1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 Broadcom 4 */ 5 6 /** 7 * DOC: VC4 CRTC module 8 * 9 * In VC4, the Pixel Valve is what most closely corresponds to the 10 * DRM's concept of a CRTC. The PV generates video timings from the 11 * encoder's clock plus its configuration. It pulls scaled pixels from 12 * the HVS at that timing, and feeds it to the encoder. 13 * 14 * However, the DRM CRTC also collects the configuration of all the 15 * DRM planes attached to it. As a result, the CRTC is also 16 * responsible for writing the display list for the HVS channel that 17 * the CRTC will use. 18 * 19 * The 2835 has 3 different pixel valves. pv0 in the audio power 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 21 * image domain can feed either HDMI or the SDTV controller. The 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 23 * SDTV, etc.) according to which output type is chosen in the mux. 24 * 25 * For power management, the pixel valve's registers are all clocked 26 * by the AXI clock, while the timings and FIFOs make use of the 27 * output-specific clock. Since the encoders also directly consume 28 * the CPRMAN clocks, and know what timings they need, they are the 29 * ones that set the clock. 30 */ 31 32 #include <linux/clk.h> 33 #include <linux/component.h> 34 #include <linux/of_device.h> 35 #include <linux/pm_runtime.h> 36 37 #include <drm/drm_atomic.h> 38 #include <drm/drm_atomic_helper.h> 39 #include <drm/drm_atomic_uapi.h> 40 #include <drm/drm_fb_cma_helper.h> 41 #include <drm/drm_framebuffer.h> 42 #include <drm/drm_print.h> 43 #include <drm/drm_probe_helper.h> 44 #include <drm/drm_vblank.h> 45 46 #include "vc4_drv.h" 47 #include "vc4_hdmi.h" 48 #include "vc4_regs.h" 49 50 #define HVS_FIFO_LATENCY_PIX 6 51 52 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 53 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 54 55 static const struct debugfs_reg32 crtc_regs[] = { 56 VC4_REG32(PV_CONTROL), 57 VC4_REG32(PV_V_CONTROL), 58 VC4_REG32(PV_VSYNCD_EVEN), 59 VC4_REG32(PV_HORZA), 60 VC4_REG32(PV_HORZB), 61 VC4_REG32(PV_VERTA), 62 VC4_REG32(PV_VERTB), 63 VC4_REG32(PV_VERTA_EVEN), 64 VC4_REG32(PV_VERTB_EVEN), 65 VC4_REG32(PV_INTEN), 66 VC4_REG32(PV_INTSTAT), 67 VC4_REG32(PV_STAT), 68 VC4_REG32(PV_HACT_ACT), 69 }; 70 71 static unsigned int 72 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel) 73 { 74 struct vc4_hvs *hvs = vc4->hvs; 75 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel)); 76 /* Top/base are supposed to be 4-pixel aligned, but the 77 * Raspberry Pi firmware fills the low bits (which are 78 * presumably ignored). 79 */ 80 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 81 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 82 83 return top - base + 4; 84 } 85 86 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc, 87 bool in_vblank_irq, 88 int *vpos, int *hpos, 89 ktime_t *stime, ktime_t *etime, 90 const struct drm_display_mode *mode) 91 { 92 struct drm_device *dev = crtc->dev; 93 struct vc4_dev *vc4 = to_vc4_dev(dev); 94 struct vc4_hvs *hvs = vc4->hvs; 95 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 96 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state); 97 unsigned int cob_size; 98 u32 val; 99 int fifo_lines; 100 int vblank_lines; 101 bool ret = false; 102 103 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 104 105 /* Get optional system timestamp before query. */ 106 if (stime) 107 *stime = ktime_get(); 108 109 /* 110 * Read vertical scanline which is currently composed for our 111 * pixelvalve by the HVS, and also the scaler status. 112 */ 113 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel)); 114 115 /* Get optional system timestamp after query. */ 116 if (etime) 117 *etime = ktime_get(); 118 119 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 120 121 /* Vertical position of hvs composed scanline. */ 122 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 123 *hpos = 0; 124 125 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 126 *vpos /= 2; 127 128 /* Use hpos to correct for field offset in interlaced mode. */ 129 if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2) 130 *hpos += mode->crtc_htotal / 2; 131 } 132 133 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel); 134 /* This is the offset we need for translating hvs -> pv scanout pos. */ 135 fifo_lines = cob_size / mode->crtc_hdisplay; 136 137 if (fifo_lines > 0) 138 ret = true; 139 140 /* HVS more than fifo_lines into frame for compositing? */ 141 if (*vpos > fifo_lines) { 142 /* 143 * We are in active scanout and can get some meaningful results 144 * from HVS. The actual PV scanout can not trail behind more 145 * than fifo_lines as that is the fifo's capacity. Assume that 146 * in active scanout the HVS and PV work in lockstep wrt. HVS 147 * refilling the fifo and PV consuming from the fifo, ie. 148 * whenever the PV consumes and frees up a scanline in the 149 * fifo, the HVS will immediately refill it, therefore 150 * incrementing vpos. Therefore we choose HVS read position - 151 * fifo size in scanlines as a estimate of the real scanout 152 * position of the PV. 153 */ 154 *vpos -= fifo_lines + 1; 155 156 return ret; 157 } 158 159 /* 160 * Less: This happens when we are in vblank and the HVS, after getting 161 * the VSTART restart signal from the PV, just started refilling its 162 * fifo with new lines from the top-most lines of the new framebuffers. 