1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * encoder's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, the CRTC is also 19 * responsible for writing the display list for the HVS channel that 20 * the CRTC will use. 21 * 22 * The 2835 has 3 different pixel valves. pv0 in the audio power 23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 24 * image domain can feed either HDMI or the SDTV controller. The 25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 26 * SDTV, etc.) according to which output type is chosen in the mux. 27 * 28 * For power management, the pixel valve's registers are all clocked 29 * by the AXI clock, while the timings and FIFOs make use of the 30 * output-specific clock. Since the encoders also directly consume 31 * the CPRMAN clocks, and know what timings they need, they are the 32 * ones that set the clock. 33 */ 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_crtc_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <linux/clk.h> 40 #include <drm/drm_fb_cma_helper.h> 41 #include <linux/component.h> 42 #include <linux/of_device.h> 43 #include "vc4_drv.h" 44 #include "vc4_regs.h" 45 46 struct vc4_crtc_state { 47 struct drm_crtc_state base; 48 /* Dlist area for this CRTC configuration. */ 49 struct drm_mm_node mm; 50 bool feed_txp; 51 bool txp_armed; 52 }; 53 54 static inline struct vc4_crtc_state * 55 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 56 { 57 return (struct vc4_crtc_state *)crtc_state; 58 } 59 60 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 61 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 62 63 #define CRTC_REG(reg) { reg, #reg } 64 static const struct { 65 u32 reg; 66 const char *name; 67 } crtc_regs[] = { 68 CRTC_REG(PV_CONTROL), 69 CRTC_REG(PV_V_CONTROL), 70 CRTC_REG(PV_VSYNCD_EVEN), 71 CRTC_REG(PV_HORZA), 72 CRTC_REG(PV_HORZB), 73 CRTC_REG(PV_VERTA), 74 CRTC_REG(PV_VERTB), 75 CRTC_REG(PV_VERTA_EVEN), 76 CRTC_REG(PV_VERTB_EVEN), 77 CRTC_REG(PV_INTEN), 78 CRTC_REG(PV_INTSTAT), 79 CRTC_REG(PV_STAT), 80 CRTC_REG(PV_HACT_ACT), 81 }; 82 83 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 84 { 85 int i; 86 87 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 88 DRM_INFO("0x%04x (%s): 0x%08x\n", 89 crtc_regs[i].reg, crtc_regs[i].name, 90 CRTC_READ(crtc_regs[i].reg)); 91 } 92 } 93 94 #ifdef CONFIG_DEBUG_FS 95 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 96 { 97 struct drm_info_node *node = (struct drm_info_node *)m->private; 98 struct drm_device *dev = node->minor->dev; 99 int crtc_index = (uintptr_t)node->info_ent->data; 100 struct drm_crtc *crtc; 101 struct vc4_crtc *vc4_crtc; 102 int i; 103 104 i = 0; 105 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 106 if (i == crtc_index) 107 break; 108 i++; 109 } 110 if (!crtc) 111 return 0; 112 vc4_crtc = to_vc4_crtc(crtc); 113 114 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 115 seq_printf(m, "%s (0x%04x): 0x%08x\n", 116 crtc_regs[i].name, crtc_regs[i].reg, 117 CRTC_READ(crtc_regs[i].reg)); 118 } 119 120 return 0; 121 } 122 #endif 123 124 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 125 bool in_vblank_irq, int *vpos, int *hpos, 126 ktime_t *stime, ktime_t *etime, 127 const struct drm_display_mode *mode) 128 { 129 struct vc4_dev *vc4 = to_vc4_dev(dev); 130 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 131 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 132 u32 val; 133 int fifo_lines; 134 int vblank_lines; 135 bool ret = false; 136 137 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 138 139 /* Get optional system timestamp before query. */ 140 if (stime) 141 *stime = ktime_get(); 142 143 /* 144 * Read vertical scanline which is currently composed for our 145 * pixelvalve by the HVS, and also the scaler status. 146 */ 147 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 148 149 /* Get optional system timestamp after query. */ 150 if (etime) 151 *etime = ktime_get(); 152 153 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 154 155 /* Vertical position of hvs composed scanline. */ 156 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 157 *hpos = 0; 158 159 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 160 *vpos /= 2; 161 162 /* Use hpos to correct for field offset in interlaced mode. */ 163 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 164 *hpos += mode->crtc_htotal / 2; 165 } 166 167 /* This is the offset we need for translating hvs -> pv scanout pos. */ 168 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 169 170 if (fifo_lines > 0) 171 ret = true; 172 173 /* HVS more than fifo_lines into frame for compositing? */ 174 if (*vpos > fifo_lines) { 175 /* 176 * We are in active scanout and can get some meaningful results 177 * from HVS. The actual PV scanout can not trail behind more 178 * than fifo_lines as that is the fifo's capacity. Assume that 179 * in active scanout the HVS and PV work in lockstep wrt. HVS 180 * refilling the fifo and PV consuming from the fifo, ie. 181 * whenever the PV consumes and frees up a scanline in the 182 * fifo, the HVS will immediately refill it, therefore 183 * incrementing vpos. Therefore we choose HVS read position - 184 * fifo size in scanlines as a estimate of the real scanout 185 * position of the PV. 186 */ 187 *vpos -= fifo_lines + 1; 188 189 return ret; 190 } 191 192 /* 193 * Less: This happens when we are in vblank and the HVS, after getting 194 * the VSTART restart signal from the PV, just started refilling its 195 * fifo with new lines from the top-most lines of the new framebuffers. 