1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/component.h> 34 #include <linux/of_device.h> 35 36 #include <drm/drm_atomic.h> 37 #include <drm/drm_atomic_helper.h> 38 #include <drm/drm_atomic_uapi.h> 39 #include <drm/drm_fb_cma_helper.h> 40 #include <drm/drm_print.h> 41 #include <drm/drm_probe_helper.h> 42 #include <drm/drm_vblank.h> 43 44 #include "vc4_drv.h" 45 #include "vc4_regs.h" 46 47 #define HVS_FIFO_LATENCY_PIX 6 48 49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 51 52 static const struct debugfs_reg32 crtc_regs[] = { 53 VC4_REG32(PV_CONTROL), 54 VC4_REG32(PV_V_CONTROL), 55 VC4_REG32(PV_VSYNCD_EVEN), 56 VC4_REG32(PV_HORZA), 57 VC4_REG32(PV_HORZB), 58 VC4_REG32(PV_VERTA), 59 VC4_REG32(PV_VERTB), 60 VC4_REG32(PV_VERTA_EVEN), 61 VC4_REG32(PV_VERTB_EVEN), 62 VC4_REG32(PV_INTEN), 63 VC4_REG32(PV_INTSTAT), 64 VC4_REG32(PV_STAT), 65 VC4_REG32(PV_HACT_ACT), 66 }; 67 68 static unsigned int 69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) 70 { 71 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); 72 /* Top/base are supposed to be 4-pixel aligned, but the 73 * Raspberry Pi firmware fills the low bits (which are 74 * presumably ignored). 75 */ 76 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 77 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 78 79 return top - base + 4; 80 } 81 82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, 83 bool in_vblank_irq, 84 int *vpos, int *hpos, 85 ktime_t *stime, ktime_t *etime, 86 const struct drm_display_mode *mode) 87 { 88 struct drm_device *dev = crtc->dev; 89 struct vc4_dev *vc4 = to_vc4_dev(dev); 90 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 91 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 92 unsigned int cob_size; 93 u32 val; 94 int fifo_lines; 95 int vblank_lines; 96 bool ret = false; 97 98 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 99 100 /* Get optional system timestamp before query. */ 101 if (stime) 102 *stime = ktime_get(); 103 104 /* 105 * Read vertical scanline which is currently composed for our 106 * pixelvalve by the HVS, and also the scaler status. 107 */ 108 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); 109 110 /* Get optional system timestamp after query. */ 111 if (etime) 112 *etime = ktime_get(); 113 114 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 115 116 /* Vertical position of hvs composed scanline. */ 117 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 118 *hpos = 0; 119 120 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 121 *vpos /= 2; 122 123 /* Use hpos to correct for field offset in interlaced mode. */ 124 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 125 *hpos += mode->crtc_htotal / 2; 126 } 127 128 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); 129 /* This is the offset we need for translating hvs -> pv scanout pos. */ 130 fifo_lines = cob_size / mode->crtc_hdisplay; 131 132 if (fifo_lines > 0) 133 ret = true; 134 135 /* HVS more than fifo_lines into frame for compositing? */ 136 if (*vpos > fifo_lines) { 137 /* 138 * We are in active scanout and can get some meaningful results 139 * from HVS. The actual PV scanout can not trail behind more 140 * than fifo_lines as that is the fifo's capacity. Assume that 141 * in active scanout the HVS and PV work in lockstep wrt. HVS 142 * refilling the fifo and PV consuming from the fifo, ie. 143 * whenever the PV consumes and frees up a scanline in the 144 * fifo, the HVS will immediately refill it, therefore 145 * incrementing vpos. Therefore we choose HVS read position - 146 * fifo size in scanlines as a estimate of the real scanout 147 * position of the PV. 148 */ 149 *vpos -= fifo_lines + 1; 150 151 return ret; 152 } 153 154 /* 155 * Less: This happens when we are in vblank and the HVS, after getting 156 * the VSTART restart signal from the PV, just started refilling its 157 * fifo with new lines from the top-most lines of the new framebuffers. 158 * The PV does not scan out in vblank, so does not remove lines from 159 * the fifo, so the fifo will be full quickly and the HVS has to pause. 160 * We can't get meaningful readings wrt. scanline position of the PV 161 * and need to make things up in a approximative but consistent way. 162 */ 163 vblank_lines = mode->vtotal - mode->vdisplay; 164 165 if (in_vblank_irq) { 166 /* 167 * Assume the irq handler got called close to first 168 * line of vblank, so PV has about a full vblank 169 * scanlines to go, and as a base timestamp use the 170 * one taken at entry into vblank irq handler, so it 171 * is not affected by random delays due to lock 172 * contention on event_lock or vblank_time lock in 173 * the core. 174 */ 175 *vpos = -vblank_lines; 176 177 if (stime) 178 *stime = vc4_crtc->t_vblank; 179 if (etime) 180 *etime = vc4_crtc->t_vblank; 181 182 /* 183 * If the HVS fifo is not yet full then we know for certain 184 * we are at the very beginning of vblank, as the hvs just 185 * started refilling, and the stime and etime timestamps 186 * truly correspond to start of vblank. 