1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * output's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, this file also manages 19 * setup of the VC4 HVS's display elements on the CRTC. 20 * 21 * The 2835 has 3 different pixel valves. pv0 in the audio power 22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 23 * image domain can feed either HDMI or the SDTV controller. The 24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 25 * SDTV, etc.) according to which output type is chosen in the mux. 26 * 27 * For power management, the pixel valve's registers are all clocked 28 * by the AXI clock, while the timings and FIFOs make use of the 29 * output-specific clock. Since the encoders also directly consume 30 * the CPRMAN clocks, and know what timings they need, they are the 31 * ones that set the clock. 32 */ 33 34 #include "drm_atomic.h" 35 #include "drm_atomic_helper.h" 36 #include "drm_crtc_helper.h" 37 #include "linux/clk.h" 38 #include "drm_fb_cma_helper.h" 39 #include "linux/component.h" 40 #include "linux/of_device.h" 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 struct vc4_crtc { 45 struct drm_crtc base; 46 const struct vc4_crtc_data *data; 47 void __iomem *regs; 48 49 /* Which HVS channel we're using for our CRTC. */ 50 int channel; 51 52 u8 lut_r[256]; 53 u8 lut_g[256]; 54 u8 lut_b[256]; 55 56 struct drm_pending_vblank_event *event; 57 }; 58 59 struct vc4_crtc_state { 60 struct drm_crtc_state base; 61 /* Dlist area for this CRTC configuration. */ 62 struct drm_mm_node mm; 63 }; 64 65 static inline struct vc4_crtc * 66 to_vc4_crtc(struct drm_crtc *crtc) 67 { 68 return (struct vc4_crtc *)crtc; 69 } 70 71 static inline struct vc4_crtc_state * 72 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 73 { 74 return (struct vc4_crtc_state *)crtc_state; 75 } 76 77 struct vc4_crtc_data { 78 /* Which channel of the HVS this pixelvalve sources from. */ 79 int hvs_channel; 80 81 enum vc4_encoder_type encoder0_type; 82 enum vc4_encoder_type encoder1_type; 83 }; 84 85 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 86 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 87 88 #define CRTC_REG(reg) { reg, #reg } 89 static const struct { 90 u32 reg; 91 const char *name; 92 } crtc_regs[] = { 93 CRTC_REG(PV_CONTROL), 94 CRTC_REG(PV_V_CONTROL), 95 CRTC_REG(PV_VSYNCD_EVEN), 96 CRTC_REG(PV_HORZA), 97 CRTC_REG(PV_HORZB), 98 CRTC_REG(PV_VERTA), 99 CRTC_REG(PV_VERTB), 100 CRTC_REG(PV_VERTA_EVEN), 101 CRTC_REG(PV_VERTB_EVEN), 102 CRTC_REG(PV_INTEN), 103 CRTC_REG(PV_INTSTAT), 104 CRTC_REG(PV_STAT), 105 CRTC_REG(PV_HACT_ACT), 106 }; 107 108 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 109 { 110 int i; 111 112 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 113 DRM_INFO("0x%04x (%s): 0x%08x\n", 114 crtc_regs[i].reg, crtc_regs[i].name, 115 CRTC_READ(crtc_regs[i].reg)); 116 } 117 } 118 119 #ifdef CONFIG_DEBUG_FS 120 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 121 { 122 struct drm_info_node *node = (struct drm_info_node *)m->private; 123 struct drm_device *dev = node->minor->dev; 124 int crtc_index = (uintptr_t)node->info_ent->data; 125 struct drm_crtc *crtc; 126 struct vc4_crtc *vc4_crtc; 127 int i; 128 129 i = 0; 130 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 131 if (i == crtc_index) 132 break; 133 i++; 134 } 135 if (!crtc) 136 return 0; 137 vc4_crtc = to_vc4_crtc(crtc); 138 139 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 140 seq_printf(m, "%s (0x%04x): 0x%08x\n", 141 crtc_regs[i].name, crtc_regs[i].reg, 142 CRTC_READ(crtc_regs[i].reg)); 143 } 144 145 return 0; 146 } 147 #endif 148 149 static void vc4_crtc_destroy(struct drm_crtc *crtc) 150 { 151 drm_crtc_cleanup(crtc); 152 } 153 154 static void 155 vc4_crtc_lut_load(struct drm_crtc *crtc) 156 { 157 struct drm_device *dev = crtc->dev; 158 struct vc4_dev *vc4 = to_vc4_dev(dev); 159 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 160 u32 i; 161 162 /* The LUT memory is laid out with each HVS channel in order, 163 * each of which takes 256 writes for R, 256 for G, then 256 164 * for B. 165 */ 166 HVS_WRITE(SCALER_GAMADDR, 167 SCALER_GAMADDR_AUTOINC | 168 (vc4_crtc->channel * 3 * crtc->gamma_size)); 169 170 for (i = 0; i < crtc->gamma_size; i++) 171 