1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * output's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, this file also manages 19 * setup of the VC4 HVS's display elements on the CRTC. 20 * 21 * The 2835 has 3 different pixel valves. pv0 in the audio power 22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 23 * image domain can feed either HDMI or the SDTV controller. The 24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 25 * SDTV, etc.) according to which output type is chosen in the mux. 26 * 27 * For power management, the pixel valve's registers are all clocked 28 * by the AXI clock, while the timings and FIFOs make use of the 29 * output-specific clock. Since the encoders also directly consume 30 * the CPRMAN clocks, and know what timings they need, they are the 31 * ones that set the clock. 32 */ 33 34 #include "drm_atomic.h" 35 #include "drm_atomic_helper.h" 36 #include "drm_crtc_helper.h" 37 #include "linux/clk.h" 38 #include "drm_fb_cma_helper.h" 39 #include "linux/component.h" 40 #include "linux/of_device.h" 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 struct vc4_crtc { 45 struct drm_crtc base; 46 const struct vc4_crtc_data *data; 47 void __iomem *regs; 48 49 /* Timestamp at start of vblank irq - unaffected by lock delays. */ 50 ktime_t t_vblank; 51 52 /* Which HVS channel we're using for our CRTC. */ 53 int channel; 54 55 u8 lut_r[256]; 56 u8 lut_g[256]; 57 u8 lut_b[256]; 58 /* Size in pixels of the COB memory allocated to this CRTC. */ 59 u32 cob_size; 60 61 struct drm_pending_vblank_event *event; 62 }; 63 64 struct vc4_crtc_state { 65 struct drm_crtc_state base; 66 /* Dlist area for this CRTC configuration. */ 67 struct drm_mm_node mm; 68 }; 69 70 static inline struct vc4_crtc * 71 to_vc4_crtc(struct drm_crtc *crtc) 72 { 73 return (struct vc4_crtc *)crtc; 74 } 75 76 static inline struct vc4_crtc_state * 77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 78 { 79 return (struct vc4_crtc_state *)crtc_state; 80 } 81 82 struct vc4_crtc_data { 83 /* Which channel of the HVS this pixelvalve sources from. */ 84 int hvs_channel; 85 86 enum vc4_encoder_type encoder_types[4]; 87 }; 88 89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 91 92 #define CRTC_REG(reg) { reg, #reg } 93 static const struct { 94 u32 reg; 95 const char *name; 96 } crtc_regs[] = { 97 CRTC_REG(PV_CONTROL), 98 CRTC_REG(PV_V_CONTROL), 99 CRTC_REG(PV_VSYNCD_EVEN), 100 CRTC_REG(PV_HORZA), 101 CRTC_REG(PV_HORZB), 102 CRTC_REG(PV_VERTA), 103 CRTC_REG(PV_VERTB), 104 CRTC_REG(PV_VERTA_EVEN), 105 CRTC_REG(PV_VERTB_EVEN), 106 CRTC_REG(PV_INTEN), 107 CRTC_REG(PV_INTSTAT), 108 CRTC_REG(PV_STAT), 109 CRTC_REG(PV_HACT_ACT), 110 }; 111 112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 113 { 114 int i; 115 116 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 117 DRM_INFO("0x%04x (%s): 0x%08x\n", 118 crtc_regs[i].reg, crtc_regs[i].name, 119 CRTC_READ(crtc_regs[i].reg)); 120 } 121 } 122 123 #ifdef CONFIG_DEBUG_FS 124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 125 { 126 struct drm_info_node *node = (struct drm_info_node *)m->private; 127 struct drm_device *dev = node->minor->dev; 128 int crtc_index = (uintptr_t)node->info_ent->data; 129 struct drm_crtc *crtc; 130 struct vc4_crtc *vc4_crtc; 131 int i; 132 133 i = 0; 134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 135 if (i == crtc_index) 136 break; 137 i++; 138 } 139 if (!crtc) 140 return 0; 141 vc4_crtc = to_vc4_crtc(crtc); 142 143 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 144 seq_printf(m, "%s (0x%04x): 0x%08x\n", 145 crtc_regs[i].name, crtc_regs[i].reg, 146 CRTC_READ(crtc_regs[i].reg)); 147 } 148 149 return 0; 150 } 151 #endif 152 153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 154 unsigned int flags, int *vpos, int *hpos, 155 ktime_t *stime, ktime_t *etime, 156 const struct drm_display_mode *mode) 157 { 158 struct vc4_dev *vc4 = to_vc4_dev(dev); 159 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 160 u32 val; 161 int fifo_lines; 162 int vblank_lines; 163 int ret = 0; 164 165 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 166 167 /* Get optional system timestamp before query. */ 168 if (stime) 169 *stime = ktime_get(); 170 171 /* 172 * Read vertical scanline which is currently composed for our 173 * pixelvalve by the HVS, and also the scaler status. 