187 * 188 * Unfortunately there's no way to report this to upper levels 189 * and make it more useful. 190 */ 191 } else { 192 /* 193 * No clue where we are inside vblank. Return a vpos of zero, 194 * which will cause calling code to just return the etime 195 * timestamp uncorrected. At least this is no worse than the 196 * standard fallback. 197 */ 198 *vpos = 0; 199 } 200 201 return ret; 202 } 203 204 void vc4_crtc_destroy(struct drm_crtc *crtc) 205 { 206 drm_crtc_cleanup(crtc); 207 } 208 209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) 210 { 211 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 212 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 213 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); 214 u32 fifo_len_bytes = pv_data->fifo_depth; 215 216 /* 217 * Pixels are pulled from the HVS if the number of bytes is 218 * lower than the FIFO full level. 219 * 220 * The latency of the pixel fetch mechanism is 6 pixels, so we 221 * need to convert those 6 pixels in bytes, depending on the 222 * format, and then subtract that from the length of the FIFO 223 * to make sure we never end up in a situation where the FIFO 224 * is full. 225 */ 226 switch (format) { 227 case PV_CONTROL_FORMAT_DSIV_16: 228 case PV_CONTROL_FORMAT_DSIC_16: 229 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; 230 case PV_CONTROL_FORMAT_DSIV_18: 231 return fifo_len_bytes - 14; 232 case PV_CONTROL_FORMAT_24: 233 case PV_CONTROL_FORMAT_DSIV_24: 234 default: 235 /* 236 * For some reason, the pixelvalve4 doesn't work with 237 * the usual formula and will only work with 32. 238 */ 239 if (crtc_data->hvs_output == 5) 240 return 32; 241 242 /* 243 * It looks like in some situations, we will overflow 244 * the PixelValve FIFO (with the bit 10 of PV stat being 245 * set) and stall the HVS / PV, eventually resulting in 246 * a page flip timeout. 247 * 248 * Displaying the video overlay during a playback with 249 * Kodi on an RPi3 seems to be a great solution with a 250 * failure rate around 50%. 251 * 252 * Removing 1 from the FIFO full level however 253 * seems to completely remove that issue. 254 */ 255 if (!vc4->hvs->hvs5) 256 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; 257 258 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; 259 } 260 } 261 262 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, 263 u32 format) 264 { 265 u32 level = vc4_get_fifo_full_level(vc4_crtc, format); 266 u32 ret = 0; 267 268 ret |= VC4_SET_FIELD((level >> 6), 269 PV5_CONTROL_FIFO_LEVEL_HIGH); 270 271 return ret | VC4_SET_FIELD(level & 0x3f, 272 PV_CONTROL_FIFO_LEVEL); 273 } 274 275 /* 276 * Returns the encoder attached to the CRTC. 277 * 278 * VC4 can only scan out to one encoder at a time, while the DRM core 279 * allows drivers to push pixels to more than one encoder from the 280 * same CRTC. 281 */ 282 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc, 283 struct drm_atomic_state *state, 284 struct drm_connector_state *(*get_state)(struct drm_atomic_state *state, 285 struct drm_connector *connector)) 286 { 287 struct drm_connector *connector; 288 struct drm_connector_list_iter conn_iter; 289 290 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 291 drm_for_each_connector_iter(connector, &conn_iter) { 292 struct drm_connector_state *conn_state = get_state(state, connector); 293 294 if (!conn_state) 295 continue; 296 297 if (conn_state->crtc == crtc) { 298 drm_connector_list_iter_end(&conn_iter); 299 return connector->encoder; 300 } 301 } 302 drm_connector_list_iter_end(&conn_iter); 303 304 return NULL; 305 } 306 307 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) 308 { 309 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 310 311 /* The PV needs to be disabled before it can be flushed */ 312 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); 313 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); 314 } 315 316 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_atomic_state *state) 317 { 318 struct drm_device *dev = crtc->dev; 319 struct vc4_dev *vc4 = to_vc4_dev(dev); 320 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state, 321 drm_atomic_get_new_connector_state); 322 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 323 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 324 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 