196 * The PV does not scan out in vblank, so does not remove lines from 197 * the fifo, so the fifo will be full quickly and the HVS has to pause. 198 * We can't get meaningful readings wrt. scanline position of the PV 199 * and need to make things up in a approximative but consistent way. 200 */ 201 vblank_lines = mode->vtotal - mode->vdisplay; 202 203 if (in_vblank_irq) { 204 /* 205 * Assume the irq handler got called close to first 206 * line of vblank, so PV has about a full vblank 207 * scanlines to go, and as a base timestamp use the 208 * one taken at entry into vblank irq handler, so it 209 * is not affected by random delays due to lock 210 * contention on event_lock or vblank_time lock in 211 * the core. 212 */ 213 *vpos = -vblank_lines; 214 215 if (stime) 216 *stime = vc4_crtc->t_vblank; 217 if (etime) 218 *etime = vc4_crtc->t_vblank; 219 220 /* 221 * If the HVS fifo is not yet full then we know for certain 222 * we are at the very beginning of vblank, as the hvs just 223 * started refilling, and the stime and etime timestamps 224 * truly correspond to start of vblank. 225 * 226 * Unfortunately there's no way to report this to upper levels 227 * and make it more useful. 228 */ 229 } else { 230 /* 231 * No clue where we are inside vblank. Return a vpos of zero, 232 * which will cause calling code to just return the etime 233 * timestamp uncorrected. At least this is no worse than the 234 * standard fallback. 235 */ 236 *vpos = 0; 237 } 238 239 return ret; 240 } 241 242 static void vc4_crtc_destroy(struct drm_crtc *crtc) 243 { 244 drm_crtc_cleanup(crtc); 245 } 246 247 static void 248 vc4_crtc_lut_load(struct drm_crtc *crtc) 249 { 250 struct drm_device *dev = crtc->dev; 251 struct vc4_dev *vc4 = to_vc4_dev(dev); 252 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 253 u32 i; 254 255 /* The LUT memory is laid out with each HVS channel in order, 256 * each of which takes 256 writes for R, 256 for G, then 256 257 * for B. 258 */ 259 HVS_WRITE(SCALER_GAMADDR, 260 SCALER_GAMADDR_AUTOINC | 261 (vc4_crtc->channel * 3 * crtc->gamma_size)); 262 263 for (i = 0; i < crtc->gamma_size; i++) 264 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 265 for (i = 0; i < crtc->gamma_size; i++) 266 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 267 for (i = 0; i < crtc->gamma_size; i++) 268 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 269 } 270 271 static void 272 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc) 273 { 274 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 275 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 276 u32 length = drm_color_lut_size(crtc->state->gamma_lut); 277 u32 i; 278 279 for (i = 0; i < length; i++) { 280 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); 281 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); 282 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); 283 } 284 285 vc4_crtc_lut_load(crtc); 286 } 287 288 static u32 vc4_get_fifo_full_level(u32 format) 289 { 290 static const u32 fifo_len_bytes = 64; 291 static const u32 hvs_latency_pix = 6; 292 293 switch (format) { 294 case PV_CONTROL_FORMAT_DSIV_16: 295 case PV_CONTROL_FORMAT_DSIC_16: 296 return fifo_len_bytes - 2 * hvs_latency_pix; 297 case PV_CONTROL_FORMAT_DSIV_18: 298 return fifo_len_bytes - 14; 299 case PV_CONTROL_FORMAT_24: 300 case PV_CONTROL_FORMAT_DSIV_24: 301 default: 302 return fifo_len_bytes - 3 * hvs_latency_pix; 303 } 304 } 305 306 /* 307 * Returns the encoder attached to the CRTC. 308 * 309 * VC4 can only scan out to one encoder at a time, while the DRM core 310 * allows drivers to push pixels to more than one encoder from the 311 * same CRTC. 312 */ 313 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 314 { 315 struct drm_connector *connector; 316 struct drm_connector_list_iter conn_iter; 317 318 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 319 drm_for_each_connector_iter(connector, &conn_iter) { 320 if (connector->state->crtc == crtc) { 321 drm_connector_list_iter_end(&conn_iter); 322 return connector->encoder; 323 } 324 } 325 drm_connector_list_iter_end(&conn_iter); 326 327 return NULL; 328 } 329 330 static void vc4_crtc_config_pv(struct drm_crtc *crtc) 331 { 332 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 333 