174 */ 175 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 176 177 /* Get optional system timestamp after query. */ 178 if (etime) 179 *etime = ktime_get(); 180 181 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 182 183 /* Vertical position of hvs composed scanline. */ 184 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 185 *hpos = 0; 186 187 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 188 *vpos /= 2; 189 190 /* Use hpos to correct for field offset in interlaced mode. */ 191 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 192 *hpos += mode->crtc_htotal / 2; 193 } 194 195 /* This is the offset we need for translating hvs -> pv scanout pos. */ 196 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 197 198 if (fifo_lines > 0) 199 ret |= DRM_SCANOUTPOS_VALID; 200 201 /* HVS more than fifo_lines into frame for compositing? */ 202 if (*vpos > fifo_lines) { 203 /* 204 * We are in active scanout and can get some meaningful results 205 * from HVS. The actual PV scanout can not trail behind more 206 * than fifo_lines as that is the fifo's capacity. Assume that 207 * in active scanout the HVS and PV work in lockstep wrt. HVS 208 * refilling the fifo and PV consuming from the fifo, ie. 209 * whenever the PV consumes and frees up a scanline in the 210 * fifo, the HVS will immediately refill it, therefore 211 * incrementing vpos. Therefore we choose HVS read position - 212 * fifo size in scanlines as a estimate of the real scanout 213 * position of the PV. 214 */ 215 *vpos -= fifo_lines + 1; 216 217 ret |= DRM_SCANOUTPOS_ACCURATE; 218 return ret; 219 } 220 221 /* 222 * Less: This happens when we are in vblank and the HVS, after getting 223 * the VSTART restart signal from the PV, just started refilling its 224 * fifo with new lines from the top-most lines of the new framebuffers. 225 * The PV does not scan out in vblank, so does not remove lines from 226 * the fifo, so the fifo will be full quickly and the HVS has to pause. 227 * We can't get meaningful readings wrt. scanline position of the PV 228 * and need to make things up in a approximative but consistent way. 229 */ 230 ret |= DRM_SCANOUTPOS_IN_VBLANK; 231 vblank_lines = mode->vtotal - mode->vdisplay; 232 233 if (flags & DRM_CALLED_FROM_VBLIRQ) { 234 /* 235 * Assume the irq handler got called close to first 236 * line of vblank, so PV has about a full vblank 237 * scanlines to go, and as a base timestamp use the 238 * one taken at entry into vblank irq handler, so it 239 * is not affected by random delays due to lock 240 * contention on event_lock or vblank_time lock in 241 * the core. 242 */ 243 *vpos = -vblank_lines; 244 245 if (stime) 246 *stime = vc4_crtc->t_vblank; 247 if (etime) 248 *etime = vc4_crtc->t_vblank; 249 250 /* 251 * If the HVS fifo is not yet full then we know for certain 252 * we are at the very beginning of vblank, as the hvs just 253 * started refilling, and the stime and etime timestamps 254 * truly correspond to start of vblank. 255 */ 256 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL) 257 ret |= DRM_SCANOUTPOS_ACCURATE; 258 } else { 259 /* 260 * No clue where we are inside vblank. Return a vpos of zero, 261 * which will cause calling code to just return the etime 262 * timestamp uncorrected. At least this is no worse than the 263 * standard fallback. 