325 struct drm_crtc_state *crtc_state = crtc->state; 326 struct drm_display_mode *mode = &crtc_state->adjusted_mode; 327 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 328 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 329 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 330 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 331 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 332 u8 ppc = pv_data->pixels_per_clock; 333 bool debug_dump_regs = false; 334 335 if (debug_dump_regs) { 336 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 337 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 338 drm_crtc_index(crtc)); 339 drm_print_regset32(&p, &vc4_crtc->regset); 340 } 341 342 vc4_crtc_pixelvalve_reset(crtc); 343 344 CRTC_WRITE(PV_HORZA, 345 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, 346 PV_HORZA_HBP) | 347 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, 348 PV_HORZA_HSYNC)); 349 350 CRTC_WRITE(PV_HORZB, 351 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, 352 PV_HORZB_HFP) | 353 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, 354 PV_HORZB_HACTIVE)); 355 356 CRTC_WRITE(PV_VERTA, 357 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 358 PV_VERTA_VBP) | 359 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 360 PV_VERTA_VSYNC)); 361 CRTC_WRITE(PV_VERTB, 362 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 363 PV_VERTB_VFP) | 364 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 365 366 if (interlace) { 367 CRTC_WRITE(PV_VERTA_EVEN, 368 VC4_SET_FIELD(mode->crtc_vtotal - 369 mode->crtc_vsync_end - 1, 370 PV_VERTA_VBP) | 371 VC4_SET_FIELD(mode->crtc_vsync_end - 372 mode->crtc_vsync_start, 373 PV_VERTA_VSYNC)); 374 CRTC_WRITE(PV_VERTB_EVEN, 375 VC4_SET_FIELD(mode->crtc_vsync_start - 376 mode->crtc_vdisplay, 377 PV_VERTB_VFP) | 378 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 379 380 /* We set up first field even mode for HDMI. VEC's 381 * NTSC mode would want first field odd instead, once 382 * we support it (to do so, set ODD_FIRST and put the 383 * delay in VSYNCD_EVEN instead). 384 */ 385 CRTC_WRITE(PV_V_CONTROL, 386 PV_VCONTROL_CONTINUOUS | 387 (is_dsi ? PV_VCONTROL_DSI : 0) | 388 PV_VCONTROL_INTERLACE | 389 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 390 PV_VCONTROL_ODD_DELAY)); 391 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 392 } else { 393 CRTC_WRITE(PV_V_CONTROL, 394 PV_VCONTROL_CONTINUOUS | 395 (is_dsi ? PV_VCONTROL_DSI : 0)); 396 } 397 398 if (is_dsi) 399 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 400 401 if (vc4->hvs->hvs5) 402 CRTC_WRITE(PV_MUX_CFG, 403 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, 404 PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); 405 406 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | 407 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | 408 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 409 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 410 PV_CONTROL_CLR_AT_START | 411 PV_CONTROL_TRIGGER_UNDERFLOW | 412 PV_CONTROL_WAIT_HSTART | 413 VC4_SET_FIELD(vc4_encoder->clock_select, 414 PV_CONTROL_CLK_SELECT)); 415 416 if (debug_dump_regs) { 417 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 418 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 419 drm_crtc_index(crtc)); 420 drm_print_regset32(&p, &vc4_crtc->regset); 421 } 422 } 423 424 static void require_hvs_enabled(struct drm_device *dev) 425 { 426 struct vc4_dev *vc4 = to_vc4_dev(dev); 427 428 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 429 SCALER_DISPCTRL_ENABLE); 430 } 431 432 static int vc4_crtc_disable(struct drm_crtc *crtc, 433 struct drm_encoder *encoder, 434 struct drm_atomic_state *state, 435 unsigned int channel) 436 { 437 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 438 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 439 struct drm_device *dev = crtc->dev; 440 int ret; 441 442 CRTC_WRITE(PV_V_CONTROL, 443 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 444 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 445 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 446 447 /* 448 * This delay is needed to avoid to get a pixel stuck in an 449 * unflushable FIFO between the pixelvalve and the HDMI 450 * controllers on the BCM2711. 451 * 452 * Timing is fairly sensitive here, so mdelay is the safest 453 * approach. 