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 334 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 335 struct drm_crtc_state *state = crtc->state; 336 struct drm_display_mode *mode = &state->adjusted_mode; 337 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 338 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 339 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 340 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 341 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 342 343 /* Reset the PV fifo. */ 344 CRTC_WRITE(PV_CONTROL, 0); 345 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 346 CRTC_WRITE(PV_CONTROL, 0); 347 348 CRTC_WRITE(PV_HORZA, 349 VC4_SET_FIELD((mode->htotal - 350 mode->hsync_end) * pixel_rep, 351 PV_HORZA_HBP) | 352 VC4_SET_FIELD((mode->hsync_end - 353 mode->hsync_start) * pixel_rep, 354 PV_HORZA_HSYNC)); 355 CRTC_WRITE(PV_HORZB, 356 VC4_SET_FIELD((mode->hsync_start - 357 mode->hdisplay) * pixel_rep, 358 PV_HORZB_HFP) | 359 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 360 361 CRTC_WRITE(PV_VERTA, 362 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 363 PV_VERTA_VBP) | 364 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 365 PV_VERTA_VSYNC)); 366 CRTC_WRITE(PV_VERTB, 367 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 368 PV_VERTB_VFP) | 369 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 370 371 if (interlace) { 372 CRTC_WRITE(PV_VERTA_EVEN, 373 VC4_SET_FIELD(mode->crtc_vtotal - 374 mode->crtc_vsync_end - 1, 375 PV_VERTA_VBP) | 376 VC4_SET_FIELD(mode->crtc_vsync_end - 377 mode->crtc_vsync_start, 378 PV_VERTA_VSYNC)); 379 CRTC_WRITE(PV_VERTB_EVEN, 380 VC4_SET_FIELD(mode->crtc_vsync_start - 381 mode->crtc_vdisplay, 382 PV_VERTB_VFP) | 383 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 384 385 /* We set up first field even mode for HDMI. VEC's 386 * NTSC mode would want first field odd instead, once 387 * we support it (to do so, set ODD_FIRST and put the 388 * delay in VSYNCD_EVEN instead). 389 */ 390 CRTC_WRITE(PV_V_CONTROL, 391 PV_VCONTROL_CONTINUOUS | 392 (is_dsi ? PV_VCONTROL_DSI : 0) | 393 PV_VCONTROL_INTERLACE | 394 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 395 PV_VCONTROL_ODD_DELAY)); 396 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 397 } else { 398 CRTC_WRITE(PV_V_CONTROL, 399 PV_VCONTROL_CONTINUOUS | 400 (is_dsi ? PV_VCONTROL_DSI : 0)); 401 } 402 403 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 404 405 CRTC_WRITE(PV_CONTROL, 406 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 407 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 408 PV_CONTROL_FIFO_LEVEL) | 409 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 410 PV_CONTROL_CLR_AT_START | 411 PV_CONTROL_TRIGGER_UNDERFLOW | 412 PV_CONTROL_WAIT_HSTART | 413 VC4_SET_FIELD(vc4_encoder->clock_select, 414 PV_CONTROL_CLK_SELECT) | 415 PV_CONTROL_FIFO_CLR | 416 PV_CONTROL_EN); 417 } 418 419 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 420 { 421 struct drm_device *dev = crtc->dev; 422 struct vc4_dev *vc4 = to_vc4_dev(dev); 423 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 424 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 425 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 426 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 427 bool debug_dump_regs = false; 428 429 if (debug_dump_regs) { 430 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 431 vc4_crtc_dump_regs(vc4_crtc); 432 } 433 434 if (vc4_crtc->channel == 2) { 435 u32 dispctrl; 436 u32 dsp3_mux; 437 438 /* 439 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 440 * FIFO X'. 441 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 442 * 443 * DSP3 is connected to FIFO2 unless the transposer is 444 * enabled. In this case, FIFO 2 is directly accessed by the 445 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 446 * route. 447 */ 448 if (vc4_state->feed_txp) 449 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 450 else 451 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 452 453 dispctrl = HVS_READ(SCALER_DISPCTRL) & 454 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 455 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 456 } 457 458 if (!vc4_state->feed_txp) 459 vc4_crtc_config_pv(crtc); 460 461 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 462 SCALER_DISPBKGND_AUTOHS | 463 SCALER_DISPBKGND_GAMMA | 464 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 465 466 /* Reload the LUT, since the SRAMs would have been disabled if 467 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 468 */ 469 vc4_crtc_lut_load(crtc); 470 471 if (debug_dump_regs) { 472 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 473 vc4_crtc_dump_regs(vc4_crtc); 474 } 475 } 476 477 static void require_hvs_enabled(struct drm_device *dev) 478 { 479 struct vc4_dev *vc4 = to_vc4_dev(dev); 480 481 