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 172 for (i = 0; i < crtc->gamma_size; i++) 173 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 174 for (i = 0; i < crtc->gamma_size; i++) 175 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 176 } 177 178 static void 179 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 180 uint32_t start, uint32_t size) 181 { 182 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 183 u32 i; 184 185 for (i = start; i < start + size; i++) { 186 vc4_crtc->lut_r[i] = r[i] >> 8; 187 vc4_crtc->lut_g[i] = g[i] >> 8; 188 vc4_crtc->lut_b[i] = b[i] >> 8; 189 } 190 191 vc4_crtc_lut_load(crtc); 192 } 193 194 static u32 vc4_get_fifo_full_level(u32 format) 195 { 196 static const u32 fifo_len_bytes = 64; 197 static const u32 hvs_latency_pix = 6; 198 199 switch (format) { 200 case PV_CONTROL_FORMAT_DSIV_16: 201 case PV_CONTROL_FORMAT_DSIC_16: 202 return fifo_len_bytes - 2 * hvs_latency_pix; 203 case PV_CONTROL_FORMAT_DSIV_18: 204 return fifo_len_bytes - 14; 205 case PV_CONTROL_FORMAT_24: 206 case PV_CONTROL_FORMAT_DSIV_24: 207 default: 208 return fifo_len_bytes - 3 * hvs_latency_pix; 209 } 210 } 211 212 /* 213 * Returns the clock select bit for the connector attached to the 214 * CRTC. 215 */ 216 static int vc4_get_clock_select(struct drm_crtc *crtc) 217 { 218 struct drm_connector *connector; 219 220 drm_for_each_connector(connector, crtc->dev) { 221 if (connector->state->crtc == crtc) { 222 struct drm_encoder *encoder = connector->encoder; 223 struct vc4_encoder *vc4_encoder = 224 to_vc4_encoder(encoder); 225 226 return vc4_encoder->clock_select; 227 } 228 } 229 230 return -1; 231 } 232 233 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 234 { 235 struct drm_device *dev = crtc->dev; 236 struct vc4_dev *vc4 = to_vc4_dev(dev); 237 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 238 struct drm_crtc_state *state = crtc->state; 239 struct drm_display_mode *mode = &state->adjusted_mode; 240 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 241 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0)); 242 u32 format = PV_CONTROL_FORMAT_24; 243 bool debug_dump_regs = false; 244 int clock_select = vc4_get_clock_select(crtc); 245 246 if (debug_dump_regs) { 247 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 248 vc4_crtc_dump_regs(vc4_crtc); 249 } 250 251 /* Reset the PV fifo. */ 252 CRTC_WRITE(PV_CONTROL, 0); 253 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 254 CRTC_WRITE(PV_CONTROL, 0); 255 256 CRTC_WRITE(PV_HORZA, 257 VC4_SET_FIELD(mode->htotal - mode->hsync_end, 258 PV_HORZA_HBP) | 259 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start, 260 PV_HORZA_HSYNC)); 261 CRTC_WRITE(PV_HORZB, 262 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay, 263 PV_HORZB_HFP) | 264 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE)); 265 266 CRTC_WRITE(PV_VERTA, 267 VC4_SET_FIELD(mode->vtotal - mode->vsync_end, 268 PV_VERTA_VBP) | 269 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, 270 PV_VERTA_VSYNC)); 271 CRTC_WRITE(PV_VERTB, 272 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, 273 PV_VERTB_VFP) | 274 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); 275 276 if (interlace) { 277 CRTC_WRITE(PV_VERTA_EVEN, 278 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1, 279 PV_VERTA_VBP) | 280 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, 281 PV_VERTA_VSYNC)); 282 CRTC_WRITE(PV_VERTB_EVEN, 283 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, 284 PV_VERTB_VFP) | 285 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); 286 } 287 288 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay); 289 290 CRTC_WRITE(PV_V_CONTROL, 291 PV_VCONTROL_CONTINUOUS | 292 (interlace ? PV_VCONTROL_INTERLACE : 0)); 293 294 CRTC_WRITE(PV_CONTROL, 295 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 296 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 297 PV_CONTROL_FIFO_LEVEL) | 298 PV_CONTROL_CLR_AT_START | 299 PV_CONTROL_TRIGGER_UNDERFLOW | 300 PV_CONTROL_WAIT_HSTART | 301 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | 302 PV_CONTROL_FIFO_CLR | 303 PV_CONTROL_EN); 304 305 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 306 SCALER_DISPBKGND_AUTOHS | 307 SCALER_DISPBKGND_GAMMA | 308 