264 */ 265 *vpos = 0; 266 } 267 268 return ret; 269 } 270 271 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id, 272 int *max_error, struct timeval *vblank_time, 273 unsigned flags) 274 { 275 struct vc4_dev *vc4 = to_vc4_dev(dev); 276 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 277 struct drm_crtc *crtc = &vc4_crtc->base; 278 struct drm_crtc_state *state = crtc->state; 279 280 /* Helper routine in DRM core does all the work: */ 281 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error, 282 vblank_time, flags, 283 &state->adjusted_mode); 284 } 285 286 static void vc4_crtc_destroy(struct drm_crtc *crtc) 287 { 288 drm_crtc_cleanup(crtc); 289 } 290 291 static void 292 vc4_crtc_lut_load(struct drm_crtc *crtc) 293 { 294 struct drm_device *dev = crtc->dev; 295 struct vc4_dev *vc4 = to_vc4_dev(dev); 296 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 297 u32 i; 298 299 /* The LUT memory is laid out with each HVS channel in order, 300 * each of which takes 256 writes for R, 256 for G, then 256 301 * for B. 302 */ 303 HVS_WRITE(SCALER_GAMADDR, 304 SCALER_GAMADDR_AUTOINC | 305 (vc4_crtc->channel * 3 * crtc->gamma_size)); 306 307 for (i = 0; i < crtc->gamma_size; i++) 308 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 309 for (i = 0; i < crtc->gamma_size; i++) 310 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 311 for (i = 0; i < crtc->gamma_size; i++) 312 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 313 } 314 315 static int 316 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 317 uint32_t size) 318 { 319 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 320 u32 i; 321 322 for (i = 0; i < size; i++) { 323 vc4_crtc->lut_r[i] = r[i] >> 8; 324 vc4_crtc->lut_g[i] = g[i] >> 8; 325 vc4_crtc->lut_b[i] = b[i] >> 8; 326 } 327 328 vc4_crtc_lut_load(crtc); 329 330 return 0; 331 } 332 333 static u32 vc4_get_fifo_full_level(u32 format) 334 { 335 static const u32 fifo_len_bytes = 64; 336 static const u32 hvs_latency_pix = 6; 337 338 switch (format) { 339 case PV_CONTROL_FORMAT_DSIV_16: 340 case PV_CONTROL_FORMAT_DSIC_16: 341 return fifo_len_bytes - 2 * hvs_latency_pix; 342 case PV_CONTROL_FORMAT_DSIV_18: 343 return fifo_len_bytes - 14; 344 case PV_CONTROL_FORMAT_24: 345 case PV_CONTROL_FORMAT_DSIV_24: 346 default: 347 return fifo_len_bytes - 3 * hvs_latency_pix; 348 } 349 } 350 351 /* 352 * Returns the clock select bit for the connector attached to the 353 * CRTC. 354 */ 355 static int vc4_get_clock_select(struct drm_crtc *crtc) 356 { 357 struct drm_connector *connector; 358 359 drm_for_each_connector(connector, crtc->dev) { 360 if (connector->state->crtc == crtc) { 361 struct drm_encoder *encoder = connector->encoder; 362 struct vc4_encoder *vc4_encoder = 363 to_vc4_encoder(encoder); 364 365 return vc4_encoder->clock_select; 366 } 367 } 368 369 return -1; 370 } 371 372 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 373 { 374 struct drm_device *dev = crtc->dev; 375 struct vc4_dev *vc4 = to_vc4_dev(dev); 376 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 377 struct drm_crtc_state *state = crtc->state; 378 struct drm_display_mode *mode = &state->adjusted_mode; 379 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 380 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 381 u32 format = PV_CONTROL_FORMAT_24; 382 bool debug_dump_regs = false; 383 int clock_select = vc4_get_clock_select(crtc); 384 385 if (debug_dump_regs) { 386 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 387 vc4_crtc_dump_regs(vc4_crtc); 388 } 389 390 /* Reset the PV fifo. */ 391 CRTC_WRITE(PV_CONTROL, 0); 392 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 393 CRTC_WRITE(PV_CONTROL, 0); 394 395 CRTC_WRITE(PV_HORZA, 396 VC4_SET_FIELD((mode->htotal - 397 mode->hsync_end) * pixel_rep, 398 PV_HORZA_HBP) | 399 VC4_SET_FIELD((mode->hsync_end - 400 mode->hsync_start) * pixel_rep, 401 PV_HORZA_HSYNC)); 402 CRTC_WRITE(PV_HORZB, 403 VC4_SET_FIELD((mode->hsync_start - 404 mode->hdisplay) * pixel_rep, 405 PV_HORZB_HFP) | 406 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 407 408 CRTC_WRITE(PV_VERTA, 409 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 410 PV_VERTA_VBP) | 411 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 412 PV_VERTA_VSYNC)); 413 CRTC_WRITE(PV_VERTB, 414 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 415 PV_VERTB_VFP) | 416 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 417 418 if (interlace) { 419 CRTC_WRITE(PV_VERTA_EVEN, 420 VC4_SET_FIELD(mode->crtc_vtotal - 421 mode->crtc_vsync_end - 1, 422 PV_VERTA_VBP) | 423 VC4_SET_FIELD(mode->crtc_vsync_end - 424 mode->crtc_vsync_start, 425 PV_VERTA_VSYNC)); 426 CRTC_WRITE(PV_VERTB_EVEN, 427 VC4_SET_FIELD(mode->crtc_vsync_start - 428 mode->crtc_vdisplay, 429 PV_VERTB_VFP) | 430 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 431 432 /* We set up first field even mode for HDMI. VEC's 433 * NTSC mode would want first field odd instead, once 434 * we support it (to do so, set ODD_FIRST and put the 435 * delay in VSYNCD_EVEN instead). 