xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 
36 #include <drm/drm_atomic.h>
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_probe_helper.h>
42 #include <drm/drm_vblank.h>
43 
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46 
47 #define HVS_FIFO_LATENCY_PIX	6
48 
49 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
50 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
51 
52 static const struct debugfs_reg32 crtc_regs[] = {
53 	VC4_REG32(PV_CONTROL),
54 	VC4_REG32(PV_V_CONTROL),
55 	VC4_REG32(PV_VSYNCD_EVEN),
56 	VC4_REG32(PV_HORZA),
57 	VC4_REG32(PV_HORZB),
58 	VC4_REG32(PV_VERTA),
59 	VC4_REG32(PV_VERTB),
60 	VC4_REG32(PV_VERTA_EVEN),
61 	VC4_REG32(PV_VERTB_EVEN),
62 	VC4_REG32(PV_INTEN),
63 	VC4_REG32(PV_INTSTAT),
64 	VC4_REG32(PV_STAT),
65 	VC4_REG32(PV_HACT_ACT),
66 };
67 
68 static unsigned int
69 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
70 {
71 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
72 	/* Top/base are supposed to be 4-pixel aligned, but the
73 	 * Raspberry Pi firmware fills the low bits (which are
74 	 * presumably ignored).
75 	 */
76 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
77 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
78 
79 	return top - base + 4;
80 }
81 
82 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
83 					  bool in_vblank_irq,
84 					  int *vpos, int *hpos,
85 					  ktime_t *stime, ktime_t *etime,
86 					  const struct drm_display_mode *mode)
87 {
88 	struct drm_device *dev = crtc->dev;
89 	struct vc4_dev *vc4 = to_vc4_dev(dev);
90 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
91 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
92 	unsigned int cob_size;
93 	u32 val;
94 	int fifo_lines;
95 	int vblank_lines;
96 	bool ret = false;
97 
98 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
99 
100 	/* Get optional system timestamp before query. */
101 	if (stime)
102 		*stime = ktime_get();
103 
104 	/*
105 	 * Read vertical scanline which is currently composed for our
106 	 * pixelvalve by the HVS, and also the scaler status.
107 	 */
108 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
109 
110 	/* Get optional system timestamp after query. */
111 	if (etime)
112 		*etime = ktime_get();
113 
114 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
115 
116 	/* Vertical position of hvs composed scanline. */
117 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
118 	*hpos = 0;
119 
120 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
121 		*vpos /= 2;
122 
123 		/* Use hpos to correct for field offset in interlaced mode. */
124 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
125 			*hpos += mode->crtc_htotal / 2;
126 	}
127 
128 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
129 	/* This is the offset we need for translating hvs -> pv scanout pos. */
130 	fifo_lines = cob_size / mode->crtc_hdisplay;
131 
132 	if (fifo_lines > 0)
133 		ret = true;
134 
135 	/* HVS more than fifo_lines into frame for compositing? */
136 	if (*vpos > fifo_lines) {
137 		/*
138 		 * We are in active scanout and can get some meaningful results
139 		 * from HVS. The actual PV scanout can not trail behind more
140 		 * than fifo_lines as that is the fifo's capacity. Assume that
141 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
142 		 * refilling the fifo and PV consuming from the fifo, ie.
143 		 * whenever the PV consumes and frees up a scanline in the
144 		 * fifo, the HVS will immediately refill it, therefore
145 		 * incrementing vpos. Therefore we choose HVS read position -
146 		 * fifo size in scanlines as a estimate of the real scanout
147 		 * position of the PV.
148 		 */
149 		*vpos -= fifo_lines + 1;
150 
151 		return ret;
152 	}
153 
154 	/*
155 	 * Less: This happens when we are in vblank and the HVS, after getting
156 	 * the VSTART restart signal from the PV, just started refilling its
157 	 * fifo with new lines from the top-most lines of the new framebuffers.
158 	 * The PV does not scan out in vblank, so does not remove lines from
159 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
160 	 * We can't get meaningful readings wrt. scanline position of the PV
161 	 * and need to make things up in a approximative but consistent way.
162 	 */
163 	vblank_lines = mode->vtotal - mode->vdisplay;
164 
165 	if (in_vblank_irq) {
166 		/*
167 		 * Assume the irq handler got called close to first
168 		 * line of vblank, so PV has about a full vblank
169 		 * scanlines to go, and as a base timestamp use the
170 		 * one taken at entry into vblank irq handler, so it
171 		 * is not affected by random delays due to lock
172 		 * contention on event_lock or vblank_time lock in
173 		 * the core.