454 * 455 * If it was to be reworked, the stuck pixel happens on a 456 * BCM2711 when changing mode with a good probability, so a 457 * script that changes mode on a regular basis should trigger 458 * the bug after less than 10 attempts. It manifests itself with 459 * every pixels being shifted by one to the right, and thus the 460 * last pixel of a line actually being displayed as the first 461 * pixel on the next line. 462 */ 463 mdelay(20); 464 465 if (vc4_encoder && vc4_encoder->post_crtc_disable) 466 vc4_encoder->post_crtc_disable(encoder, state); 467 468 vc4_crtc_pixelvalve_reset(crtc); 469 vc4_hvs_stop_channel(dev, channel); 470 471 if (vc4_encoder && vc4_encoder->post_crtc_powerdown) 472 vc4_encoder->post_crtc_powerdown(encoder, state); 473 474 return 0; 475 } 476 477 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc, 478 enum vc4_encoder_type type) 479 { 480 struct drm_encoder *encoder; 481 482 drm_for_each_encoder(encoder, crtc->dev) { 483 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 484 485 if (vc4_encoder->type == type) 486 return encoder; 487 } 488 489 return NULL; 490 } 491 492 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) 493 { 494 struct drm_device *drm = crtc->dev; 495 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 496 enum vc4_encoder_type encoder_type; 497 const struct vc4_pv_data *pv_data; 498 struct drm_encoder *encoder; 499 unsigned encoder_sel; 500 int channel; 501 502 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 503 "brcm,bcm2711-pixelvalve2") || 504 of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 505 "brcm,bcm2711-pixelvalve4"))) 506 return 0; 507 508 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) 509 return 0; 510 511 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) 512 return 0; 513 514 channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output); 515 if (channel < 0) 516 return 0; 517 518 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT); 519 if (WARN_ON(encoder_sel != 0)) 520 return 0; 521 522 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 523 encoder_type = pv_data->encoder_types[encoder_sel]; 524 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type); 525 if (WARN_ON(!encoder)) 526 return 0; 527 528 return vc4_crtc_disable(crtc, encoder, NULL, channel); 529 } 530 531 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 532 struct drm_atomic_state *state) 533 { 534 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 535 crtc); 536 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); 537 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state, 538 drm_atomic_get_old_connector_state); 539 struct drm_device *dev = crtc->dev; 540 541 require_hvs_enabled(dev); 542 543 /* Disable vblank irq handling before crtc is disabled. */ 544 drm_crtc_vblank_off(crtc); 545 546 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel); 547 548 /* 549 * Make sure we issue a vblank event after disabling the CRTC if 550 * someone was waiting it. 551 */ 552 if (crtc->state->event) { 553 unsigned long flags; 554 555 spin_lock_irqsave(&dev->event_lock, flags); 556 drm_crtc_send_vblank_event(crtc, crtc->state->event); 557 crtc->state->event = NULL; 558 spin_unlock_irqrestore(&dev->event_lock, flags); 559 } 560 } 561 562 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 563 struct drm_atomic_state *state) 564 { 565 struct drm_device *dev = crtc->dev; 566 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 567 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state, 568 drm_atomic_get_new_connector_state); 569 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 570 571 require_hvs_enabled(dev); 572 573 /* Enable vblank irq handling before crtc is started otherwise 574 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 575 */ 576 drm_crtc_vblank_on(crtc); 577 578 vc4_hvs_atomic_enable(crtc, state); 579 580 if (vc4_encoder->pre_crtc_configure) 581 vc4_encoder->pre_crtc_configure(encoder, state); 582 583 vc4_crtc_config_pv(crtc, state); 584 585 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); 586 587 if (vc4_encoder->pre_crtc_enable) 588 vc4_encoder->pre_crtc_enable(encoder, state); 589 590 /* When feeding the transposer block the pixelvalve is unneeded and 591 * should not be enabled. 592 */ 593 CRTC_WRITE(PV_V_CONTROL, 594 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 595 596 if (vc4_encoder->post_crtc_enable) 597 vc4_encoder->post_crtc_enable(encoder, state); 598 } 599 600 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 601 const struct drm_display_mode *mode) 602 { 603 /* Do not allow doublescan modes from user space */ 604 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 605 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 606 crtc->base.id); 607 return MODE_NO_DBLESCAN; 608 } 609 610 return MODE_OK; 611 } 612 613 void vc4_crtc_get_margins(struct drm_crtc_state *state, 614 unsigned int *left, unsigned int *right, 615 unsigned int *top, unsigned int *bottom) 616 { 617 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 618 struct drm_connector_state *conn_state; 619 struct drm_connector *conn; 620 int i; 621 622 *left = vc4_state->margins.left; 623 *right = vc4_state->margins.right; 624 *top = vc4_state->margins.top; 625 *bottom = vc4_state->margins.bottom; 626 627 /* We have to interate over all new connector states because 628 * vc4_crtc_get_margins() might be called before 629 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 630 * might be outdated. 