436 */ 437 CRTC_WRITE(PV_V_CONTROL, 438 PV_VCONTROL_CONTINUOUS | 439 PV_VCONTROL_INTERLACE | 440 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 441 PV_VCONTROL_ODD_DELAY)); 442 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 443 } else { 444 CRTC_WRITE(PV_V_CONTROL, PV_VCONTROL_CONTINUOUS); 445 } 446 447 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 448 449 450 CRTC_WRITE(PV_CONTROL, 451 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 452 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 453 PV_CONTROL_FIFO_LEVEL) | 454 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 455 PV_CONTROL_CLR_AT_START | 456 PV_CONTROL_TRIGGER_UNDERFLOW | 457 PV_CONTROL_WAIT_HSTART | 458 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | 459 PV_CONTROL_FIFO_CLR | 460 PV_CONTROL_EN); 461 462 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 463 SCALER_DISPBKGND_AUTOHS | 464 SCALER_DISPBKGND_GAMMA | 465 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 466 467 /* Reload the LUT, since the SRAMs would have been disabled if 468 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 469 */ 470 vc4_crtc_lut_load(crtc); 471 472 if (debug_dump_regs) { 473 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 474 vc4_crtc_dump_regs(vc4_crtc); 475 } 476 } 477 478 static void require_hvs_enabled(struct drm_device *dev) 479 { 480 struct vc4_dev *vc4 = to_vc4_dev(dev); 481 482 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 483 SCALER_DISPCTRL_ENABLE); 484 } 485 486 static void vc4_crtc_disable(struct drm_crtc *crtc) 487 { 488 struct drm_device *dev = crtc->dev; 489 struct vc4_dev *vc4 = to_vc4_dev(dev); 490 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 491 u32 chan = vc4_crtc->channel; 492 int ret; 493 require_hvs_enabled(dev); 494 495 /* Disable vblank irq handling before crtc is disabled. */ 496 drm_crtc_vblank_off(crtc); 497 498 CRTC_WRITE(PV_V_CONTROL, 499 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 500 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 501 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 502 503 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 504 SCALER_DISPCTRLX_ENABLE) { 505 HVS_WRITE(SCALER_DISPCTRLX(chan), 506 SCALER_DISPCTRLX_RESET); 507 508 /* While the docs say that reset is self-clearing, it 509 * seems it doesn't actually. 510 */ 511 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 512 } 513 514 /* Once we leave, the scaler should be disabled and its fifo empty. */ 515 516 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 517 518 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 519 SCALER_DISPSTATX_MODE) != 520 SCALER_DISPSTATX_MODE_DISABLED); 521 522 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 523 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 524 SCALER_DISPSTATX_EMPTY); 525 } 526 527 static void vc4_crtc_enable(struct drm_crtc *crtc) 528 { 529 struct drm_device *dev = crtc->dev; 530 struct vc4_dev *vc4 = to_vc4_dev(dev); 531 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 532 struct drm_crtc_state *state = crtc->state; 533 struct drm_display_mode *mode = &state->adjusted_mode; 534 535 require_hvs_enabled(dev); 536 537 /* Turn on the scaler, which will wait for vstart to start 538 * compositing. 