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 309 310 /* Reload the LUT, since the SRAMs would have been disabled if 311 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 312 */ 313 vc4_crtc_lut_load(crtc); 314 315 if (debug_dump_regs) { 316 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 317 vc4_crtc_dump_regs(vc4_crtc); 318 } 319 } 320 321 static void require_hvs_enabled(struct drm_device *dev) 322 { 323 struct vc4_dev *vc4 = to_vc4_dev(dev); 324 325 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 326 SCALER_DISPCTRL_ENABLE); 327 } 328 329 static void vc4_crtc_disable(struct drm_crtc *crtc) 330 { 331 struct drm_device *dev = crtc->dev; 332 struct vc4_dev *vc4 = to_vc4_dev(dev); 333 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 334 u32 chan = vc4_crtc->channel; 335 int ret; 336 require_hvs_enabled(dev); 337 338 CRTC_WRITE(PV_V_CONTROL, 339 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 340 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 341 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 342 343 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 344 SCALER_DISPCTRLX_ENABLE) { 345 HVS_WRITE(SCALER_DISPCTRLX(chan), 346 SCALER_DISPCTRLX_RESET); 347 348 /* While the docs say that reset is self-clearing, it 349 * seems it doesn't actually. 350 */ 351 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 352 } 353 354 /* Once we leave, the scaler should be disabled and its fifo empty. */ 355 356 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 357 358 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 359 SCALER_DISPSTATX_MODE) != 360 SCALER_DISPSTATX_MODE_DISABLED); 361 362 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 363 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 364 SCALER_DISPSTATX_EMPTY); 365 } 366 367 static void vc4_crtc_enable(struct drm_crtc *crtc) 368 { 369 struct drm_device *dev = crtc->dev; 370 struct vc4_dev *vc4 = to_vc4_dev(dev); 371 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 372 struct drm_crtc_state *state = crtc->state; 373 struct drm_display_mode *mode = &state->adjusted_mode; 374 375 require_hvs_enabled(dev); 376 377 /* Turn on the scaler, which will wait for vstart to start 378 * compositing. 379 */ 380 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 381 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 382 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 383 SCALER_DISPCTRLX_ENABLE); 384 385 /* Turn on the pixel valve, which will emit the vstart signal. */ 386 CRTC_WRITE(PV_V_CONTROL, 387 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 388 } 389 390 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 391 struct drm_crtc_state *state) 392 { 393 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 394 struct drm_device *dev = crtc->dev; 395 struct vc4_dev *vc4 = to_vc4_dev(dev); 396 struct drm_plane *plane; 397 unsigned long flags; 398 u32 dlist_count = 0; 399 int ret; 400 401 /* The pixelvalve can only feed one encoder (and encoders are 402 * 1:1 with connectors.) 403 */ 404 if (hweight32(state->connector_mask) > 1) 405 return -EINVAL; 406 407 drm_atomic_crtc_state_for_each_plane(plane, state) { 408 struct drm_plane_state *plane_state = 409 state->state->plane_states[drm_plane_index(plane)]; 410 411 /* plane might not have changed, in which case take 412 * current state: 413 */ 414 if (!plane_state) 415 plane_state = plane->state; 416 417 dlist_count += vc4_plane_dlist_size(plane_state); 418 } 419 420 dlist_count++; /* Account for SCALER_CTL0_END. */ 421 422 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 423 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 424 dlist_count, 1, 0); 425 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 426 if (ret) 427 return ret; 428 429 return 0; 430 } 431 432 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 433 struct drm_crtc_state *old_state) 434 { 435 struct drm_device *dev = crtc->dev; 436 struct vc4_dev *vc4 = to_vc4_dev(dev); 437 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 438 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 439 struct drm_plane *plane; 440 bool debug_dump_regs = false; 441 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 442 u32 __iomem *dlist_next = dlist_start; 