163 * The PV does not scan out in vblank, so does not remove lines from 164 * the fifo, so the fifo will be full quickly and the HVS has to pause. 165 * We can't get meaningful readings wrt. scanline position of the PV 166 * and need to make things up in a approximative but consistent way. 167 */ 168 vblank_lines = mode->vtotal - mode->vdisplay; 169 170 if (in_vblank_irq) { 171 /* 172 * Assume the irq handler got called close to first 173 * line of vblank, so PV has about a full vblank 174 * scanlines to go, and as a base timestamp use the 175 * one taken at entry into vblank irq handler, so it 176 * is not affected by random delays due to lock 177 * contention on event_lock or vblank_time lock in 178 * the core. 179 */ 180 *vpos = -vblank_lines; 181 182 if (stime) 183 *stime = vc4_crtc->t_vblank; 184 if (etime) 185 *etime = vc4_crtc->t_vblank; 186 187 /* 188 * If the HVS fifo is not yet full then we know for certain 189 * we are at the very beginning of vblank, as the hvs just 190 * started refilling, and the stime and etime timestamps 191 * truly correspond to start of vblank. 192 * 193 * Unfortunately there's no way to report this to upper levels 194 * and make it more useful. 195 */ 196 } else { 197 /* 198 * No clue where we are inside vblank. Return a vpos of zero, 199 * which will cause calling code to just return the etime 200 * timestamp uncorrected. At least this is no worse than the 201 * standard fallback. 202 */ 203 *vpos = 0; 204 } 205 206 return ret; 207 } 208 209 void vc4_crtc_destroy(struct drm_crtc *crtc) 210 { 211 drm_crtc_cleanup(crtc); 212 } 213 214 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format) 215 { 216 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc); 217 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 218 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev); 219 u32 fifo_len_bytes = pv_data->fifo_depth; 220 221 /* 222 * Pixels are pulled from the HVS if the number of bytes is 223 * lower than the FIFO full level. 224 * 225 * The latency of the pixel fetch mechanism is 6 pixels, so we 226 * need to convert those 6 pixels in bytes, depending on the 227 * format, and then subtract that from the length of the FIFO 228 * to make sure we never end up in a situation where the FIFO 229 * is full. 230 */ 231 switch (format) { 232 case PV_CONTROL_FORMAT_DSIV_16: 233 case PV_CONTROL_FORMAT_DSIC_16: 234 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX; 235 case PV_CONTROL_FORMAT_DSIV_18: 236 return fifo_len_bytes - 14; 237 case PV_CONTROL_FORMAT_24: 238 case PV_CONTROL_FORMAT_DSIV_24: 239 default: 240 /* 241 * For some reason, the pixelvalve4 doesn't work with 242 * the usual formula and will only work with 32. 243 */ 244 if (crtc_data->hvs_output == 5) 245 return 32; 246 247 /* 248 * It looks like in some situations, we will overflow 249 * the PixelValve FIFO (with the bit 10 of PV stat being 250 * set) and stall the HVS / PV, eventually resulting in 251 * a page flip timeout. 252 * 253 * Displaying the video overlay during a playback with 254 * Kodi on an RPi3 seems to be a great solution with a 255 * failure rate around 50%. 256 * 257 * Removing 1 from the FIFO full level however 258 * seems to completely remove that issue. 259 */ 260 if (!vc4->is_vc5) 261 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1; 262 263 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX; 264 } 265 } 266 267 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc, 268 u32 format) 269 { 270 u32 level = vc4_get_fifo_full_level(vc4_crtc, format); 271 u32 ret = 0; 272 273 ret |= VC4_SET_FIELD((level >> 6), 274 PV5_CONTROL_FIFO_LEVEL_HIGH); 275 276 return ret | VC4_SET_FIELD(level & 0x3f, 277 PV_CONTROL_FIFO_LEVEL); 278 } 279 280 /* 281 * Returns the encoder attached to the CRTC. 282 * 283 * VC4 can only scan out to one encoder at a time, while the DRM core 284 * allows drivers to push pixels to more than one encoder from the 285 * same CRTC. 286 */ 287 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc, 288 struct drm_crtc_state *state) 289 { 290 struct drm_encoder *encoder; 291 292 WARN_ON(hweight32(state->encoder_mask) > 1); 293 294 drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) 295 return encoder; 296 297 return NULL; 298 } 299 300 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc) 301 { 302 