539 */ 540 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 541 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 542 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 543 SCALER_DISPCTRLX_ENABLE); 544 545 /* Turn on the pixel valve, which will emit the vstart signal. */ 546 CRTC_WRITE(PV_V_CONTROL, 547 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 548 549 /* Enable vblank irq handling after crtc is started. */ 550 drm_crtc_vblank_on(crtc); 551 } 552 553 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc, 554 const struct drm_display_mode *mode, 555 struct drm_display_mode *adjusted_mode) 556 { 557 /* Do not allow doublescan modes from user space */ 558 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) { 559 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 560 crtc->base.id); 561 return false; 562 } 563 564 return true; 565 } 566 567 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 568 struct drm_crtc_state *state) 569 { 570 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 571 struct drm_device *dev = crtc->dev; 572 struct vc4_dev *vc4 = to_vc4_dev(dev); 573 struct drm_plane *plane; 574 unsigned long flags; 575 const struct drm_plane_state *plane_state; 576 u32 dlist_count = 0; 577 int ret; 578 579 /* The pixelvalve can only feed one encoder (and encoders are 580 * 1:1 with connectors.) 581 */ 582 if (hweight32(state->connector_mask) > 1) 583 return -EINVAL; 584 585 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 586 dlist_count += vc4_plane_dlist_size(plane_state); 587 588 dlist_count++; /* Account for SCALER_CTL0_END. */ 589 590 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 591 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 592 dlist_count, 1, 0); 593 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 594 if (ret) 595 return ret; 596 597 return 0; 598 } 599 600 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 601 struct drm_crtc_state *old_state) 602 { 603 struct drm_device *dev = crtc->dev; 604 struct vc4_dev *vc4 = to_vc4_dev(dev); 605 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 606 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 607 struct drm_plane *plane; 608 bool debug_dump_regs = false; 609 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 610 u32 __iomem *dlist_next = dlist_start; 611 612 if (debug_dump_regs) { 613 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 614 vc4_hvs_dump_state(dev); 615 } 616 617 /* Copy all the active planes' dlist contents to the hardware dlist. */ 618 drm_atomic_crtc_for_each_plane(plane, crtc) { 619 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 620 } 621 622 writel(SCALER_CTL0_END, dlist_next); 623 dlist_next++; 624 625 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 626 627 if (crtc->state->event) { 628 unsigned long flags; 629 630 crtc->state->event->pipe = drm_crtc_index(crtc); 631 632 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 633 634 spin_lock_irqsave(&dev->event_lock, flags); 635 vc4_crtc->event = crtc->state->event; 636 crtc->state->event = NULL; 637 638 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 639 vc4_state->mm.start); 640 641 spin_unlock_irqrestore(&dev->event_lock, flags); 642 } else { 643 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 644 vc4_state->mm.start); 645 } 646 647 if (debug_dump_regs) { 648 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 649 vc4_hvs_dump_state(dev); 650 } 651 } 652 653 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) 654 { 655 struct vc4_dev *vc4 = to_vc4_dev(dev); 656 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 657 658 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 659 660 return 0; 661 } 662 663 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) 664 { 665 struct vc4_dev *vc4 = to_vc4_dev(dev); 666 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 667 668 CRTC_WRITE(PV_INTEN, 0); 669 } 670 671 /* Must be called with the event lock held */ 672 bool vc4_event_pending(struct drm_crtc *crtc) 673 { 674 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 675 676 return !!vc4_crtc->event; 677 } 678 679 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 680 { 681 struct drm_crtc *crtc = &vc4_crtc->base; 682 struct drm_device *dev = crtc->dev; 683 struct vc4_dev *vc4 = to_vc4_dev(dev); 684 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 685 u32 chan = vc4_crtc->channel; 686 