174 		 */
175 		*vpos = -vblank_lines;
176 
177 		if (stime)
178 			*stime = vc4_crtc->t_vblank;
179 		if (etime)
180 			*etime = vc4_crtc->t_vblank;
181 
182 		/*
183 		 * If the HVS fifo is not yet full then we know for certain
184 		 * we are at the very beginning of vblank, as the hvs just
185 		 * started refilling, and the stime and etime timestamps
186 		 * truly correspond to start of vblank.
187 		 *
188 		 * Unfortunately there's no way to report this to upper levels
189 		 * and make it more useful.
190 		 */
191 	} else {
192 		/*
193 		 * No clue where we are inside vblank. Return a vpos of zero,
194 		 * which will cause calling code to just return the etime
195 		 * timestamp uncorrected. At least this is no worse than the
196 		 * standard fallback.
197 		 */
198 		*vpos = 0;
199 	}
200 
201 	return ret;
202 }
203 
204 void vc4_crtc_destroy(struct drm_crtc *crtc)
205 {
206 	drm_crtc_cleanup(crtc);
207 }
208 
209 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
210 {
211 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
212 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
213 	u32 fifo_len_bytes = pv_data->fifo_depth;
214 
215 	/*
216 	 * Pixels are pulled from the HVS if the number of bytes is
217 	 * lower than the FIFO full level.
218 	 *
219 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
220 	 * need to convert those 6 pixels in bytes, depending on the
221 	 * format, and then subtract that from the length of the FIFO
222 	 * to make sure we never end up in a situation where the FIFO
223 	 * is full.
224 	 */
225 	switch (format) {
226 	case PV_CONTROL_FORMAT_DSIV_16:
227 	case PV_CONTROL_FORMAT_DSIC_16:
228 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
229 	case PV_CONTROL_FORMAT_DSIV_18:
230 		return fifo_len_bytes - 14;
231 	case PV_CONTROL_FORMAT_24:
232 	case PV_CONTROL_FORMAT_DSIV_24:
233 	default:
234 		/*
235 		 * For some reason, the pixelvalve4 doesn't work with
236 		 * the usual formula and will only work with 32.
237 		 */
238 		if (crtc_data->hvs_output == 5)
239 			return 32;
240 
241 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
242 	}
243 }
244 
245 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
246 					     u32 format)
247 {
248 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
249 	u32 ret = 0;
250 
251 	ret |= VC4_SET_FIELD((level >> 6),
252 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
253 
254 	return ret | VC4_SET_FIELD(level & 0x3f,
255 				   PV_CONTROL_FIFO_LEVEL);
256 }
257 
258 /*
259  * Returns the encoder attached to the CRTC.
260  *
261  * VC4 can only scan out to one encoder at a time, while the DRM core
262  * allows drivers to push pixels to more than one encoder from the
263  * same CRTC.
264  */
265 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
266 {
267 	struct drm_connector *connector;
268 	struct drm_connector_list_iter conn_iter;
269 
270 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
271 	drm_for_each_connector_iter(connector, &conn_iter) {
272 		if (connector->state->crtc == crtc) {
273 			drm_connector_list_iter_end(&conn_iter);
274 			return connector->encoder;
275 		}
276 	}
277 	drm_connector_list_iter_end(&conn_iter);
278 
279 	return NULL;
280 }
281 
282 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
283 {
284 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
285 
286 	/* The PV needs to be disabled before it can be flushed */
287 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
288 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
289 }
290 
291 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
292 {
293 	struct drm_device *dev = crtc->dev;
294 	struct vc4_dev *vc4 = to_vc4_dev(dev);
295 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
296 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
299 	struct drm_crtc_state *state = crtc->state;
300 	struct drm_display_mode *mode = &state->adjusted_mode;
301 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
302 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
303 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
304 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
305 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
306 	u8 ppc = pv_data->pixels_per_clock;
307 	bool debug_dump_regs = false;
308 
309 	if (debug_dump_regs) {
310 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
311 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
312 			 drm_crtc_index(crtc));
313 		drm_print_regset32(&p, &vc4_crtc->regset);
314 	}
315 
316 	vc4_crtc_pixelvalve_reset(crtc);
317 
318 	CRTC_WRITE(PV_HORZA,
319 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
320 				 PV_HORZA_HBP) |
321 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
322 				 PV_HORZA_HSYNC));
323 
324 	CRTC_WRITE(PV_HORZB,
325 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
326 				 PV_HORZB_HFP) |
327 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
328 				 PV_HORZB_HACTIVE));
329 
330 	CRTC_WRITE(PV_VERTA,
331 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
332 				 PV_VERTA_VBP) |
333 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
334 				 PV_VERTA_VSYNC));
335 	CRTC_WRITE(PV_VERTB,
336 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
337 				 PV_VERTB_VFP) |
338 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
339 
340 	if (interlace) {
341 		CRTC_WRITE(PV_VERTA_EVEN,
342 			   VC4_SET_FIELD(mode->crtc_vtotal -
343 					 mode->crtc_vsync_end - 1,
344 					 PV_VERTA_VBP) |
345 			   VC4_SET_FIELD(mode->crtc_vsync_end -
346 					 mode->crtc_vsync_start,
347 					 PV_VERTA_VSYNC));
348 		CRTC_WRITE(PV_VERTB_EVEN,
349 			   VC4_SET_FIELD(mode->crtc_vsync_start -
350 					 mode->crtc_vdisplay,
351 					 PV_VERTB_VFP) |
352 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
353 
354 		/* We set up first field even mode for HDMI.  VEC's
355 		 * NTSC mode would want first field odd instead, once
356 		 * we support it (to do so, set ODD_FIRST and put the
357 		 * delay in VSYNCD_EVEN instead).