631 */ 632 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 633 if (conn_state->crtc != state->crtc) 634 continue; 635 636 *left = conn_state->tv.margins.left; 637 *right = conn_state->tv.margins.right; 638 *top = conn_state->tv.margins.top; 639 *bottom = conn_state->tv.margins.bottom; 640 break; 641 } 642 } 643 644 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 645 struct drm_atomic_state *state) 646 { 647 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 648 crtc); 649 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 650 struct drm_connector *conn; 651 struct drm_connector_state *conn_state; 652 int ret, i; 653 654 ret = vc4_hvs_atomic_check(crtc, state); 655 if (ret) 656 return ret; 657 658 for_each_new_connector_in_state(state, conn, conn_state, 659 i) { 660 if (conn_state->crtc != crtc) 661 continue; 662 663 vc4_state->margins.left = conn_state->tv.margins.left; 664 vc4_state->margins.right = conn_state->tv.margins.right; 665 vc4_state->margins.top = conn_state->tv.margins.top; 666 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 667 break; 668 } 669 670 return 0; 671 } 672 673 static int vc4_enable_vblank(struct drm_crtc *crtc) 674 { 675 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 676 677 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 678 679 return 0; 680 } 681 682 static void vc4_disable_vblank(struct drm_crtc *crtc) 683 { 684 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 685 686 CRTC_WRITE(PV_INTEN, 0); 687 } 688 689 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 690 { 691 struct drm_crtc *crtc = &vc4_crtc->base; 692 struct drm_device *dev = crtc->dev; 693 struct vc4_dev *vc4 = to_vc4_dev(dev); 694 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 695 u32 chan = vc4_state->assigned_channel; 696 unsigned long flags; 697 698 spin_lock_irqsave(&dev->event_lock, flags); 699 if (vc4_crtc->event && 700 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 701 vc4_state->feed_txp)) { 702 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 703 vc4_crtc->event = NULL; 704 drm_crtc_vblank_put(crtc); 705 706 /* Wait for the page flip to unmask the underrun to ensure that 707 * the display list was updated by the hardware. Before that 708 * happens, the HVS will be using the previous display list with 709 * the CRTC and encoder already reconfigured, leading to 710 * underruns. This can be seen when reconfiguring the CRTC. 711 */ 712 vc4_hvs_unmask_underrun(dev, chan); 713 } 714 spin_unlock_irqrestore(&dev->event_lock, flags); 715 } 716 717 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 718 { 719 crtc->t_vblank = ktime_get(); 720 drm_crtc_handle_vblank(&crtc->base); 721 vc4_crtc_handle_page_flip(crtc); 722 } 723 724 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 725 { 726 struct vc4_crtc *vc4_crtc = data; 727 u32 stat = CRTC_READ(PV_INTSTAT); 728 irqreturn_t ret = IRQ_NONE; 729 730 if (stat & PV_INT_VFP_START) { 731 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 732 vc4_crtc_handle_vblank(vc4_crtc); 733 ret = IRQ_HANDLED; 734 } 735 736 return ret; 737 } 738 739 struct vc4_async_flip_state { 740 struct drm_crtc *crtc; 741 struct drm_framebuffer *fb; 742 struct drm_framebuffer *old_fb; 743 struct drm_pending_vblank_event *event; 744 745 struct vc4_seqno_cb cb; 746 }; 747 748 /* Called when the V3D execution for the BO being flipped to is done, so that 749 * we can actually update the plane's address to point to it. 750 */ 751 static void 752 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 753 { 754 struct vc4_async_flip_state *flip_state = 755 container_of(cb, struct vc4_async_flip_state, cb); 756 struct drm_crtc *crtc = flip_state->crtc; 757 struct drm_device *dev = crtc->dev; 758 struct drm_plane *plane = crtc->primary; 759 760 vc4_plane_async_set_fb(plane, flip_state->fb); 761 if (flip_state->event) { 762 unsigned long flags; 763 764 spin_lock_irqsave(&dev->event_lock, flags); 765 drm_crtc_send_vblank_event(crtc, flip_state->event); 766 spin_unlock_irqrestore(&dev->event_lock, flags); 767 } 768 769 drm_crtc_vblank_put(crtc); 770 drm_framebuffer_put(flip_state->fb); 771 772 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 773 * when the planes are updated through the async update path. 774 * FIXME: we should move to generic async-page-flip when it's 775 * available, so that we can get rid of this hand-made cleanup_fb() 776 * logic. 