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 482 SCALER_DISPCTRL_ENABLE); 483 } 484 485 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 486 struct drm_crtc_state *old_state) 487 { 488 struct drm_device *dev = crtc->dev; 489 struct vc4_dev *vc4 = to_vc4_dev(dev); 490 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 491 u32 chan = vc4_crtc->channel; 492 int ret; 493 require_hvs_enabled(dev); 494 495 /* Disable vblank irq handling before crtc is disabled. */ 496 drm_crtc_vblank_off(crtc); 497 498 CRTC_WRITE(PV_V_CONTROL, 499 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 500 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 501 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 502 503 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 504 SCALER_DISPCTRLX_ENABLE) { 505 HVS_WRITE(SCALER_DISPCTRLX(chan), 506 SCALER_DISPCTRLX_RESET); 507 508 /* While the docs say that reset is self-clearing, it 509 * seems it doesn't actually. 510 */ 511 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 512 } 513 514 /* Once we leave, the scaler should be disabled and its fifo empty. */ 515 516 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 517 518 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 519 SCALER_DISPSTATX_MODE) != 520 SCALER_DISPSTATX_MODE_DISABLED); 521 522 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 523 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 524 SCALER_DISPSTATX_EMPTY); 525 526 /* 527 * Make sure we issue a vblank event after disabling the CRTC if 528 * someone was waiting it. 529 */ 530 if (crtc->state->event) { 531 unsigned long flags; 532 533 spin_lock_irqsave(&dev->event_lock, flags); 534 drm_crtc_send_vblank_event(crtc, crtc->state->event); 535 crtc->state->event = NULL; 536 spin_unlock_irqrestore(&dev->event_lock, flags); 537 } 538 } 539 540 void vc4_crtc_txp_armed(struct drm_crtc_state *state) 541 { 542 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 543 544 vc4_state->txp_armed = true; 545 } 546 547 static void vc4_crtc_update_dlist(struct drm_crtc *crtc) 548 { 549 struct drm_device *dev = crtc->dev; 550 struct vc4_dev *vc4 = to_vc4_dev(dev); 551 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 552 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 553 554 if (crtc->state->event) { 555 unsigned long flags; 556 557 crtc->state->event->pipe = drm_crtc_index(crtc); 558 559 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 560 561 spin_lock_irqsave(&dev->event_lock, flags); 562 563 if (!vc4_state->feed_txp || vc4_state->txp_armed) { 564 vc4_crtc->event = crtc->state->event; 565 crtc->state->event = NULL; 566 } 567 568 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 569 vc4_state->mm.start); 570 571 spin_unlock_irqrestore(&dev->event_lock, flags); 572 } else { 573 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 574 vc4_state->mm.start); 575 } 576 } 577 578 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 579 struct drm_crtc_state *old_state) 580 { 581 struct drm_device *dev = crtc->dev; 582 struct vc4_dev *vc4 = to_vc4_dev(dev); 583 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 584 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 585 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 586 587 require_hvs_enabled(dev); 588 589 /* Enable vblank irq handling before crtc is started otherwise 590 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 591 */ 592 drm_crtc_vblank_on(crtc); 593 vc4_crtc_update_dlist(crtc); 594 595 /* Turn on the scaler, which will wait for vstart to start 596 * compositing. 597 * When feeding the transposer, we should operate in oneshot 598 * mode. 599 */ 600 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 601 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 602 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 603 SCALER_DISPCTRLX_ENABLE | 604 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0)); 605 606 /* When feeding the transposer block the pixelvalve is unneeded and 607 * should not be enabled. 608 */ 609 if (!vc4_state->feed_txp) 610 CRTC_WRITE(PV_V_CONTROL, 611 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 612 } 613 614 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 615 const struct drm_display_mode *mode) 616 { 617 /* Do not allow doublescan modes from user space */ 618 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 619 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 620 crtc->base.id); 621 return MODE_NO_DBLESCAN; 622 } 623 624 return MODE_OK; 625 } 626 627 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 628 struct drm_crtc_state *state) 629 { 630 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 631 struct drm_device *dev = crtc->dev; 632 struct vc4_dev *vc4 = to_vc4_dev(dev); 633 struct drm_plane *plane; 634 unsigned long flags; 635 const struct drm_plane_state *plane_state; 636 struct drm_connector *conn; 637 struct drm_connector_state *conn_state; 638 u32 dlist_count = 0; 639 int ret, i; 640 641 /* The pixelvalve can only feed one encoder (and encoders are 642 * 1:1 with connectors.) 