358 		 */
359 		CRTC_WRITE(PV_V_CONTROL,
360 			   PV_VCONTROL_CONTINUOUS |
361 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
362 			   PV_VCONTROL_INTERLACE |
363 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
364 					 PV_VCONTROL_ODD_DELAY));
365 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
366 	} else {
367 		CRTC_WRITE(PV_V_CONTROL,
368 			   PV_VCONTROL_CONTINUOUS |
369 			   (is_dsi ? PV_VCONTROL_DSI : 0));
370 	}
371 
372 	if (is_dsi)
373 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
374 
375 	if (vc4->hvs->hvs5)
376 		CRTC_WRITE(PV_MUX_CFG,
377 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
378 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
379 
380 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
381 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
382 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
383 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
384 		   PV_CONTROL_CLR_AT_START |
385 		   PV_CONTROL_TRIGGER_UNDERFLOW |
386 		   PV_CONTROL_WAIT_HSTART |
387 		   VC4_SET_FIELD(vc4_encoder->clock_select,
388 				 PV_CONTROL_CLK_SELECT));
389 
390 	if (debug_dump_regs) {
391 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
392 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
393 			 drm_crtc_index(crtc));
394 		drm_print_regset32(&p, &vc4_crtc->regset);
395 	}
396 }
397 
398 static void require_hvs_enabled(struct drm_device *dev)
399 {
400 	struct vc4_dev *vc4 = to_vc4_dev(dev);
401 
402 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
403 		     SCALER_DISPCTRL_ENABLE);
404 }
405 
406 static int vc4_crtc_disable(struct drm_crtc *crtc, unsigned int channel)
407 {
408 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
409 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
410 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
411 	struct drm_device *dev = crtc->dev;
412 	int ret;
413 
414 	CRTC_WRITE(PV_V_CONTROL,
415 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
416 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
417 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
418 
419 	/*
420 	 * This delay is needed to avoid to get a pixel stuck in an
421 	 * unflushable FIFO between the pixelvalve and the HDMI
422 	 * controllers on the BCM2711.
423 	 *
424 	 * Timing is fairly sensitive here, so mdelay is the safest
425 	 * approach.
426 	 *
427 	 * If it was to be reworked, the stuck pixel happens on a
428 	 * BCM2711 when changing mode with a good probability, so a
429 	 * script that changes mode on a regular basis should trigger
430 	 * the bug after less than 10 attempts. It manifests itself with
431 	 * every pixels being shifted by one to the right, and thus the
432 	 * last pixel of a line actually being displayed as the first
433 	 * pixel on the next line.
434 	 */
435 	mdelay(20);
436 
437 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
438 		vc4_encoder->post_crtc_disable(encoder);
439 
440 	vc4_crtc_pixelvalve_reset(crtc);
441 	vc4_hvs_stop_channel(dev, channel);
442 
443 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
444 		vc4_encoder->post_crtc_powerdown(encoder);
445 
446 	return 0;
447 }
448 
449 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
450 {
451 	struct drm_device *drm = crtc->dev;
452 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
453 	int channel;
454 
455 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
456 				      "brcm,bcm2711-pixelvalve2") ||
457 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
458 				      "brcm,bcm2711-pixelvalve4")))
459 		return 0;
460 
461 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
462 		return 0;
463 
464 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
465 		return 0;
466 
467 	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
468 	if (channel < 0)
469 		return 0;
470 
471 	return vc4_crtc_disable(crtc, channel);
472 }
473 
474 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
475 				    struct drm_atomic_state *state)
476 {
477 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
478 									 crtc);
479 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
480 	struct drm_device *dev = crtc->dev;
481 
482 	require_hvs_enabled(dev);
483 
484 	/* Disable vblank irq handling before crtc is disabled. */
485 	drm_crtc_vblank_off(crtc);
486 
487 	vc4_crtc_disable(crtc, old_vc4_state->assigned_channel);
488 
489 	/*
490 	 * Make sure we issue a vblank event after disabling the CRTC if
491 	 * someone was waiting it.