777 */ 778 if (flip_state->old_fb) { 779 struct drm_gem_cma_object *cma_bo; 780 struct vc4_bo *bo; 781 782 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 783 bo = to_vc4_bo(&cma_bo->base); 784 vc4_bo_dec_usecnt(bo); 785 drm_framebuffer_put(flip_state->old_fb); 786 } 787 788 kfree(flip_state); 789 } 790 791 /* Implements async (non-vblank-synced) page flips. 792 * 793 * The page flip ioctl needs to return immediately, so we grab the 794 * modeset semaphore on the pipe, and queue the address update for 795 * when V3D is done with the BO being flipped to. 796 */ 797 static int vc4_async_page_flip(struct drm_crtc *crtc, 798 struct drm_framebuffer *fb, 799 struct drm_pending_vblank_event *event, 800 uint32_t flags) 801 { 802 struct drm_device *dev = crtc->dev; 803 struct drm_plane *plane = crtc->primary; 804 int ret = 0; 805 struct vc4_async_flip_state *flip_state; 806 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 807 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 808 809 /* Increment the BO usecnt here, so that we never end up with an 810 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 811 * plane is later updated through the non-async path. 812 * FIXME: we should move to generic async-page-flip when it's 813 * available, so that we can get rid of this hand-made prepare_fb() 814 * logic. 815 */ 816 ret = vc4_bo_inc_usecnt(bo); 817 if (ret) 818 return ret; 819 820 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 821 if (!flip_state) { 822 vc4_bo_dec_usecnt(bo); 823 return -ENOMEM; 824 } 825 826 drm_framebuffer_get(fb); 827 flip_state->fb = fb; 828 flip_state->crtc = crtc; 829 flip_state->event = event; 830 831 /* Save the current FB before it's replaced by the new one in 832 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 833 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 834 * it consistent. 835 * FIXME: we should move to generic async-page-flip when it's 836 * available, so that we can get rid of this hand-made cleanup_fb() 837 * logic. 838 */ 839 flip_state->old_fb = plane->state->fb; 840 if (flip_state->old_fb) 841 drm_framebuffer_get(flip_state->old_fb); 842 843 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 844 845 /* Immediately update the plane's legacy fb pointer, so that later 846 * modeset prep sees the state that will be present when the semaphore 847 * is released. 848 */ 849 drm_atomic_set_fb_for_plane(plane->state, fb); 850 851 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 852 vc4_async_page_flip_complete); 853 854 /* Driver takes ownership of state on successful async commit. */ 855 return 0; 856 } 857 858 int vc4_page_flip(struct drm_crtc *crtc, 859 struct drm_framebuffer *fb, 860 struct drm_pending_vblank_event *event, 861 uint32_t flags, 862 struct drm_modeset_acquire_ctx *ctx) 863 { 864 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 865 return vc4_async_page_flip(crtc, fb, event, flags); 866 else 867 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 868 } 869 870 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 871 { 872 struct vc4_crtc_state *vc4_state, *old_vc4_state; 873 874 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 875 if (!vc4_state) 876 return NULL; 877 878 old_vc4_state = to_vc4_crtc_state(crtc->state); 879 vc4_state->feed_txp = old_vc4_state->feed_txp; 880 vc4_state->margins = old_vc4_state->margins; 881 vc4_state->assigned_channel = old_vc4_state->assigned_channel; 882 883 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 884 return &vc4_state->base; 885 } 886 887 void vc4_crtc_destroy_state(struct drm_crtc *crtc, 888 struct drm_crtc_state *state) 889 { 890 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 891 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 892 893 if (drm_mm_node_allocated(&vc4_state->mm)) { 894 unsigned long flags; 895 896 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 897 drm_mm_remove_node(&vc4_state->mm); 898 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 899 900 } 901 902 drm_atomic_helper_crtc_destroy_state(crtc, state); 903 } 904 905 void vc4_crtc_reset(struct drm_crtc *crtc) 906 { 907 struct vc4_crtc_state *vc4_crtc_state; 908 909 if (crtc->state) 910 vc4_crtc_destroy_state(crtc, crtc->state); 911 912 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); 913 if (!vc4_crtc_state) { 914 crtc->state = NULL; 915 return; 916 } 917 918 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 