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 303 304 /* The PV needs to be disabled before it can be flushed */ 305 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN); 306 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR); 307 } 308 309 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder, 310 struct drm_atomic_state *state) 311 { 312 struct drm_device *dev = crtc->dev; 313 struct vc4_dev *vc4 = to_vc4_dev(dev); 314 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 315 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 316 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 317 struct drm_crtc_state *crtc_state = crtc->state; 318 struct drm_display_mode *mode = &crtc_state->adjusted_mode; 319 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 320 bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 || 321 vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1; 322 u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1; 323 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 324 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 325 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1; 326 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 327 u8 ppc = pv_data->pixels_per_clock; 328 bool debug_dump_regs = false; 329 330 if (debug_dump_regs) { 331 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 332 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 333 drm_crtc_index(crtc)); 334 drm_print_regset32(&p, &vc4_crtc->regset); 335 } 336 337 vc4_crtc_pixelvalve_reset(crtc); 338 339 CRTC_WRITE(PV_HORZA, 340 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc, 341 PV_HORZA_HBP) | 342 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc, 343 PV_HORZA_HSYNC)); 344 345 CRTC_WRITE(PV_HORZB, 346 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc, 347 PV_HORZB_HFP) | 348 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc, 349 PV_HORZB_HACTIVE)); 350 351 CRTC_WRITE(PV_VERTA, 352 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end + 353 interlace, 354 PV_VERTA_VBP) | 355 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 356 PV_VERTA_VSYNC)); 357 CRTC_WRITE(PV_VERTB, 358 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 359 PV_VERTB_VFP) | 360 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 361 362 if (interlace) { 363 CRTC_WRITE(PV_VERTA_EVEN, 364 VC4_SET_FIELD(mode->crtc_vtotal - 365 mode->crtc_vsync_end, 366 PV_VERTA_VBP) | 367 VC4_SET_FIELD(mode->crtc_vsync_end - 368 mode->crtc_vsync_start, 369 PV_VERTA_VSYNC)); 370 CRTC_WRITE(PV_VERTB_EVEN, 371 VC4_SET_FIELD(mode->crtc_vsync_start - 372 mode->crtc_vdisplay, 373 PV_VERTB_VFP) | 374 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 375 376 /* We set up first field even mode for HDMI. VEC's 377 * NTSC mode would want first field odd instead, once 378 * we support it (to do so, set ODD_FIRST and put the 379 * delay in VSYNCD_EVEN instead). 380 */ 381 CRTC_WRITE(PV_V_CONTROL, 382 PV_VCONTROL_CONTINUOUS | 383 (is_dsi ? PV_VCONTROL_DSI : 0) | 384 PV_VCONTROL_INTERLACE | 385 VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc), 386 PV_VCONTROL_ODD_DELAY)); 387 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 388 } else { 389 CRTC_WRITE(PV_V_CONTROL, 390 PV_VCONTROL_CONTINUOUS | 391 (is_dsi ? PV_VCONTROL_DSI : 0)); 392 } 393 394 if (is_dsi) 395 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 396 397 if (vc4->is_vc5) 398 CRTC_WRITE(PV_MUX_CFG, 399 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP, 400 PV_MUX_CFG_RGB_PIXEL_MUX_MODE)); 401 402 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | 403 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) | 404 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 405 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 406 PV_CONTROL_CLR_AT_START | 407 PV_CONTROL_TRIGGER_UNDERFLOW | 408 PV_CONTROL_WAIT_HSTART | 409 VC4_SET_FIELD(vc4_encoder->clock_select, 410 PV_CONTROL_CLK_SELECT)); 411 412 if (debug_dump_regs) { 413 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 414 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 415 drm_crtc_index(crtc)); 416 drm_print_regset32(&p, &vc4_crtc->regset); 417 } 418 } 419 420 static void require_hvs_enabled(struct drm_device *dev) 421 { 422 struct vc4_dev *vc4 = to_vc4_dev(dev); 423 struct vc4_hvs *hvs = vc4->hvs; 424 425 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 426 SCALER_DISPCTRL_ENABLE); 427 } 428 429 static int vc4_crtc_disable(struct drm_crtc *crtc, 430 struct drm_encoder *encoder, 431 struct drm_atomic_state *state, 432 unsigned int channel) 433 { 434 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 435 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 436 struct drm_device *dev = crtc->dev; 437 struct vc4_dev *vc4 = to_vc4_dev(dev); 438 int ret; 439 440 CRTC_WRITE(PV_V_CONTROL, 441 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 442 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 443 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 444 445 /* 446 * This delay is needed to avoid to get a pixel stuck in an 447 * unflushable FIFO between the pixelvalve and the HDMI 448 * controllers on the BCM2711. 