492 	 */
493 	if (crtc->state->event) {
494 		unsigned long flags;
495 
496 		spin_lock_irqsave(&dev->event_lock, flags);
497 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
498 		crtc->state->event = NULL;
499 		spin_unlock_irqrestore(&dev->event_lock, flags);
500 	}
501 }
502 
503 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
504 				   struct drm_atomic_state *state)
505 {
506 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
507 									 crtc);
508 	struct drm_device *dev = crtc->dev;
509 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
510 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
511 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
512 
513 	require_hvs_enabled(dev);
514 
515 	/* Enable vblank irq handling before crtc is started otherwise
516 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
517 	 */
518 	drm_crtc_vblank_on(crtc);
519 
520 	vc4_hvs_atomic_enable(crtc, old_state);
521 
522 	if (vc4_encoder->pre_crtc_configure)
523 		vc4_encoder->pre_crtc_configure(encoder);
524 
525 	vc4_crtc_config_pv(crtc);
526 
527 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
528 
529 	if (vc4_encoder->pre_crtc_enable)
530 		vc4_encoder->pre_crtc_enable(encoder);
531 
532 	/* When feeding the transposer block the pixelvalve is unneeded and
533 	 * should not be enabled.
534 	 */
535 	CRTC_WRITE(PV_V_CONTROL,
536 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
537 
538 	if (vc4_encoder->post_crtc_enable)
539 		vc4_encoder->post_crtc_enable(encoder);
540 }
541 
542 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
543 						const struct drm_display_mode *mode)
544 {
545 	/* Do not allow doublescan modes from user space */
546 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
547 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
548 			      crtc->base.id);
549 		return MODE_NO_DBLESCAN;
550 	}
551 
552 	return MODE_OK;
553 }
554 
555 void vc4_crtc_get_margins(struct drm_crtc_state *state,
556 			  unsigned int *left, unsigned int *right,
557 			  unsigned int *top, unsigned int *bottom)
558 {
559 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
560 	struct drm_connector_state *conn_state;
561 	struct drm_connector *conn;
562 	int i;
563 
564 	*left = vc4_state->margins.left;
565 	*right = vc4_state->margins.right;
566 	*top = vc4_state->margins.top;
567 	*bottom = vc4_state->margins.bottom;
568 
569 	/* We have to interate over all new connector states because
570 	 * vc4_crtc_get_margins() might be called before
571 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
572 	 * might be outdated.
573 	 */
574 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
575 		if (conn_state->crtc != state->crtc)
576 			continue;
577 
578 		*left = conn_state->tv.margins.left;
579 		*right = conn_state->tv.margins.right;
580 		*top = conn_state->tv.margins.top;
581 		*bottom = conn_state->tv.margins.bottom;
582 		break;
583 	}
584 }
585 
586 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
587 				 struct drm_atomic_state *state)
588 {
589 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
590 									  crtc);
591 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
592 	struct drm_connector *conn;
593 	struct drm_connector_state *conn_state;
594 	int ret, i;
595 
596 	ret = vc4_hvs_atomic_check(crtc, crtc_state);
597 	if (ret)
598 		return ret;
599 
600 	for_each_new_connector_in_state(state, conn, conn_state,
601 					i) {
602 		if (conn_state->crtc != crtc)
603 			continue;
604 
605 		vc4_state->margins.left = conn_state->tv.margins.left;
606 		vc4_state->margins.right = conn_state->tv.margins.right;
607 		vc4_state->margins.top = conn_state->tv.margins.top;
608 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
609 		break;
610 	}
611 
612 	return 0;
613 }
614 
615 static int vc4_enable_vblank(struct drm_crtc *crtc)
616 {
617 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
618 
619 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
620 
621 	return 0;
622 }
623 
624 static void vc4_disable_vblank(struct drm_crtc *crtc)
625 {
626 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
627 
628 	CRTC_WRITE(PV_INTEN, 0);
629 }
630 
631 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
632 {
633 	struct drm_crtc *crtc = &vc4_crtc->base;
634 	struct drm_device *dev = crtc->dev;
635 	struct vc4_dev *vc4 = to_vc4_dev(dev);
636 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
637 	u32 chan = vc4_state->assigned_channel;
638 	unsigned long flags;
639 
640 	spin_lock_irqsave(&dev->event_lock, flags);
641 	if (vc4_crtc->event &&
642 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
643 	     vc4_state->feed_txp)) {
644 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
645 		vc4_crtc->event = NULL;
646 		drm_crtc_vblank_put(crtc);
647 
648 		/* Wait for the page flip to unmask the underrun to ensure that
649 		 * the display list was updated by the hardware. Before that
650 		 * happens, the HVS will be using the previous display list with
651 		 * the CRTC and encoder already reconfigured, leading to
652 		 * underruns. This can be seen when reconfiguring the CRTC.