unsigned long flags; 687 688 spin_lock_irqsave(&dev->event_lock, flags); 689 if (vc4_crtc->event && 690 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { 691 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 692 vc4_crtc->event = NULL; 693 drm_crtc_vblank_put(crtc); 694 } 695 spin_unlock_irqrestore(&dev->event_lock, flags); 696 } 697 698 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 699 { 700 struct vc4_crtc *vc4_crtc = data; 701 u32 stat = CRTC_READ(PV_INTSTAT); 702 irqreturn_t ret = IRQ_NONE; 703 704 if (stat & PV_INT_VFP_START) { 705 vc4_crtc->t_vblank = ktime_get(); 706 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 707 drm_crtc_handle_vblank(&vc4_crtc->base); 708 vc4_crtc_handle_page_flip(vc4_crtc); 709 ret = IRQ_HANDLED; 710 } 711 712 return ret; 713 } 714 715 struct vc4_async_flip_state { 716 struct drm_crtc *crtc; 717 struct drm_framebuffer *fb; 718 struct drm_pending_vblank_event *event; 719 720 struct vc4_seqno_cb cb; 721 }; 722 723 /* Called when the V3D execution for the BO being flipped to is done, so that 724 * we can actually update the plane's address to point to it. 725 */ 726 static void 727 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 728 { 729 struct vc4_async_flip_state *flip_state = 730 container_of(cb, struct vc4_async_flip_state, cb); 731 struct drm_crtc *crtc = flip_state->crtc; 732 struct drm_device *dev = crtc->dev; 733 struct vc4_dev *vc4 = to_vc4_dev(dev); 734 struct drm_plane *plane = crtc->primary; 735 736 vc4_plane_async_set_fb(plane, flip_state->fb); 737 if (flip_state->event) { 738 unsigned long flags; 739 740 spin_lock_irqsave(&dev->event_lock, flags); 741 drm_crtc_send_vblank_event(crtc, flip_state->event); 742 spin_unlock_irqrestore(&dev->event_lock, flags); 743 } 744 745 drm_crtc_vblank_put(crtc); 746 drm_framebuffer_unreference(flip_state->fb); 747 kfree(flip_state); 748 749 up(&vc4->async_modeset); 750 } 751 752 /* Implements async (non-vblank-synced) page flips. 753 * 754 * The page flip ioctl needs to return immediately, so we grab the 755 * modeset semaphore on the pipe, and queue the address update for 756 * when V3D is done with the BO being flipped to. 757 */ 758 static int vc4_async_page_flip(struct drm_crtc *crtc, 759 struct drm_framebuffer *fb, 760 struct drm_pending_vblank_event *event, 761 uint32_t flags) 762 { 763 struct drm_device *dev = crtc->dev; 764 struct vc4_dev *vc4 = to_vc4_dev(dev); 765 struct drm_plane *plane = crtc->primary; 766 int ret = 0; 767 struct vc4_async_flip_state *flip_state; 768 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 769 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 770 771 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 772 if (!flip_state) 773 return -ENOMEM; 774 775 drm_framebuffer_reference(fb); 776 flip_state->fb = fb; 777 flip_state->crtc = crtc; 778 flip_state->event = event; 779 780 /* Make sure all other async modesetes have landed. */ 781 ret = down_interruptible(&vc4->async_modeset); 782 if (ret) { 783 drm_framebuffer_unreference(fb); 784 kfree(flip_state); 785 return ret; 786 } 787 788 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 789 790 /* Immediately update the plane's legacy fb pointer, so that later 791 * modeset prep sees the state that will be present when the semaphore 792 * is released. 793 */ 794 drm_atomic_set_fb_for_plane(plane->state, fb); 795 plane->fb = fb; 796 797 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 798 vc4_async_page_flip_complete); 799 800 /* Driver takes ownership of state on successful async commit. */ 801 return 0; 802 } 803 804 static int vc4_page_flip(struct drm_crtc *crtc, 805 struct drm_framebuffer *fb, 806 struct drm_pending_vblank_event *event, 807 uint32_t flags) 808 { 809 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 810 return vc4_async_page_flip(crtc, fb, event, flags); 811 else 812 return drm_atomic_helper_page_flip(crtc, fb, event, flags); 813 } 814 815 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 816 { 817 struct vc4_crtc_state *vc4_state; 818 819 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 