449 * 450 * Timing is fairly sensitive here, so mdelay is the safest 451 * approach. 452 * 453 * If it was to be reworked, the stuck pixel happens on a 454 * BCM2711 when changing mode with a good probability, so a 455 * script that changes mode on a regular basis should trigger 456 * the bug after less than 10 attempts. It manifests itself with 457 * every pixels being shifted by one to the right, and thus the 458 * last pixel of a line actually being displayed as the first 459 * pixel on the next line. 460 */ 461 mdelay(20); 462 463 if (vc4_encoder && vc4_encoder->post_crtc_disable) 464 vc4_encoder->post_crtc_disable(encoder, state); 465 466 vc4_crtc_pixelvalve_reset(crtc); 467 vc4_hvs_stop_channel(vc4->hvs, channel); 468 469 if (vc4_encoder && vc4_encoder->post_crtc_powerdown) 470 vc4_encoder->post_crtc_powerdown(encoder, state); 471 472 return 0; 473 } 474 475 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc, 476 enum vc4_encoder_type type) 477 { 478 struct drm_encoder *encoder; 479 480 drm_for_each_encoder(encoder, crtc->dev) { 481 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 482 483 if (vc4_encoder->type == type) 484 return encoder; 485 } 486 487 return NULL; 488 } 489 490 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc) 491 { 492 struct drm_device *drm = crtc->dev; 493 struct vc4_dev *vc4 = to_vc4_dev(drm); 494 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 495 enum vc4_encoder_type encoder_type; 496 const struct vc4_pv_data *pv_data; 497 struct drm_encoder *encoder; 498 struct vc4_hdmi *vc4_hdmi; 499 unsigned encoder_sel; 500 int channel; 501 int ret; 502 503 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 504 "brcm,bcm2711-pixelvalve2") || 505 of_device_is_compatible(vc4_crtc->pdev->dev.of_node, 506 "brcm,bcm2711-pixelvalve4"))) 507 return 0; 508 509 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN)) 510 return 0; 511 512 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN)) 513 return 0; 514 515 channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output); 516 if (channel < 0) 517 return 0; 518 519 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT); 520 if (WARN_ON(encoder_sel != 0)) 521 return 0; 522 523 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 524 encoder_type = pv_data->encoder_types[encoder_sel]; 525 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type); 526 if (WARN_ON(!encoder)) 527 return 0; 528 529 vc4_hdmi = encoder_to_vc4_hdmi(encoder); 530 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev); 531 if (ret) 532 return ret; 533 534 ret = vc4_crtc_disable(crtc, encoder, NULL, channel); 535 if (ret) 536 return ret; 537 538 /* 539 * post_crtc_powerdown will have called pm_runtime_put, so we 540 * don't need it here otherwise we'll get the reference counting 541 * wrong. 542 */ 543 544 return 0; 545 } 546 547 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 548 struct drm_atomic_state *state) 549 { 550 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, 551 crtc); 552 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state); 553 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state); 554 struct drm_device *dev = crtc->dev; 555 556 drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)", 557 crtc->name, crtc->base.id, encoder->name, encoder->base.id); 558 559 require_hvs_enabled(dev); 560 561 /* Disable vblank irq handling before crtc is disabled. */ 562 drm_crtc_vblank_off(crtc); 563 564 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel); 565 566 /* 567 * Make sure we issue a vblank event after disabling the CRTC if 568 * someone was waiting it. 569 */ 570 if (crtc->state->event) { 571 unsigned long flags; 572 573 spin_lock_irqsave(&dev->event_lock, flags); 574 drm_crtc_send_vblank_event(crtc, crtc->state->event); 575 crtc->state->event = NULL; 576 spin_unlock_irqrestore(&dev->event_lock, flags); 577 } 578 } 579 580 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 581 struct drm_atomic_state *state) 582 { 583 struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state, 584 crtc); 585 struct drm_device *dev = crtc->dev; 586 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 587 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state); 588 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 589 590 drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)", 591 crtc->name, crtc->base.id, encoder->name, encoder->base.id); 592 593 require_hvs_enabled(dev); 594 595 /* Enable vblank irq handling before crtc is started otherwise 596 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 597 */ 598 drm_crtc_vblank_on(crtc); 599 600 vc4_hvs_atomic_enable(crtc, state); 601 602 if (vc4_encoder->pre_crtc_configure) 603 vc4_encoder->pre_crtc_configure(encoder, state); 604 605 vc4_crtc_config_pv(crtc, encoder, state); 606 607 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN); 608 609 if (vc4_encoder->pre_crtc_enable) 610 vc4_encoder->pre_crtc_enable(encoder, state); 611 612 /* When feeding the transposer block the pixelvalve is unneeded and 613 * should not be enabled. 