.
990 	 */
991 	for (i = 0; i < 8; i++) {
992 		struct drm_plane *plane =
993 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
994 
995 		if (IS_ERR(plane))
996 			continue;
997 
998 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
999 	}
1000 
1001 	/* Set up the legacy cursor after overlay initialization,
1002 	 * since we overlay planes on the CRTC in the order they were
1003 	 * initialized.
1004 	 */
1005 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1006 	if (!IS_ERR(cursor_plane)) {
1007 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1008 		cursor_plane->crtc = crtc;
1009 		crtc->cursor = cursor_plane;
1010 	}
1011 
1012 	vc4_crtc_get_cob_allocation(vc4_crtc);
1013 
1014 	CRTC_WRITE(PV_INTEN, 0);
1015 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1016 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1017 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1018 	if (ret)
1019 		goto err_destroy_planes;
1020 
1021 	vc4_set_crtc_possible_masks(drm, crtc);
1022 
1023 	for (i = 0; i < crtc->gamma_size; i++) {
1024 		vc4_crtc->lut_r[i] = i;
1025 		vc4_crtc->lut_g[i] = i;
1026 		vc4_crtc->lut_b[i] = i;
1027 	}
1028 
1029 	platform_set_drvdata(pdev, vc4_crtc);
1030 
1031 	return 0;
1032 
1033 err_destroy_planes:
1034 	list_for_each_entry_safe(destroy_plane, temp,
1035 				 &drm->mode_config.plane_list, head) {
1036 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1037 		    destroy_plane->funcs->destroy(destroy_plane);
1038 	}
1039 err:
1040 	return ret;
1041 }
1042 
1043 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1044 			    void *data)
1045 {
1046 	struct platform_device *pdev = to_platform_device(dev);
1047 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1048 
1049 	vc4_crtc_destroy(&vc4_crtc->base);
1050 
1051 	CRTC_WRITE(PV_INTEN, 0);
1052 
1053 	platform_set_drvdata(pdev, NULL);
1054 }
1055 
1056 static const struct component_ops vc4_crtc_ops = {
1057 	.bind   = vc4_crtc_bind,
1058 	.unbind = vc4_crtc_unbind,
1059 };
1060 
1061 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1062 {
1063 	return component_add(&pdev->dev, &vc4_crtc_ops);
1064 }
1065 
1066 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1067 {
1068 	component_del(&pdev->dev, &vc4_crtc_ops);
1069 	return 0;
1070 }
1071 
1072 struct platform_driver vc4_crtc_driver = {
1073 	.probe = vc4_crtc_dev_probe,
1074 	.remove = vc4_crtc_dev_remove,
1075 	.driver = {
1076 		.name = "vc4_crtc",
1077 		.of_match_table = vc4_crtc_dt_match,
1078 	},
1079 };
1080