820 if (!vc4_state) 821 return NULL; 822 823 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 824 return &vc4_state->base; 825 } 826 827 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 828 struct drm_crtc_state *state) 829 { 830 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 831 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 832 833 if (vc4_state->mm.allocated) { 834 unsigned long flags; 835 836 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 837 drm_mm_remove_node(&vc4_state->mm); 838 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 839 840 } 841 842 __drm_atomic_helper_crtc_destroy_state(state); 843 } 844 845 static const struct drm_crtc_funcs vc4_crtc_funcs = { 846 .set_config = drm_atomic_helper_set_config, 847 .destroy = vc4_crtc_destroy, 848 .page_flip = vc4_page_flip, 849 .set_property = NULL, 850 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 851 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 852 .reset = drm_atomic_helper_crtc_reset, 853 .atomic_duplicate_state = vc4_crtc_duplicate_state, 854 .atomic_destroy_state = vc4_crtc_destroy_state, 855 .gamma_set = vc4_crtc_gamma_set, 856 }; 857 858 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 859 .mode_set_nofb = vc4_crtc_mode_set_nofb, 860 .disable = vc4_crtc_disable, 861 .enable = vc4_crtc_enable, 862 .mode_fixup = vc4_crtc_mode_fixup, 863 .atomic_check = vc4_crtc_atomic_check, 864 .atomic_flush = vc4_crtc_atomic_flush, 865 }; 866 867 static const struct vc4_crtc_data pv0_data = { 868 .hvs_channel = 0, 869 .encoder_types = { 870 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 871 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 872 }, 873 }; 874 875 static const struct vc4_crtc_data pv1_data = { 876 .hvs_channel = 2, 877 .encoder_types = { 878 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 879 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 880 }, 881 }; 882 883 static const struct vc4_crtc_data pv2_data = { 884 .hvs_channel = 1, 885 .encoder_types = { 886 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 887 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 888 }, 889 }; 890 891 static const struct of_device_id vc4_crtc_dt_match[] = { 892 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 893 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 894 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 895 {} 896 }; 897 898 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 899 struct drm_crtc *crtc) 900 { 901 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 902 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 903 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 904 struct drm_encoder *encoder; 905 906 drm_for_each_encoder(encoder, drm) { 907 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 908 int i; 909 910 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 911 if (vc4_encoder->type == encoder_types[i]) { 912 vc4_encoder->clock_select = i; 913 encoder->possible_crtcs |= drm_crtc_mask(crtc); 914 break; 915 } 916 } 917 } 918 } 919 920 static void 921 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 922 { 923 struct drm_device *drm = vc4_crtc->base.dev; 924 struct vc4_dev *vc4 = to_vc4_dev(drm); 925 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 926 /* Top/base are supposed to be 4-pixel aligned, but the 927 * Raspberry Pi firmware fills the low bits (which are 928 * presumably ignored). 929 */ 930 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 931 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 932 933 vc4_crtc->cob_size = top - base + 4; 934 } 935 936 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 937 { 938 struct platform_device *pdev = to_platform_device(dev); 939 struct drm_device *drm = dev_get_drvdata(master); 940 struct vc4_dev *vc4 = to_vc4_dev(drm); 941 struct vc4_crtc *vc4_crtc; 942 struct drm_crtc *crtc; 943 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 944 const struct of_device_id *match; 945 int ret, i; 946 947 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 