653 		 */
654 		vc4_hvs_unmask_underrun(dev, chan);
655 	}
656 	spin_unlock_irqrestore(&dev->event_lock, flags);
657 }
658 
659 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
660 {
661 	crtc->t_vblank = ktime_get();
662 	drm_crtc_handle_vblank(&crtc->base);
663 	vc4_crtc_handle_page_flip(crtc);
664 }
665 
666 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
667 {
668 	struct vc4_crtc *vc4_crtc = data;
669 	u32 stat = CRTC_READ(PV_INTSTAT);
670 	irqreturn_t ret = IRQ_NONE;
671 
672 	if (stat & PV_INT_VFP_START) {
673 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
674 		vc4_crtc_handle_vblank(vc4_crtc);
675 		ret = IRQ_HANDLED;
676 	}
677 
678 	return ret;
679 }
680 
681 struct vc4_async_flip_state {
682 	struct drm_crtc *crtc;
683 	struct drm_framebuffer *fb;
684 	struct drm_framebuffer *old_fb;
685 	struct drm_pending_vblank_event *event;
686 
687 	struct vc4_seqno_cb cb;
688 };
689 
690 /* Called when the V3D execution for the BO being flipped to is done, so that
691  * we can actually update the plane's address to point to it.
692  */
693 static void
694 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
695 {
696 	struct vc4_async_flip_state *flip_state =
697 		container_of(cb, struct vc4_async_flip_state, cb);
698 	struct drm_crtc *crtc = flip_state->crtc;
699 	struct drm_device *dev = crtc->dev;
700 	struct vc4_dev *vc4 = to_vc4_dev(dev);
701 	struct drm_plane *plane = crtc->primary;
702 
703 	vc4_plane_async_set_fb(plane, flip_state->fb);
704 	if (flip_state->event) {
705 		unsigned long flags;
706 
707 		spin_lock_irqsave(&dev->event_lock, flags);
708 		drm_crtc_send_vblank_event(crtc, flip_state->event);
709 		spin_unlock_irqrestore(&dev->event_lock, flags);
710 	}
711 
712 	drm_crtc_vblank_put(crtc);
713 	drm_framebuffer_put(flip_state->fb);
714 
715 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
716 	 * when the planes are updated through the async update path.
717 	 * FIXME: we should move to generic async-page-flip when it's
718 	 * available, so that we can get rid of this hand-made cleanup_fb()
719 	 * logic.
720 	 */
721 	if (flip_state->old_fb) {
722 		struct drm_gem_cma_object *cma_bo;
723 		struct vc4_bo *bo;
724 
725 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
726 		bo = to_vc4_bo(&cma_bo->base);
727 		vc4_bo_dec_usecnt(bo);
728 		drm_framebuffer_put(flip_state->old_fb);
729 	}
730 
731 	kfree(flip_state);
732 
733 	up(&vc4->async_modeset);
734 }
735 
736 /* Implements async (non-vblank-synced) page flips.
737  *
738  * The page flip ioctl needs to return immediately, so we grab the
739  * modeset semaphore on the pipe, and queue the address update for
740  * when V3D is done with the BO being flipped to.
741  */
742 static int vc4_async_page_flip(struct drm_crtc *crtc,
743 			       struct drm_framebuffer *fb,
744 			       struct drm_pending_vblank_event *event,
745 			       uint32_t flags)
746 {
747 	struct drm_device *dev = crtc->dev;
748 	struct vc4_dev *vc4 = to_vc4_dev(dev);
749 	struct drm_plane *plane = crtc->primary;
750 	int ret = 0;
751 	struct vc4_async_flip_state *flip_state;
752 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
753 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
754 
755 	/* Increment the BO usecnt here, so that we never end up with an
756 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
757 	 * plane is later updated through the non-async path.