643 */ 644 if (hweight32(state->connector_mask) > 1) 645 return -EINVAL; 646 647 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 648 dlist_count += vc4_plane_dlist_size(plane_state); 649 650 dlist_count++; /* Account for SCALER_CTL0_END. */ 651 652 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 653 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 654 dlist_count); 655 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 656 if (ret) 657 return ret; 658 659 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 660 if (conn_state->crtc != crtc) 661 continue; 662 663 /* The writeback connector is implemented using the transposer 664 * block which is directly taking its data from the HVS FIFO. 665 */ 666 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) { 667 state->no_vblank = true; 668 vc4_state->feed_txp = true; 669 } else { 670 state->no_vblank = false; 671 vc4_state->feed_txp = false; 672 } 673 674 break; 675 } 676 677 return 0; 678 } 679 680 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 681 struct drm_crtc_state *old_state) 682 { 683 struct drm_device *dev = crtc->dev; 684 struct vc4_dev *vc4 = to_vc4_dev(dev); 685 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 686 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 687 struct drm_plane *plane; 688 struct vc4_plane_state *vc4_plane_state; 689 bool debug_dump_regs = false; 690 bool enable_bg_fill = false; 691 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 692 u32 __iomem *dlist_next = dlist_start; 693 694 if (debug_dump_regs) { 695 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 696 vc4_hvs_dump_state(dev); 697 } 698 699 /* Copy all the active planes' dlist contents to the hardware dlist. */ 700 drm_atomic_crtc_for_each_plane(plane, crtc) { 701 /* Is this the first active plane? */ 702 if (dlist_next == dlist_start) { 703 /* We need to enable background fill when a plane 704 * could be alpha blending from the background, i.e. 705 * where no other plane is underneath. It suffices to 706 * consider the first active plane here since we set 707 * needs_bg_fill such that either the first plane 708 * already needs it or all planes on top blend from 709 * the first or a lower plane. 710 */ 711 vc4_plane_state = to_vc4_plane_state(plane->state); 712 enable_bg_fill = vc4_plane_state->needs_bg_fill; 713 } 714 715 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 716 } 717 718 writel(SCALER_CTL0_END, dlist_next); 719 dlist_next++; 720 721 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 722 723 if (enable_bg_fill) 724 /* This sets a black background color fill, as is the case 725 * with other DRM drivers. 726 */ 727 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 728 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) | 729 SCALER_DISPBKGND_FILL); 730 731 /* Only update DISPLIST if the CRTC was already running and is not 732 * being disabled. 733 * vc4_crtc_enable() takes care of updating the dlist just after 734 * re-enabling VBLANK interrupts and before enabling the engine. 735 * If the CRTC is being disabled, there's no point in updating this 736 * information. 737 */ 738 if (crtc->state->active && old_state->active) 739 vc4_crtc_update_dlist(crtc); 740 741 if (crtc->state->color_mgmt_changed) { 742 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)); 743 744 if (crtc->state->gamma_lut) { 745 vc4_crtc_update_gamma_lut(crtc); 746 dispbkgndx |= SCALER_DISPBKGND_GAMMA; 747 } else { 748 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step 749 * in hardware, which is the same as a linear lut that 750 * DRM expects us to use in absence of a user lut. 751 */ 752 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 753 } 754 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx); 755 } 756 757 if (debug_dump_regs) { 758 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 759 vc4_hvs_dump_state(dev); 760 } 761 } 762 763 static int vc4_enable_vblank(struct drm_crtc *crtc) 764 { 765 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 766 767 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 768 769 return 0; 770 } 771 772 static void vc4_disable_vblank(struct drm_crtc *crtc) 773 { 774 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 775 776 CRTC_WRITE(PV_INTEN, 0); 777 } 778 779 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 780 { 781 struct drm_crtc *crtc = &vc4_crtc->base; 782 struct drm_device *dev = crtc->dev; 783 struct vc4_dev *vc4 = to_vc4_dev(dev); 784 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 785 u32 chan = vc4_crtc->channel; 786 unsigned long flags; 787 788 spin_lock_irqsave(&dev->event_lock, flags); 789 if (vc4_crtc->event && 790 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 791 