948 if (!vc4_crtc) 949 return -ENOMEM; 950 crtc = &vc4_crtc->base; 951 952 match = of_match_device(vc4_crtc_dt_match, dev); 953 if (!match) 954 return -ENODEV; 955 vc4_crtc->data = match->data; 956 957 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 958 if (IS_ERR(vc4_crtc->regs)) 959 return PTR_ERR(vc4_crtc->regs); 960 961 /* For now, we create just the primary and the legacy cursor 962 * planes. We should be able to stack more planes on easily, 963 * but to do that we would need to compute the bandwidth 964 * requirement of the plane configuration, and reject ones 965 * that will take too much. 966 */ 967 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 968 if (IS_ERR(primary_plane)) { 969 dev_err(dev, "failed to construct primary plane\n"); 970 ret = PTR_ERR(primary_plane); 971 goto err; 972 } 973 974 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 975 &vc4_crtc_funcs, NULL); 976 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 977 primary_plane->crtc = crtc; 978 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; 979 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 980 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 981 982 /* Set up some arbitrary number of planes. We're not limited 983 * by a set number of physical registers, just the space in 984 * the HVS (16k) and how small an plane can be (28 bytes). 985 * However, each plane we set up takes up some memory, and 986 * increases the cost of looping over planes, which atomic 987 * modesetting does quite a bit. As a result, we pick a 988 * modest number of planes to expose, that should hopefully 989 * still cover any sane usecase. 990 */ 991 for (i = 0; i < 8; i++) { 992 struct drm_plane *plane = 993 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 994 995 if (IS_ERR(plane)) 996 continue; 997 998 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 999 } 1000 1001 /* Set up the legacy cursor after overlay initialization, 1002 * since we overlay planes on the CRTC in the order they were 1003 * initialized. 1004 */ 1005 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1006 if (!IS_ERR(cursor_plane)) { 1007 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1008 cursor_plane->crtc = crtc; 1009 crtc->cursor = cursor_plane; 1010 } 1011 1012 vc4_crtc_get_cob_allocation(vc4_crtc); 1013 1014 CRTC_WRITE(PV_INTEN, 0); 1015 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1016 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1017 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1018 if (ret) 1019 goto err_destroy_planes; 1020 1021 vc4_set_crtc_possible_masks(drm, crtc); 1022 1023 for (i = 0; i < crtc->gamma_size; i++) { 1024 vc4_crtc->lut_r[i] = i; 1025 vc4_crtc->lut_g[i] = i; 1026 vc4_crtc->lut_b[i] = i; 1027 } 1028 1029 platform_set_drvdata(pdev, vc4_crtc); 1030 1031 return 0; 1032 1033 err_destroy_planes: 1034 list_for_each_entry_safe(destroy_plane, temp, 1035 &drm->mode_config.plane_list, head) { 1036 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 1037 destroy_plane->funcs->destroy(destroy_plane); 1038 } 1039 err: 1040 return ret; 1041 } 1042 1043 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1044 void *data) 1045 { 1046 struct platform_device *pdev = to_platform_device(dev); 1047 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1048 1049 vc4_crtc_destroy(&vc4_crtc->base); 1050 1051 CRTC_WRITE(PV_INTEN, 0); 1052 1053 platform_set_drvdata(pdev, NULL); 1054 } 1055 1056 static const struct component_ops vc4_crtc_ops = { 1057 .bind = vc4_crtc_bind, 1058 .unbind = vc4_crtc_unbind, 1059 }; 1060 1061 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1062 { 1063 return component_add(&pdev->dev, &vc4_crtc_ops); 1064 } 1065 1066 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1067 { 1068 component_del(&pdev->dev, &vc4_crtc_ops); 1069 return 0; 1070 } 1071 1072 struct platform_driver vc4_crtc_driver = { 1073 .probe = vc4_crtc_dev_probe, 1074 .remove = vc4_crtc_dev_remove, 1075 .driver = { 1076 .name = "vc4_crtc", 1077 .of_match_table = vc4_crtc_dt_match, 1078 }, 1079 }; 1080