758 	 * FIXME: we should move to generic async-page-flip when it's
759 	 * available, so that we can get rid of this hand-made prepare_fb()
760 	 * logic.
761 	 */
762 	ret = vc4_bo_inc_usecnt(bo);
763 	if (ret)
764 		return ret;
765 
766 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
767 	if (!flip_state) {
768 		vc4_bo_dec_usecnt(bo);
769 		return -ENOMEM;
770 	}
771 
772 	drm_framebuffer_get(fb);
773 	flip_state->fb = fb;
774 	flip_state->crtc = crtc;
775 	flip_state->event = event;
776 
777 	/* Make sure all other async modesetes have landed. */
778 	ret = down_interruptible(&vc4->async_modeset);
779 	if (ret) {
780 		drm_framebuffer_put(fb);
781 		vc4_bo_dec_usecnt(bo);
782 		kfree(flip_state);
783 		return ret;
784 	}
785 
786 	/* Save the current FB before it's replaced by the new one in
787 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
788 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
789 	 * it consistent.
790 	 * FIXME: we should move to generic async-page-flip when it's
791 	 * available, so that we can get rid of this hand-made cleanup_fb()
792 	 * logic.
793 	 */
794 	flip_state->old_fb = plane->state->fb;
795 	if (flip_state->old_fb)
796 		drm_framebuffer_get(flip_state->old_fb);
797 
798 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
799 
800 	/* Immediately update the plane's legacy fb pointer, so that later
801 	 * modeset prep sees the state that will be present when the semaphore
802 	 * is released.
803 	 */
804 	drm_atomic_set_fb_for_plane(plane->state, fb);
805 
806 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
807 			   vc4_async_page_flip_complete);
808 
809 	/* Driver takes ownership of state on successful async commit. */
810 	return 0;
811 }
812 
813 int vc4_page_flip(struct drm_crtc *crtc,
814 		  struct drm_framebuffer *fb,
815 		  struct drm_pending_vblank_event *event,
816 		  uint32_t flags,
817 		  struct drm_modeset_acquire_ctx *ctx)
818 {
819 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
820 		return vc4_async_page_flip(crtc, fb, event, flags);
821 	else
822 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
823 }
824 
825 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
826 {
827 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
828 
829 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
830 	if (!vc4_state)
831 		return NULL;
832 
833 	old_vc4_state = to_vc4_crtc_state(crtc->state);
834 	vc4_state->feed_txp = old_vc4_state->feed_txp;
835 	vc4_state->margins = old_vc4_state->margins;
836 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
837 
838 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
839 	return &vc4_state->base;
840 }
841 
842 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
843 			    struct drm_crtc_state *state)
844 {
845 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
846 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
847 
848 	if (drm_mm_node_allocated(&vc4_state->mm)) {
849 		unsigned long flags;
850 
851 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
852 		drm_mm_remove_node(&vc4_state->mm);
853 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
854 
855 	}
856 
857 	drm_atomic_helper_crtc_destroy_state(crtc, state);
858 }
859 
860 void vc4_crtc_reset(struct drm_crtc *crtc)
861 {
862 	struct vc4_crtc_state *vc4_crtc_state;
863 
864 	if (crtc->state)
865 		vc4_crtc_destroy_state(crtc, crtc->state);
866 
867 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
868 	if (!vc4_crtc_state) {
869 		crtc->state = NULL;
870 		return;
871 	}
872 
873 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
874 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
875 }
876 
877 static const struct drm_crtc_funcs vc4_crtc_funcs = {
878 	.set_config = drm_atomic_helper_set_config,
879 	.destroy = vc4_crtc_destroy,
880 	.page_flip = vc4_page_flip,
881 	.set_property = NULL,
882 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
883 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
884 	.reset = vc4_crtc_reset,
885 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
886 	.atomic_destroy_state = vc4_crtc_destroy_state,
887 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
888 	.enable_vblank = vc4_enable_vblank,
889 	.disable_vblank = vc4_disable_vblank,
890 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
891 };
892 
893 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
894 	.mode_valid = vc4_crtc_mode_valid,
895 	.atomic_check = vc4_crtc_atomic_check,
896 	.atomic_flush = vc4_hvs_atomic_flush,
897 	.atomic_enable = vc4_crtc_atomic_enable,
898 	.atomic_disable = vc4_crtc_atomic_disable,
899 	.get_scanout_position = vc4_crtc_get_scanout_position,
900 };
901 
902 static const struct vc4_pv_data bcm2835_pv0_data = {