443 444 if (debug_dump_regs) { 445 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 446 vc4_hvs_dump_state(dev); 447 } 448 449 /* Copy all the active planes' dlist contents to the hardware dlist. */ 450 drm_atomic_crtc_for_each_plane(plane, crtc) { 451 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 452 } 453 454 writel(SCALER_CTL0_END, dlist_next); 455 dlist_next++; 456 457 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 458 459 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 460 vc4_state->mm.start); 461 462 if (debug_dump_regs) { 463 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 464 vc4_hvs_dump_state(dev); 465 } 466 467 if (crtc->state->event) { 468 unsigned long flags; 469 470 crtc->state->event->pipe = drm_crtc_index(crtc); 471 472 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 473 474 spin_lock_irqsave(&dev->event_lock, flags); 475 vc4_crtc->event = crtc->state->event; 476 spin_unlock_irqrestore(&dev->event_lock, flags); 477 crtc->state->event = NULL; 478 } 479 } 480 481 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) 482 { 483 struct vc4_dev *vc4 = to_vc4_dev(dev); 484 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 485 486 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 487 488 return 0; 489 } 490 491 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) 492 { 493 struct vc4_dev *vc4 = to_vc4_dev(dev); 494 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 495 496 CRTC_WRITE(PV_INTEN, 0); 497 } 498 499 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 500 { 501 struct drm_crtc *crtc = &vc4_crtc->base; 502 struct drm_device *dev = crtc->dev; 503 unsigned long flags; 504 505 spin_lock_irqsave(&dev->event_lock, flags); 506 if (vc4_crtc->event) { 507 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 508 vc4_crtc->event = NULL; 509 } 510 spin_unlock_irqrestore(&dev->event_lock, flags); 511 } 512 513 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 514 { 515 struct vc4_crtc *vc4_crtc = data; 516 u32 stat = CRTC_READ(PV_INTSTAT); 517 irqreturn_t ret = IRQ_NONE; 518 519 if (stat & PV_INT_VFP_START) { 520 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 521 drm_crtc_handle_vblank(&vc4_crtc->base); 522 vc4_crtc_handle_page_flip(vc4_crtc); 523 ret = IRQ_HANDLED; 524 } 525 526 return ret; 527 } 528 529 struct vc4_async_flip_state { 530 struct drm_crtc *crtc; 531 struct drm_framebuffer *fb; 532 struct drm_pending_vblank_event *event; 533 534 struct vc4_seqno_cb cb; 535 }; 536 537 /* Called when the V3D execution for the BO being flipped to is done, so that 538 * we can actually update the plane's address to point to it. 539 */ 540 static void 541 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 542 { 543 struct vc4_async_flip_state *flip_state = 544 container_of(cb, struct vc4_async_flip_state, cb); 545 struct drm_crtc *crtc = flip_state->crtc; 546 struct drm_device *dev = crtc->dev; 547 struct vc4_dev *vc4 = to_vc4_dev(dev); 548 struct drm_plane *plane = crtc->primary; 549 550 vc4_plane_async_set_fb(plane, flip_state->fb); 551 if (flip_state->event) { 552 unsigned long flags; 553 554 spin_lock_irqsave(&dev->event_lock, flags); 555 drm_crtc_send_vblank_event(crtc, flip_state->event); 556 spin_unlock_irqrestore(&dev->event_lock, flags); 557 } 558 559 drm_framebuffer_unreference(flip_state->fb); 560 kfree(flip_state); 561 562 up(&vc4->async_modeset); 563 } 564 565 /* Implements async (non-vblank-synced) page flips. 566 * 567 * The page flip ioctl needs to return immediately, so we grab the 568 * modeset semaphore on the pipe, and queue the address update for 569 * when V3D is done with the BO being flipped to. 570 */ 571 static int vc4_async_page_flip(struct drm_crtc *crtc, 572 struct drm_framebuffer *fb, 573 struct drm_pending_vblank_event *event, 574 uint32_t flags) 575 { 576 struct drm_device *dev = crtc->dev; 577 struct vc4_dev *vc4 = to_vc4_dev(dev); 578 struct drm_plane *plane = crtc->primary; 579 int ret = 0; 580 struct vc4_async_flip_state *flip_state; 581 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 582 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 583 584 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 585 if (!flip_state) 586 return -ENOMEM; 587 588 drm_framebuffer_reference(fb); 589 flip_state->fb = fb; 590 flip_state->crtc = crtc; 591 flip_state->event = event; 592 593 /* Make sure all other async modesetes have landed. */ 594 ret = down_interruptible(&vc4->async_modeset); 595 if (ret) { 596 drm_framebuffer_unreference(fb); 597 kfree(flip_state); 598 return ret; 599 } 600 601 /* Immediately update the plane's legacy fb pointer, so that later 602 * modeset prep sees the state that will be present when the semaphore 603 * is released. 