vc4_state->feed_txp)) { 792 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 793 vc4_crtc->event = NULL; 794 drm_crtc_vblank_put(crtc); 795 } 796 spin_unlock_irqrestore(&dev->event_lock, flags); 797 } 798 799 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 800 { 801 crtc->t_vblank = ktime_get(); 802 drm_crtc_handle_vblank(&crtc->base); 803 vc4_crtc_handle_page_flip(crtc); 804 } 805 806 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 807 { 808 struct vc4_crtc *vc4_crtc = data; 809 u32 stat = CRTC_READ(PV_INTSTAT); 810 irqreturn_t ret = IRQ_NONE; 811 812 if (stat & PV_INT_VFP_START) { 813 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 814 vc4_crtc_handle_vblank(vc4_crtc); 815 ret = IRQ_HANDLED; 816 } 817 818 return ret; 819 } 820 821 struct vc4_async_flip_state { 822 struct drm_crtc *crtc; 823 struct drm_framebuffer *fb; 824 struct drm_framebuffer *old_fb; 825 struct drm_pending_vblank_event *event; 826 827 struct vc4_seqno_cb cb; 828 }; 829 830 /* Called when the V3D execution for the BO being flipped to is done, so that 831 * we can actually update the plane's address to point to it. 832 */ 833 static void 834 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 835 { 836 struct vc4_async_flip_state *flip_state = 837 container_of(cb, struct vc4_async_flip_state, cb); 838 struct drm_crtc *crtc = flip_state->crtc; 839 struct drm_device *dev = crtc->dev; 840 struct vc4_dev *vc4 = to_vc4_dev(dev); 841 struct drm_plane *plane = crtc->primary; 842 843 vc4_plane_async_set_fb(plane, flip_state->fb); 844 if (flip_state->event) { 845 unsigned long flags; 846 847 spin_lock_irqsave(&dev->event_lock, flags); 848 drm_crtc_send_vblank_event(crtc, flip_state->event); 849 spin_unlock_irqrestore(&dev->event_lock, flags); 850 } 851 852 drm_crtc_vblank_put(crtc); 853 drm_framebuffer_put(flip_state->fb); 854 855 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 856 * when the planes are updated through the async update path. 857 * FIXME: we should move to generic async-page-flip when it's 858 * available, so that we can get rid of this hand-made cleanup_fb() 859 * logic. 860 */ 861 if (flip_state->old_fb) { 862 struct drm_gem_cma_object *cma_bo; 863 struct vc4_bo *bo; 864 865 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 866 bo = to_vc4_bo(&cma_bo->base); 867 vc4_bo_dec_usecnt(bo); 868 drm_framebuffer_put(flip_state->old_fb); 869 } 870 871 kfree(flip_state); 872 873 up(&vc4->async_modeset); 874 } 875 876 /* Implements async (non-vblank-synced) page flips. 877 * 878 * The page flip ioctl needs to return immediately, so we grab the 879 * modeset semaphore on the pipe, and queue the address update for 880 * when V3D is done with the BO being flipped to. 881 */ 882 static int vc4_async_page_flip(struct drm_crtc *crtc, 883 struct drm_framebuffer *fb, 884 struct drm_pending_vblank_event *event, 885 uint32_t flags) 886 { 887 struct drm_device *dev = crtc->dev; 888 struct vc4_dev *vc4 = to_vc4_dev(dev); 889 struct drm_plane *plane = crtc->primary; 890 int ret = 0; 891 struct vc4_async_flip_state *flip_state; 892 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 893 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 894 895 /* Increment the BO usecnt here, so that we never end up with an 896 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 897 * plane is later updated through the non-async path. 898 * FIXME: we should move to generic async-page-flip when it's 899 * available, so that we can get rid of this hand-made prepare_fb() 900 * logic. 901 */ 902 ret = vc4_bo_inc_usecnt(bo); 903 if (ret) 904 return ret; 905 906 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 907 if (!flip_state) { 908 vc4_bo_dec_usecnt(bo); 909 return -ENOMEM; 910 } 911 912 drm_framebuffer_get(fb); 913 flip_state->fb = fb; 914 flip_state->crtc = crtc; 915 flip_state->event = event; 916 917 /* Make sure all other async modesetes have landed. */ 918 ret = down_interruptible(&vc4->async_modeset); 919 if (ret) { 920 drm_framebuffer_put(fb); 921 vc4_bo_dec_usecnt(bo); 922 kfree(flip_state); 923 return ret; 924 } 925 926 /* Save the current FB before it's replaced by the new one in 927 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 928 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 929 * it consistent. 930 * FIXME: we should move to generic async-page-flip when it's 931 * available, so that we can get rid of this hand-made cleanup_fb() 932 * logic. 933 */ 934 flip_state->old_fb = plane->state->fb; 935 if (flip_state->old_fb) 936 drm_framebuffer_get(flip_state->old_fb); 937 938 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 939 940 /* Immediately update the plane's legacy fb pointer, so that later 941 * modeset prep sees the state that will be present when the semaphore 942 * is released. 