614 */ 615 CRTC_WRITE(PV_V_CONTROL, 616 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 617 618 if (vc4_encoder->post_crtc_enable) 619 vc4_encoder->post_crtc_enable(encoder, state); 620 } 621 622 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 623 const struct drm_display_mode *mode) 624 { 625 /* Do not allow doublescan modes from user space */ 626 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 627 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 628 crtc->base.id); 629 return MODE_NO_DBLESCAN; 630 } 631 632 return MODE_OK; 633 } 634 635 void vc4_crtc_get_margins(struct drm_crtc_state *state, 636 unsigned int *left, unsigned int *right, 637 unsigned int *top, unsigned int *bottom) 638 { 639 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 640 struct drm_connector_state *conn_state; 641 struct drm_connector *conn; 642 int i; 643 644 *left = vc4_state->margins.left; 645 *right = vc4_state->margins.right; 646 *top = vc4_state->margins.top; 647 *bottom = vc4_state->margins.bottom; 648 649 /* We have to interate over all new connector states because 650 * vc4_crtc_get_margins() might be called before 651 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 652 * might be outdated. 653 */ 654 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 655 if (conn_state->crtc != state->crtc) 656 continue; 657 658 *left = conn_state->tv.margins.left; 659 *right = conn_state->tv.margins.right; 660 *top = conn_state->tv.margins.top; 661 *bottom = conn_state->tv.margins.bottom; 662 break; 663 } 664 } 665 666 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 667 struct drm_atomic_state *state) 668 { 669 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 670 crtc); 671 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state); 672 struct drm_connector *conn; 673 struct drm_connector_state *conn_state; 674 struct drm_encoder *encoder; 675 int ret, i; 676 677 ret = vc4_hvs_atomic_check(crtc, state); 678 if (ret) 679 return ret; 680 681 encoder = vc4_get_crtc_encoder(crtc, crtc_state); 682 if (encoder) { 683 const struct drm_display_mode *mode = &crtc_state->adjusted_mode; 684 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 685 686 if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) { 687 vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000, 688 mode->clock * 9 / 10) * 1000; 689 } else { 690 vc4_state->hvs_load = mode->clock * 1000; 691 } 692 } 693 694 for_each_new_connector_in_state(state, conn, conn_state, 695 i) { 696 if (conn_state->crtc != crtc) 697 continue; 698 699 vc4_state->margins.left = conn_state->tv.margins.left; 700 vc4_state->margins.right = conn_state->tv.margins.right; 701 vc4_state->margins.top = conn_state->tv.margins.top; 702 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 703 break; 704 } 705 706 return 0; 707 } 708 709 static int vc4_enable_vblank(struct drm_crtc *crtc) 710 { 711 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 712 713 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 714 715 return 0; 716 } 717 718 static void vc4_disable_vblank(struct drm_crtc *crtc) 719 { 720 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 721 722 CRTC_WRITE(PV_INTEN, 0); 723 } 724 725 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 726 { 727 struct drm_crtc *crtc = &vc4_crtc->base; 728 struct drm_device *dev = crtc->dev; 729 struct vc4_dev *vc4 = to_vc4_dev(dev); 730 struct vc4_hvs *hvs = vc4->hvs; 731 u32 chan = vc4_crtc->current_hvs_channel; 732 unsigned long flags; 733 734 spin_lock_irqsave(&dev->event_lock, flags); 735 spin_lock(&vc4_crtc->irq_lock); 736 if (vc4_crtc->event && 737 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) || 738 vc4_crtc->feeds_txp)) { 739 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 740 vc4_crtc->event = NULL; 741 drm_crtc_vblank_put(crtc); 742 743 /* Wait for the page flip to unmask the underrun to ensure that 744 * the display list was updated by the hardware. Before that 745 * happens, the HVS will be using the previous display list with 746 * the CRTC and encoder already reconfigured, leading to 747 * underruns. This can be seen when reconfiguring the CRTC. 748 */ 749 vc4_hvs_unmask_underrun(hvs, chan); 750 } 751 spin_unlock(&vc4_crtc->irq_lock); 752 spin_unlock_irqrestore(&dev->event_lock, flags); 753 } 754 755 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 756 { 757 crtc->t_vblank = ktime_get(); 758 drm_crtc_handle_vblank(&crtc->base); 759 vc4_crtc_handle_page_flip(crtc); 760 } 761 762 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 763 { 764 struct vc4_crtc *vc4_crtc = data; 765 u32 stat = CRTC_READ(PV_INTSTAT); 766 irqreturn_t ret = IRQ_NONE; 767 768 if (stat & PV_INT_VFP_START) { 769 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 770 vc4_crtc_handle_vblank(vc4_crtc); 771 ret = IRQ_HANDLED; 772 } 773 774 return ret; 775 } 776 777 struct vc4_async_flip_state { 778 struct drm_crtc *crtc; 779 struct drm_framebuffer *fb; 780 struct drm_framebuffer *old_fb; 781 struct drm_pending_vblank_event *event; 782 783 union { 784 struct dma_fence_cb fence; 785 struct vc4_seqno_cb seqno; 786 } cb; 787 }; 788 789 /* Called when the V3D execution for the BO being flipped to is done, so that 790 * we can actually update the plane's address to point to it. 791 */ 792 static void 793 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state) 794 { 795 struct drm_crtc *crtc = flip_state->crtc; 796 struct drm_device *dev = crtc->dev; 797 struct drm_plane *plane = crtc->primary; 798 799 vc4_plane_async_set_fb(plane, flip_state->fb); 800 if (flip_state->event) { 801 unsigned long flags; 802 803 spin_lock_irqsave(&dev->event_lock, flags); 804 drm_crtc_send_vblank_event(crtc, flip_state->event); 805 spin_unlock_irqrestore(&dev->event_lock, flags); 806 } 807 808 drm_crtc_vblank_put(crtc); 809 drm_framebuffer_put(flip_state->fb); 810 811 if (flip_state->old_fb) 812 drm_framebuffer_put(flip_state->old_fb); 813 814 kfree(flip_state); 815 } 816 817 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb) 818 { 819 struct vc4_async_flip_state *flip_state = 820 container_of(cb, struct vc4_async_flip_state, cb.seqno); 821 struct vc4_bo *bo = NULL; 822 823 if (flip_state->old_fb) { 824 struct drm_gem_cma_object *cma_bo = 825 drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 826 bo = to_vc4_bo(&cma_bo->base); 827 } 828 829 vc4_async_page_flip_complete(flip_state); 830 831 /* 832 * Decrement the BO usecnt in order to keep the inc/dec 833 * calls balanced when the planes are updated through 834 * the async update path. 835 * 836 * FIXME: we should move to generic async-page-flip when 837 * it's available, so that we can get rid of this 838 * hand-made cleanup_fb() logic. 839 */ 840 if (bo) 841 vc4_bo_dec_usecnt(bo); 842 } 843 844 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence, 845 struct dma_fence_cb *cb) 846 { 847 struct vc4_async_flip_state *flip_state = 848 container_of(cb, struct vc4_async_flip_state, cb.fence); 849 850 vc4_async_page_flip_complete(flip_state); 851 dma_fence_put(fence); 852 } 853 854 static int vc4_async_set_fence_cb(struct drm_device *dev, 855 struct vc4_async_flip_state *flip_state) 856 { 857 struct drm_framebuffer *fb = flip_state->fb; 858 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 859 struct vc4_dev *vc4 = to_vc4_dev(dev); 860 struct dma_fence *fence; 861 int ret; 862 863 if (!vc4->is_vc5) { 864 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 865 866 return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno, 867 vc4_async_page_flip_seqno_complete); 868 } 869 870 ret = dma_resv_get_singleton(cma_bo->base.resv, DMA_RESV_USAGE_READ, &fence); 871 if (ret) 872 return ret; 873 874 /* If there's no fence, complete the page flip immediately */ 875 if (!fence) { 876 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); 877 return 0; 878 } 879 880 /* If the fence has already been completed, complete the page flip */ 881 if (dma_fence_add_callback(fence, &flip_state->cb.fence, 882 vc4_async_page_flip_fence_complete)) 883 vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence); 884 885 return 0; 886 } 887 888 static int 889 vc4_async_page_flip_common(struct drm_crtc *crtc, 890 struct drm_framebuffer *fb, 891 struct drm_pending_vblank_event *event, 892 uint32_t flags) 893 { 894 struct drm_device *dev = crtc->dev; 895 struct drm_plane *plane = crtc->primary; 896 struct vc4_async_flip_state *flip_state; 897 898 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 899 if (!flip_state) 900 return -ENOMEM; 901 902 drm_framebuffer_get(fb); 903 flip_state->fb = fb; 904 flip_state->crtc = crtc; 905 flip_state->event = event; 906 907 /* Save the current FB before it's replaced by the new one in 908 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 909 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 910 * it consistent. 911 * FIXME: we should move to generic async-page-flip when it's 912 * available, so that we can get rid of this hand-made cleanup_fb() 913 * logic. 914 */ 915 flip_state->old_fb = plane->state->fb; 916 if (flip_state->old_fb) 917 drm_framebuffer_get(flip_state->old_fb); 918 919 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 920 921 /* Immediately update the plane's legacy fb pointer, so that later 922 * modeset prep sees the state that will be present when the semaphore 923 * is released. 