604 */ 605 drm_atomic_set_fb_for_plane(plane->state, fb); 606 plane->fb = fb; 607 608 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 609 vc4_async_page_flip_complete); 610 611 /* Driver takes ownership of state on successful async commit. */ 612 return 0; 613 } 614 615 static int vc4_page_flip(struct drm_crtc *crtc, 616 struct drm_framebuffer *fb, 617 struct drm_pending_vblank_event *event, 618 uint32_t flags) 619 { 620 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 621 return vc4_async_page_flip(crtc, fb, event, flags); 622 else 623 return drm_atomic_helper_page_flip(crtc, fb, event, flags); 624 } 625 626 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 627 { 628 struct vc4_crtc_state *vc4_state; 629 630 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 631 if (!vc4_state) 632 return NULL; 633 634 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 635 return &vc4_state->base; 636 } 637 638 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 639 struct drm_crtc_state *state) 640 { 641 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 642 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 643 644 if (vc4_state->mm.allocated) { 645 unsigned long flags; 646 647 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 648 drm_mm_remove_node(&vc4_state->mm); 649 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 650 651 } 652 653 __drm_atomic_helper_crtc_destroy_state(state); 654 } 655 656 static const struct drm_crtc_funcs vc4_crtc_funcs = { 657 .set_config = drm_atomic_helper_set_config, 658 .destroy = vc4_crtc_destroy, 659 .page_flip = vc4_page_flip, 660 .set_property = NULL, 661 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 662 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 663 .reset = drm_atomic_helper_crtc_reset, 664 .atomic_duplicate_state = vc4_crtc_duplicate_state, 665 .atomic_destroy_state = vc4_crtc_destroy_state, 666 .gamma_set = vc4_crtc_gamma_set, 667 }; 668 669 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 670 .mode_set_nofb = vc4_crtc_mode_set_nofb, 671 .disable = vc4_crtc_disable, 672 .enable = vc4_crtc_enable, 673 .atomic_check = vc4_crtc_atomic_check, 674 .atomic_flush = vc4_crtc_atomic_flush, 675 }; 676 677 static const struct vc4_crtc_data pv0_data = { 678 .hvs_channel = 0, 679 .encoder0_type = VC4_ENCODER_TYPE_DSI0, 680 .encoder1_type = VC4_ENCODER_TYPE_DPI, 681 }; 682 683 static const struct vc4_crtc_data pv1_data = { 684 .hvs_channel = 2, 685 .encoder0_type = VC4_ENCODER_TYPE_DSI1, 686 .encoder1_type = VC4_ENCODER_TYPE_SMI, 687 }; 688 689 static const struct vc4_crtc_data pv2_data = { 690 .hvs_channel = 1, 691 .encoder0_type = VC4_ENCODER_TYPE_VEC, 692 .encoder1_type = VC4_ENCODER_TYPE_HDMI, 693 }; 694 695 static const struct of_device_id vc4_crtc_dt_match[] = { 696 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 697 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 698 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 699 {} 700 }; 701 702 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 703 struct drm_crtc *crtc) 704 { 705 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 706 struct drm_encoder *encoder; 707 708 drm_for_each_encoder(encoder, drm) { 709 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 710 711 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) { 712 vc4_encoder->clock_select = 0; 713 encoder->possible_crtcs |= drm_crtc_mask(crtc); 714 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) { 715 vc4_encoder->clock_select = 1; 716 encoder->possible_crtcs |= drm_crtc_mask(crtc); 717 } 718 } 719 } 720 721 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 722 { 723 struct platform_device *pdev = to_platform_device(dev); 724 struct drm_device *drm = dev_get_drvdata(master); 725 