903 	.base = {
904 		.hvs_available_channels = BIT(0),
905 		.hvs_output = 0,
906 	},
907 	.debugfs_name = "crtc0_regs",
908 	.fifo_depth = 64,
909 	.pixels_per_clock = 1,
910 	.encoder_types = {
911 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
912 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
913 	},
914 };
915 
916 static const struct vc4_pv_data bcm2835_pv1_data = {
917 	.base = {
918 		.hvs_available_channels = BIT(2),
919 		.hvs_output = 2,
920 	},
921 	.debugfs_name = "crtc1_regs",
922 	.fifo_depth = 64,
923 	.pixels_per_clock = 1,
924 	.encoder_types = {
925 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
926 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
927 	},
928 };
929 
930 static const struct vc4_pv_data bcm2835_pv2_data = {
931 	.base = {
932 		.hvs_available_channels = BIT(1),
933 		.hvs_output = 1,
934 	},
935 	.debugfs_name = "crtc2_regs",
936 	.fifo_depth = 64,
937 	.pixels_per_clock = 1,
938 	.encoder_types = {
939 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
940 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
941 	},
942 };
943 
944 static const struct vc4_pv_data bcm2711_pv0_data = {
945 	.base = {
946 		.hvs_available_channels = BIT(0),
947 		.hvs_output = 0,
948 	},
949 	.debugfs_name = "crtc0_regs",
950 	.fifo_depth = 64,
951 	.pixels_per_clock = 1,
952 	.encoder_types = {
953 		[0] = VC4_ENCODER_TYPE_DSI0,
954 		[1] = VC4_ENCODER_TYPE_DPI,
955 	},
956 };
957 
958 static const struct vc4_pv_data bcm2711_pv1_data = {
959 	.base = {
960 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
961 		.hvs_output = 3,
962 	},
963 	.debugfs_name = "crtc1_regs",
964 	.fifo_depth = 64,
965 	.pixels_per_clock = 1,
966 	.encoder_types = {
967 		[0] = VC4_ENCODER_TYPE_DSI1,
968 		[1] = VC4_ENCODER_TYPE_SMI,
969 	},
970 };
971 
972 static const struct vc4_pv_data bcm2711_pv2_data = {
973 	.base = {
974 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
975 		.hvs_output = 4,
976 	},
977 	.debugfs_name = "crtc2_regs",
978 	.fifo_depth = 256,
979 	.pixels_per_clock = 2,
980 	.encoder_types = {
981 		[0] = VC4_ENCODER_TYPE_HDMI0,
982 	},
983 };
984 
985 static const struct vc4_pv_data bcm2711_pv3_data = {
986 	.base = {
987 		.hvs_available_channels = BIT(1),
988 		.hvs_output = 1,
989 	},
990 	.debugfs_name = "crtc3_regs",
991 	.fifo_depth = 64,
992 	.pixels_per_clock = 1,
993 	.encoder_types = {
994 		[0] = VC4_ENCODER_TYPE_VEC,
995 	},
996 };
997 
998 static const struct vc4_pv_data bcm2711_pv4_data = {
999 	.base = {
1000 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1001 		.hvs_output = 5,
1002 	},
1003 	.debugfs_name = "crtc4_regs",
1004 	.fifo_depth = 64,
1005 	.pixels_per_clock = 2,
1006 	.encoder_types = {
1007 		[0] = VC4_ENCODER_TYPE_HDMI1,
1008 	},
1009 };
1010 
1011 static const struct of_device_id vc4_crtc_dt_match[] = {
1012 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1013 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1014 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1015 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1016 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1017 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1018 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1019 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1020 	{}
1021 };
1022 
1023 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1024 					struct drm_crtc *crtc)
1025 {
1026 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1027 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1028 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1029 	struct drm_encoder *encoder;
1030 
1031 	drm_for_each_encoder(encoder, drm) {
1032 		struct vc4_encoder *vc4_encoder;
1033 		int i;
1034 
1035 		vc4_encoder = to_vc4_encoder(encoder);
1036 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1037 			if (vc4_encoder->type == encoder_types[i]) {
1038 				vc4_encoder->clock_select = i;
1039 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1040 				break;
1041 			}
1042 		}
1043 	}
1044 }
1045 
1046 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1047 		  const struct drm_crtc_funcs *crtc_funcs,
1048 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1049 {
1050 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1051 	struct drm_crtc *crtc = &vc4_crtc->base;
1052 	struct drm_plane *primary_plane;
1053 	unsigned int i;
1054 
1055 	/* For now, we create just the primary and the legacy cursor
1056 	 * planes.  We should be able to stack more planes on easily,
1057 	 * but to do that we would need to compute the bandwidth
1058 	 * requirement of the plane configuration, and reject ones
1059 	 * that will take too much.