924 */ 925 drm_atomic_set_fb_for_plane(plane->state, fb); 926 927 vc4_async_set_fence_cb(dev, flip_state); 928 929 /* Driver takes ownership of state on successful async commit. */ 930 return 0; 931 } 932 933 /* Implements async (non-vblank-synced) page flips. 934 * 935 * The page flip ioctl needs to return immediately, so we grab the 936 * modeset semaphore on the pipe, and queue the address update for 937 * when V3D is done with the BO being flipped to. 938 */ 939 static int vc4_async_page_flip(struct drm_crtc *crtc, 940 struct drm_framebuffer *fb, 941 struct drm_pending_vblank_event *event, 942 uint32_t flags) 943 { 944 struct drm_device *dev = crtc->dev; 945 struct vc4_dev *vc4 = to_vc4_dev(dev); 946 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 947 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 948 int ret; 949 950 if (WARN_ON_ONCE(vc4->is_vc5)) 951 return -ENODEV; 952 953 /* 954 * Increment the BO usecnt here, so that we never end up with an 955 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 956 * plane is later updated through the non-async path. 957 * 958 * FIXME: we should move to generic async-page-flip when 959 * it's available, so that we can get rid of this 960 * hand-made prepare_fb() logic. 961 */ 962 ret = vc4_bo_inc_usecnt(bo); 963 if (ret) 964 return ret; 965 966 ret = vc4_async_page_flip_common(crtc, fb, event, flags); 967 if (ret) { 968 vc4_bo_dec_usecnt(bo); 969 return ret; 970 } 971 972 return 0; 973 } 974 975 static int vc5_async_page_flip(struct drm_crtc *crtc, 976 struct drm_framebuffer *fb, 977 struct drm_pending_vblank_event *event, 978 uint32_t flags) 979 { 980 return vc4_async_page_flip_common(crtc, fb, event, flags); 981 } 982 983 int vc4_page_flip(struct drm_crtc *crtc, 984 struct drm_framebuffer *fb, 985 struct drm_pending_vblank_event *event, 986 uint32_t flags, 987 struct drm_modeset_acquire_ctx *ctx) 988 { 989 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) { 990 struct drm_device *dev = crtc->dev; 991 struct vc4_dev *vc4 = to_vc4_dev(dev); 992 993 if (vc4->is_vc5) 994 return vc5_async_page_flip(crtc, fb, event, flags); 995 else 996 return vc4_async_page_flip(crtc, fb, event, flags); 997 } else { 998 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 999 } 1000 } 1001 1002 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 1003 { 1004 struct vc4_crtc_state *vc4_state, *old_vc4_state; 1005 1006 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 1007 if (!vc4_state) 1008 return NULL; 1009 1010 old_vc4_state = to_vc4_crtc_state(crtc->state); 1011 vc4_state->margins = old_vc4_state->margins; 1012 vc4_state->assigned_channel = old_vc4_state->assigned_channel; 1013 1014 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 1015 return &vc4_state->base; 1016 } 1017 1018 void vc4_crtc_destroy_state(struct drm_crtc *crtc, 1019 struct drm_crtc_state *state) 1020 { 1021 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 1022 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 1023 1024 if (drm_mm_node_allocated(&vc4_state->mm)) { 1025 unsigned long flags; 1026 1027 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 1028 drm_mm_remove_node(&vc4_state->mm); 1029 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 1030 1031 } 1032 1033 drm_atomic_helper_crtc_destroy_state(crtc, state); 1034 } 1035 1036 void vc4_crtc_reset(struct drm_crtc *crtc) 1037 { 1038 struct vc4_crtc_state *vc4_crtc_state; 1039 1040 if (crtc->state) 1041 vc4_crtc_destroy_state(crtc, crtc->state); 1042 1043 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL); 1044 if (!vc4_crtc_state) { 1045 crtc->state = NULL; 1046 return; 1047 } 1048 1049 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED; 1050 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base); 1051 } 1052 1053 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1054 .set_config = drm_atomic_helper_set_config, 1055 .destroy = vc4_crtc_destroy, 1056 .page_flip = vc4_page_flip, 1057 .set_property = NULL, 1058 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1059 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1060 .reset = vc4_crtc_reset, 1061 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1062 .atomic_destroy_state = vc4_crtc_destroy_state, 1063 .enable_vblank = vc4_enable_vblank, 1064 .disable_vblank = vc4_disable_vblank, 1065 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1066 }; 1067 1068 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1069 .mode_valid = vc4_crtc_mode_valid, 1070 .atomic_check = vc4_crtc_atomic_check, 1071 .atomic_begin = vc4_hvs_atomic_begin, 1072 .atomic_flush = vc4_hvs_atomic_flush, 1073 .atomic_enable = vc4_crtc_atomic_enable, 1074 .atomic_disable = vc4_crtc_atomic_disable, 1075 .get_scanout_position = vc4_crtc_get_scanout_position, 1076 }; 1077 1078 