943 */ 944 drm_atomic_set_fb_for_plane(plane->state, fb); 945 946 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 947 vc4_async_page_flip_complete); 948 949 /* Driver takes ownership of state on successful async commit. */ 950 return 0; 951 } 952 953 static int vc4_page_flip(struct drm_crtc *crtc, 954 struct drm_framebuffer *fb, 955 struct drm_pending_vblank_event *event, 956 uint32_t flags, 957 struct drm_modeset_acquire_ctx *ctx) 958 { 959 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 960 return vc4_async_page_flip(crtc, fb, event, flags); 961 else 962 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 963 } 964 965 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 966 { 967 struct vc4_crtc_state *vc4_state, *old_vc4_state; 968 969 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 970 if (!vc4_state) 971 return NULL; 972 973 old_vc4_state = to_vc4_crtc_state(crtc->state); 974 vc4_state->feed_txp = old_vc4_state->feed_txp; 975 976 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 977 return &vc4_state->base; 978 } 979 980 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 981 struct drm_crtc_state *state) 982 { 983 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 984 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 985 986 if (vc4_state->mm.allocated) { 987 unsigned long flags; 988 989 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 990 drm_mm_remove_node(&vc4_state->mm); 991 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 992 993 } 994 995 drm_atomic_helper_crtc_destroy_state(crtc, state); 996 } 997 998 static void 999 vc4_crtc_reset(struct drm_crtc *crtc) 1000 { 1001 if (crtc->state) 1002 __drm_atomic_helper_crtc_destroy_state(crtc->state); 1003 1004 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 1005 if (crtc->state) 1006 crtc->state->crtc = crtc; 1007 } 1008 1009 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1010 .set_config = drm_atomic_helper_set_config, 1011 .destroy = vc4_crtc_destroy, 1012 .page_flip = vc4_page_flip, 1013 .set_property = NULL, 1014 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1015 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1016 .reset = vc4_crtc_reset, 1017 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1018 .atomic_destroy_state = vc4_crtc_destroy_state, 1019 .gamma_set = drm_atomic_helper_legacy_gamma_set, 1020 .enable_vblank = vc4_enable_vblank, 1021 .disable_vblank = vc4_disable_vblank, 1022 }; 1023 1024 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1025 .mode_set_nofb = vc4_crtc_mode_set_nofb, 1026 .mode_valid = vc4_crtc_mode_valid, 1027 .atomic_check = vc4_crtc_atomic_check, 1028 .atomic_flush = vc4_crtc_atomic_flush, 1029 .atomic_enable = vc4_crtc_atomic_enable, 1030 .atomic_disable = vc4_crtc_atomic_disable, 1031 }; 1032 1033 static const struct vc4_crtc_data pv0_data = { 1034 .hvs_channel = 0, 1035 .encoder_types = { 1036 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1037 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1038 }, 1039 }; 1040 1041 static const struct vc4_crtc_data pv1_data = { 1042 .hvs_channel = 2, 1043 .encoder_types = { 1044 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1045 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1046 }, 1047 }; 1048 1049 static const struct vc4_crtc_data pv2_data = { 1050 .hvs_channel = 1, 1051 .encoder_types = { 1052 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 1053 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1054 }, 1055 }; 1056 1057 static const struct of_device_id vc4_crtc_dt_match[] = { 1058 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 1059 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 1060 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 1061 {} 1062 }; 1063 1064 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1065 struct drm_crtc *crtc) 1066 { 1067 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1068 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 1069 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 1070 struct drm_encoder *encoder; 1071 1072 drm_for_each_encoder(encoder, drm) { 1073 struct vc4_encoder *vc4_encoder; 1074 int i; 1075 1076 /* HVS FIFO2 can feed the TXP IP. */ 1077 if (crtc_data->hvs_channel == 2 && 1078 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 1079 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1080 continue; 1081 } 1082 1083 vc4_encoder = to_vc4_encoder(encoder); 1084 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 1085 if (vc4_encoder->type == encoder_types[i]) { 1086 vc4_encoder->clock_select = i; 1087 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1088 break; 1089 } 1090 } 1091 } 1092 } 1093 1094 static void 1095 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 1096 { 1097 struct drm_device *drm = vc4_crtc->base.dev; 1098 struct vc4_dev *vc4 = to_vc4_dev(drm); 1099 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 1100 /* Top/base are supposed to be 4-pixel aligned, but the 1101 * Raspberry Pi firmware fills the low bits (which are 1102 * presumably ignored). 