1060 	 */
1061 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1062 	if (IS_ERR(primary_plane)) {
1063 		dev_err(drm->dev, "failed to construct primary plane\n");
1064 		return PTR_ERR(primary_plane);
1065 	}
1066 
1067 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1068 				  crtc_funcs, NULL);
1069 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1070 
1071 	if (!vc4->hvs->hvs5) {
1072 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1073 
1074 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1075 
1076 		/* We support CTM, but only for one CRTC at a time. It's therefore
1077 		 * implemented as private driver state in vc4_kms, not here.
1078 		 */
1079 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1080 	}
1081 
1082 	for (i = 0; i < crtc->gamma_size; i++) {
1083 		vc4_crtc->lut_r[i] = i;
1084 		vc4_crtc->lut_g[i] = i;
1085 		vc4_crtc->lut_b[i] = i;
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1092 {
1093 	struct platform_device *pdev = to_platform_device(dev);
1094 	struct drm_device *drm = dev_get_drvdata(master);
1095 	const struct vc4_pv_data *pv_data;
1096 	struct vc4_crtc *vc4_crtc;
1097 	struct drm_crtc *crtc;
1098 	struct drm_plane *destroy_plane, *temp;
1099 	int ret;
1100 
1101 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1102 	if (!vc4_crtc)
1103 		return -ENOMEM;
1104 	crtc = &vc4_crtc->base;
1105 
1106 	pv_data = of_device_get_match_data(dev);
1107 	if (!pv_data)
1108 		return -ENODEV;
1109 	vc4_crtc->data = &pv_data->base;
1110 	vc4_crtc->pdev = pdev;
1111 
1112 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1113 	if (IS_ERR(vc4_crtc->regs))
1114 		return PTR_ERR(vc4_crtc->regs);
1115 
1116 	vc4_crtc->regset.base = vc4_crtc->regs;
1117 	vc4_crtc->regset.regs = crtc_regs;
1118 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1119 
1120 	ret = vc4_crtc_init(drm, vc4_crtc,
1121 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1122 	if (ret)
1123 		return ret;
1124 	vc4_set_crtc_possible_masks(drm, crtc);
1125 
1126 	CRTC_WRITE(PV_INTEN, 0);
1127 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1128 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1129 			       vc4_crtc_irq_handler,
1130 			       IRQF_SHARED,
1131 			       "vc4 crtc", vc4_crtc);
1132 	if (ret)
1133 		goto err_destroy_planes;
1134 
1135 	platform_set_drvdata(pdev, vc4_crtc);
1136 
1137 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1138 				 &vc4_crtc->regset);
1139 
1140 	return 0;
1141 
1142 err_destroy_planes:
1143 	list_for_each_entry_safe(destroy_plane, temp,
1144 				 &drm->mode_config.plane_list, head) {
1145 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1146 		    destroy_plane->funcs->destroy(destroy_plane);
1147 	}
1148 
1149 	return ret;
1150 }
1151 
1152 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1153 			    void *data)
1154 {
1155 	struct platform_device *pdev = to_platform_device(dev);
1156 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1157 
1158 	vc4_crtc_destroy(&vc4_crtc->base);
1159 
1160 	CRTC_WRITE(PV_INTEN, 0);
1161 
1162 	platform_set_drvdata(pdev, NULL);
1163 }
1164 
1165 static const struct component_ops vc4_crtc_ops = {
1166 	.bind   = vc4_crtc_bind,
1167 	.unbind = vc4_crtc_unbind,
1168 };
1169 
1170 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1171 {
1172 	return component_add(&pdev->dev, &vc4_crtc_ops);
1173 }
1174 
1175 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1176 {
1177 	component_del(&pdev->dev, &vc4_crtc_ops);
1178 	return 0;
1179 }
1180 
1181 struct platform_driver vc4_crtc_driver = {
1182 	.probe = vc4_crtc_dev_probe,
1183 	.remove = vc4_crtc_dev_remove,
1184 	.driver = {
1185 		.name = "vc4_crtc",
1186 		.of_match_table = vc4_crtc_dt_match,
1187 	},
1188 };
1189