919 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); 920 } 921 922 static const struct drm_crtc_funcs vc4_crtc_funcs = { 923 .set_config = drm_atomic_helper_set_config, 924 .destroy = vc4_crtc_destroy, 925 .page_flip = vc4_page_flip, 926 .set_property = NULL, 927 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 928 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 929 .reset = vc4_crtc_reset, 930 .atomic_duplicate_state = vc4_crtc_duplicate_state, 931 .atomic_destroy_state = vc4_crtc_destroy_state, 932 .enable_vblank = vc4_enable_vblank, 933 .disable_vblank = vc4_disable_vblank, 934 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 935 }; 936 937 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 938 .mode_valid = vc4_crtc_mode_valid, 939 .atomic_check = vc4_crtc_atomic_check, 940 .atomic_flush = vc4_hvs_atomic_flush, 941 .atomic_enable = vc4_crtc_atomic_enable, 942 .atomic_disable = vc4_crtc_atomic_disable, 943 .get_scanout_position = vc4_crtc_get_scanout_position, 944 }; 945 946 static const struct vc4_pv_data bcm2835_pv0_data = { 947 .base = { 948 .hvs_available_channels = BIT(0), 949 .hvs_output = 0, 950 }, 951 .debugfs_name = "crtc0_regs", 952 .fifo_depth = 64, 953 .pixels_per_clock = 1, 954 .encoder_types = { 955 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 956 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 957 }, 958 }; 959 960 static const struct vc4_pv_data bcm2835_pv1_data = { 961 .base = { 962 .hvs_available_channels = BIT(2), 963 .hvs_output = 2, 964 }, 965 .debugfs_name = "crtc1_regs", 966 .fifo_depth = 64, 967 .pixels_per_clock = 1, 968 .encoder_types = { 969 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 970 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 971 }, 972 }; 973 974 static const struct vc4_pv_data bcm2835_pv2_data = { 975 .base = { 976 .hvs_available_channels = BIT(1), 977 .hvs_output = 1, 978 }, 979 .debugfs_name = "crtc2_regs", 980 .fifo_depth = 64, 981 .pixels_per_clock = 1, 982 .encoder_types = { 983 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, 984 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 985 }, 986 }; 987 988 static const struct vc4_pv_data bcm2711_pv0_data = { 989 .base = { 990 .hvs_available_channels = BIT(0), 991 .hvs_output = 0, 992 }, 993 .debugfs_name = "crtc0_regs", 994 .fifo_depth = 64, 995 .pixels_per_clock = 1, 996 .encoder_types = { 997 [0] = VC4_ENCODER_TYPE_DSI0, 998 [1] = VC4_ENCODER_TYPE_DPI, 999 }, 1000 }; 1001 1002 static const struct vc4_pv_data bcm2711_pv1_data = { 1003 .base = { 1004 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1005 .hvs_output = 3, 1006 }, 1007 .debugfs_name = "crtc1_regs", 1008 .fifo_depth = 64, 1009 .pixels_per_clock = 1, 1010 .encoder_types = { 1011 [0] = VC4_ENCODER_TYPE_DSI1, 1012 [1] = VC4_ENCODER_TYPE_SMI, 1013 }, 1014 }; 1015 1016 static const struct vc4_pv_data bcm2711_pv2_data = { 1017 .base = { 1018 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1019 .hvs_output = 4, 1020 }, 1021 .debugfs_name = "crtc2_regs", 1022 .fifo_depth = 256, 1023 .pixels_per_clock = 2, 1024 .encoder_types = { 1025 [0] = VC4_ENCODER_TYPE_HDMI0, 1026 }, 1027 }; 1028 1029 static const struct vc4_pv_data bcm2711_pv3_data = { 1030 .base = { 1031 .hvs_available_channels = BIT(1), 1032 .hvs_output = 1, 1033 }, 1034 .debugfs_name = "crtc3_regs", 1035 .fifo_depth = 64, 1036 .pixels_per_clock = 1, 1037 .encoder_types = { 1038 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1039 }, 1040 }; 1041 1042 static const struct vc4_pv_data bcm2711_pv4_data = { 1043 .base = { 1044 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1045 .hvs_output = 5, 1046 }, 1047 .debugfs_name = "crtc4_regs", 1048 .fifo_depth = 64, 1049 .pixels_per_clock = 2, 1050 .encoder_types = { 1051 [0] = VC4_ENCODER_TYPE_HDMI1, 1052 }, 1053 }; 1054 1055 static const struct of_device_id vc4_crtc_dt_match[] = { 1056 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, 1057 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, 1058 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, 1059 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, 1060 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, 1061 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, 1062 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, 1063 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, 1064 {} 1065 }; 1066 1067 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1068 struct drm_crtc *crtc) 1069 { 1070 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1071 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 1072 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; 1073 struct drm_encoder *encoder; 1074 1075 drm_for_each_encoder(encoder, drm) { 1076 struct vc4_encoder *vc4_encoder; 1077 int i; 1078 1079 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) 1080 continue; 1081 1082 vc4_encoder = to_vc4_encoder(encoder); 1083 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { 1084 if (vc4_encoder->type == encoder_types[i]) { 1085 vc4_encoder->clock_select = i; 1086 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1087 break; 1088 } 1089 } 1090 } 1091 } 1092 1093 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc, 1094 const struct drm_crtc_funcs *crtc_funcs, 1095 const struct drm_crtc_helper_funcs *crtc_helper_funcs) 1096 { 1097 struct vc4_dev *vc4 = to_vc4_dev(drm); 1098 struct drm_crtc *crtc = &vc4_crtc->base; 1099 struct drm_plane *primary_plane; 1100 unsigned int i; 1101 1102 /* For now, we create just the primary and the legacy cursor 1103 * planes. We should be able to stack more planes on easily, 1104 * but to do that we would need to compute the bandwidth 1105 * requirement of the plane configuration, and reject ones 1106 * that will take too much. 1107 */ 1108 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1109 if (IS_ERR(primary_plane)) { 1110 dev_err(drm->dev, "failed to construct primary plane\n"); 1111 return PTR_ERR(primary_plane); 1112 } 1113 1114 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1115 crtc_funcs, NULL); 1116 drm_crtc_helper_add(crtc, crtc_helper_funcs); 1117 1118 if (!vc4->hvs->hvs5) { 1119 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1120 1121 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1122 1123 /* We support CTM, but only for one CRTC at a time. It's therefore 1124 * implemented as private driver state in vc4_kms, not here. 1125 */ 1126 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1127 } 1128 1129 for (i = 0; i < crtc->gamma_size; i++) { 1130 vc4_crtc->lut_r[i] = i; 1131 vc4_crtc->lut_g[i] = i; 1132 vc4_crtc->lut_b[i] = i; 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1139 { 1140 struct platform_device *pdev = to_platform_device(dev); 1141 struct drm_device *drm = dev_get_drvdata(master); 1142 const struct vc4_pv_data *pv_data; 1143 struct vc4_crtc *vc4_crtc; 1144 struct drm_crtc *crtc; 1145 struct drm_plane *destroy_plane, *temp; 1146 int ret; 1147 1148 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1149 if (!vc4_crtc) 1150 return -ENOMEM; 1151 crtc = &vc4_crtc->base; 1152 1153 pv_data = of_device_get_match_data(dev); 1154 if (!pv_data) 1155 return -ENODEV; 1156 vc4_crtc->data = &pv_data->base; 1157 vc4_crtc->pdev = pdev; 1158 1159 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1160 if (IS_ERR(vc4_crtc->regs)) 1161 return PTR_ERR(vc4_crtc->regs); 1162 1163 vc4_crtc->regset.base = vc4_crtc->regs; 1164 vc4_crtc->regset.regs = crtc_regs; 1165 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1166 1167 ret = vc4_crtc_init(drm, vc4_crtc, 1168 &vc4_crtc_funcs, &vc4_crtc_helper_funcs); 1169 if (ret) 1170 return ret; 1171 vc4_set_crtc_possible_masks(drm, crtc); 1172 1173 CRTC_WRITE(PV_INTEN, 0); 1174 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1175 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1176 vc4_crtc_irq_handler, 1177 IRQF_SHARED, 1178 "vc4 crtc", vc4_crtc); 1179 if (ret) 1180 goto err_destroy_planes; 1181 1182 platform_set_drvdata(pdev, vc4_crtc); 1183 1184 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name, 1185 &vc4_crtc->regset); 1186 1187 return 0; 1188 1189 err_destroy_planes: 1190 list_for_each_entry_safe(destroy_plane, temp, 1191 &drm->mode_config.plane_list, head) { 1192 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1193 destroy_plane->funcs->destroy(destroy_plane); 1194 } 1195 1196 return ret; 1197 } 1198 1199 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1200 void *data) 1201 { 1202 struct platform_device *pdev = to_platform_device(dev); 1203 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1204 1205 vc4_crtc_destroy(&vc4_crtc->base); 1206 1207 CRTC_WRITE(PV_INTEN, 0); 1208 1209 platform_set_drvdata(pdev, NULL); 1210 } 1211 1212 static const struct component_ops vc4_crtc_ops = { 1213 .bind = vc4_crtc_bind, 1214 .unbind = vc4_crtc_unbind, 1215 }; 1216 1217 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1218 { 1219 return component_add(&pdev->dev, &vc4_crtc_ops); 1220 } 1221 1222 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1223 { 1224 component_del(&pdev->dev, &vc4_crtc_ops); 1225 return 0; 1226 } 1227 1228 struct platform_driver vc4_crtc_driver = { 1229 .probe = vc4_crtc_dev_probe, 1230 .remove = vc4_crtc_dev_remove, 1231 .driver = { 1232 .name = "vc4_crtc", 1233 .of_match_table = vc4_crtc_dt_match, 1234 }, 1235 }; 1236