struct vc4_dev *vc4 = to_vc4_dev(drm); 726 struct vc4_crtc *vc4_crtc; 727 struct drm_crtc *crtc; 728 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 729 const struct of_device_id *match; 730 int ret, i; 731 732 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 733 if (!vc4_crtc) 734 return -ENOMEM; 735 crtc = &vc4_crtc->base; 736 737 match = of_match_device(vc4_crtc_dt_match, dev); 738 if (!match) 739 return -ENODEV; 740 vc4_crtc->data = match->data; 741 742 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 743 if (IS_ERR(vc4_crtc->regs)) 744 return PTR_ERR(vc4_crtc->regs); 745 746 /* For now, we create just the primary and the legacy cursor 747 * planes. We should be able to stack more planes on easily, 748 * but to do that we would need to compute the bandwidth 749 * requirement of the plane configuration, and reject ones 750 * that will take too much. 751 */ 752 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 753 if (IS_ERR(primary_plane)) { 754 dev_err(dev, "failed to construct primary plane\n"); 755 ret = PTR_ERR(primary_plane); 756 goto err; 757 } 758 759 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 760 &vc4_crtc_funcs, NULL); 761 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 762 primary_plane->crtc = crtc; 763 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; 764 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 765 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 766 767 /* Set up some arbitrary number of planes. We're not limited 768 * by a set number of physical registers, just the space in 769 * the HVS (16k) and how small an plane can be (28 bytes). 770 * However, each plane we set up takes up some memory, and 771 * increases the cost of looping over planes, which atomic 772 * modesetting does quite a bit. As a result, we pick a 773 * modest number of planes to expose, that should hopefully 774 * still cover any sane usecase. 775 */ 776 for (i = 0; i < 8; i++) { 777 struct drm_plane *plane = 778 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 779 780 if (IS_ERR(plane)) 781 continue; 782 783 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 784 } 785 786 /* Set up the legacy cursor after overlay initialization, 787 * since we overlay planes on the CRTC in the order they were 788 * initialized. 789 */ 790 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 791 if (!IS_ERR(cursor_plane)) { 792 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 793 cursor_plane->crtc = crtc; 794 crtc->cursor = cursor_plane; 795 } 796 797 CRTC_WRITE(PV_INTEN, 0); 798 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 799 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 800 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 801 if (ret) 802 goto err_destroy_planes; 803 804 vc4_set_crtc_possible_masks(drm, crtc); 805 806 for (i = 0; i < crtc->gamma_size; i++) { 807 vc4_crtc->lut_r[i] = i; 808 vc4_crtc->lut_g[i] = i; 809 vc4_crtc->lut_b[i] = i; 810 } 811 812 platform_set_drvdata(pdev, vc4_crtc); 813 814 return 0; 815 816 err_destroy_planes: 817 list_for_each_entry_safe(destroy_plane, temp, 818 &drm->mode_config.plane_list, head) { 819 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 820 destroy_plane->funcs->destroy(destroy_plane); 821 } 822 err: 823 return ret; 824 } 825 826 static void vc4_crtc_unbind(struct device *dev, struct device *master, 827 void *data) 828 { 829 struct platform_device *pdev = to_platform_device(dev); 830 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 831 832 vc4_crtc_destroy(&vc4_crtc->base); 833 834 CRTC_WRITE(PV_INTEN, 0); 835 836 platform_set_drvdata(pdev, NULL); 837 } 838 839 static const struct component_ops vc4_crtc_ops = { 840 .bind = vc4_crtc_bind, 841 .unbind = vc4_crtc_unbind, 842 }; 843 844 static int vc4_crtc_dev_probe(struct platform_device *pdev) 845 { 846 return component_add(&pdev->dev, &vc4_crtc_ops); 847 } 848 849 static int vc4_crtc_dev_remove(struct platform_device *pdev) 850 { 851 component_del(&pdev->dev, &vc4_crtc_ops); 852 return 0; 853 } 854 855 struct platform_driver vc4_crtc_driver = { 856 .probe = vc4_crtc_dev_probe, 857 .remove = vc4_crtc_dev_remove, 858 .driver = { 859 .name = "vc4_crtc", 860 .of_match_table = vc4_crtc_dt_match, 861 }, 862 }; 863