1103 */ 1104 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 1105 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 1106 1107 vc4_crtc->cob_size = top - base + 4; 1108 } 1109 1110 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1111 { 1112 struct platform_device *pdev = to_platform_device(dev); 1113 struct drm_device *drm = dev_get_drvdata(master); 1114 struct vc4_crtc *vc4_crtc; 1115 struct drm_crtc *crtc; 1116 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 1117 const struct of_device_id *match; 1118 int ret, i; 1119 1120 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1121 if (!vc4_crtc) 1122 return -ENOMEM; 1123 crtc = &vc4_crtc->base; 1124 1125 match = of_match_device(vc4_crtc_dt_match, dev); 1126 if (!match) 1127 return -ENODEV; 1128 vc4_crtc->data = match->data; 1129 1130 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1131 if (IS_ERR(vc4_crtc->regs)) 1132 return PTR_ERR(vc4_crtc->regs); 1133 1134 /* For now, we create just the primary and the legacy cursor 1135 * planes. We should be able to stack more planes on easily, 1136 * but to do that we would need to compute the bandwidth 1137 * requirement of the plane configuration, and reject ones 1138 * that will take too much. 1139 */ 1140 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1141 if (IS_ERR(primary_plane)) { 1142 dev_err(dev, "failed to construct primary plane\n"); 1143 ret = PTR_ERR(primary_plane); 1144 goto err; 1145 } 1146 1147 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1148 &vc4_crtc_funcs, NULL); 1149 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 1150 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 1151 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1152 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1153 1154 /* We support CTM, but only for one CRTC at a time. It's therefore 1155 * implemented as private driver state in vc4_kms, not here. 1156 */ 1157 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1158 1159 /* Set up some arbitrary number of planes. We're not limited 1160 * by a set number of physical registers, just the space in 1161 * the HVS (16k) and how small an plane can be (28 bytes). 1162 * However, each plane we set up takes up some memory, and 1163 * increases the cost of looping over planes, which atomic 1164 * modesetting does quite a bit. As a result, we pick a 1165 * modest number of planes to expose, that should hopefully 1166 * still cover any sane usecase. 1167 */ 1168 for (i = 0; i < 8; i++) { 1169 struct drm_plane *plane = 1170 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1171 1172 if (IS_ERR(plane)) 1173 continue; 1174 1175 plane->possible_crtcs = drm_crtc_mask(crtc); 1176 } 1177 1178 /* Set up the legacy cursor after overlay initialization, 1179 * since we overlay planes on the CRTC in the order they were 1180 * initialized. 1181 */ 1182 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1183 if (!IS_ERR(cursor_plane)) { 1184 cursor_plane->possible_crtcs = drm_crtc_mask(crtc); 1185 crtc->cursor = cursor_plane; 1186 } 1187 1188 vc4_crtc_get_cob_allocation(vc4_crtc); 1189 1190 CRTC_WRITE(PV_INTEN, 0); 1191 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1192 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1193 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1194 if (ret) 1195 goto err_destroy_planes; 1196 1197 vc4_set_crtc_possible_masks(drm, crtc); 1198 1199 for (i = 0; i < crtc->gamma_size; i++) { 1200 vc4_crtc->lut_r[i] = i; 1201 vc4_crtc->lut_g[i] = i; 1202 vc4_crtc->lut_b[i] = i; 1203 } 1204 1205 platform_set_drvdata(pdev, vc4_crtc); 1206 1207 return 0; 1208 1209 err_destroy_planes: 1210 list_for_each_entry_safe(destroy_plane, temp, 1211 &drm->mode_config.plane_list, head) { 1212 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1213 destroy_plane->funcs->destroy(destroy_plane); 1214 } 1215 err: 1216 return ret; 1217 } 1218 1219 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1220 void *data) 1221 { 1222 struct platform_device *pdev = to_platform_device(dev); 1223 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1224 1225 vc4_crtc_destroy(&vc4_crtc->base); 1226 1227 CRTC_WRITE(PV_INTEN, 0); 1228 1229 platform_set_drvdata(pdev, NULL); 1230 } 1231 1232 static const struct component_ops vc4_crtc_ops = { 1233 .bind = vc4_crtc_bind, 1234 .unbind = vc4_crtc_unbind, 1235 }; 1236 1237 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1238 { 1239 return component_add(&pdev->dev, &vc4_crtc_ops); 1240 } 1241 1242 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1243 { 1244 component_del(&pdev->dev, &vc4_crtc_ops); 1245 return 0; 1246 } 1247 1248 struct platform_driver vc4_crtc_driver = { 1249 .probe = vc4_crtc_dev_probe, 1250 .remove = vc4_crtc_dev_remove, 1251 .driver = { 1252 .name = "vc4_crtc", 1253 .of_match_table = vc4_crtc_dt_match, 1254 }, 1255 }; 1256