static const struct vc4_pv_data bcm2835_pv0_data = { 1079 .base = { 1080 .hvs_available_channels = BIT(0), 1081 .hvs_output = 0, 1082 }, 1083 .debugfs_name = "crtc0_regs", 1084 .fifo_depth = 64, 1085 .pixels_per_clock = 1, 1086 .encoder_types = { 1087 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1088 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1089 }, 1090 }; 1091 1092 static const struct vc4_pv_data bcm2835_pv1_data = { 1093 .base = { 1094 .hvs_available_channels = BIT(2), 1095 .hvs_output = 2, 1096 }, 1097 .debugfs_name = "crtc1_regs", 1098 .fifo_depth = 64, 1099 .pixels_per_clock = 1, 1100 .encoder_types = { 1101 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1102 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1103 }, 1104 }; 1105 1106 static const struct vc4_pv_data bcm2835_pv2_data = { 1107 .base = { 1108 .hvs_available_channels = BIT(1), 1109 .hvs_output = 1, 1110 }, 1111 .debugfs_name = "crtc2_regs", 1112 .fifo_depth = 64, 1113 .pixels_per_clock = 1, 1114 .encoder_types = { 1115 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0, 1116 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1117 }, 1118 }; 1119 1120 static const struct vc4_pv_data bcm2711_pv0_data = { 1121 .base = { 1122 .hvs_available_channels = BIT(0), 1123 .hvs_output = 0, 1124 }, 1125 .debugfs_name = "crtc0_regs", 1126 .fifo_depth = 64, 1127 .pixels_per_clock = 1, 1128 .encoder_types = { 1129 [0] = VC4_ENCODER_TYPE_DSI0, 1130 [1] = VC4_ENCODER_TYPE_DPI, 1131 }, 1132 }; 1133 1134 static const struct vc4_pv_data bcm2711_pv1_data = { 1135 .base = { 1136 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1137 .hvs_output = 3, 1138 }, 1139 .debugfs_name = "crtc1_regs", 1140 .fifo_depth = 64, 1141 .pixels_per_clock = 1, 1142 .encoder_types = { 1143 [0] = VC4_ENCODER_TYPE_DSI1, 1144 [1] = VC4_ENCODER_TYPE_SMI, 1145 }, 1146 }; 1147 1148 static const struct vc4_pv_data bcm2711_pv2_data = { 1149 .base = { 1150 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1151 .hvs_output = 4, 1152 }, 1153 .debugfs_name = "crtc2_regs", 1154 .fifo_depth = 256, 1155 .pixels_per_clock = 2, 1156 .encoder_types = { 1157 [0] = VC4_ENCODER_TYPE_HDMI0, 1158 }, 1159 }; 1160 1161 static const struct vc4_pv_data bcm2711_pv3_data = { 1162 .base = { 1163 .hvs_available_channels = BIT(1), 1164 .hvs_output = 1, 1165 }, 1166 .debugfs_name = "crtc3_regs", 1167 .fifo_depth = 64, 1168 .pixels_per_clock = 1, 1169 .encoder_types = { 1170 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1171 }, 1172 }; 1173 1174 static const struct vc4_pv_data bcm2711_pv4_data = { 1175 .base = { 1176 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2), 1177 .hvs_output = 5, 1178 }, 1179 .debugfs_name = "crtc4_regs", 1180 .fifo_depth = 64, 1181 .pixels_per_clock = 2, 1182 .encoder_types = { 1183 [0] = VC4_ENCODER_TYPE_HDMI1, 1184 }, 1185 }; 1186 1187 static const struct of_device_id vc4_crtc_dt_match[] = { 1188 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data }, 1189 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data }, 1190 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data }, 1191 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data }, 1192 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data }, 1193 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data }, 1194 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data }, 1195 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data }, 1196 {} 1197 }; 1198 1199 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1200 struct drm_crtc *crtc) 1201 { 1202 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1203 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc); 1204 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types; 1205 struct drm_encoder *encoder; 1206 1207 drm_for_each_encoder(encoder, drm) { 1208 struct vc4_encoder *vc4_encoder; 1209 int i; 1210 1211 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) 1212 continue; 1213 1214 vc4_encoder = to_vc4_encoder(encoder); 1215 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) { 1216 if (vc4_encoder->type == encoder_types[i]) { 1217 vc4_encoder->clock_select = i; 1218 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1219 break; 1220 } 1221 } 1222 } 1223 } 1224 1225 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc, 1226 const struct drm_crtc_funcs *crtc_funcs, 1227 const struct drm_crtc_helper_funcs *crtc_helper_funcs) 1228 { 1229 struct vc4_dev *vc4 = to_vc4_dev(drm); 1230 struct drm_crtc *crtc = &vc4_crtc->base; 1231 struct drm_plane *primary_plane; 1232 unsigned int i; 1233 1234 /* For now, we create just the primary and the legacy cursor 1235 * planes. We should be able to stack more planes on easily, 1236 * but to do that we would need to compute the bandwidth 1237 * requirement of the plane configuration, and reject ones 1238 * that will take too much. 1239 */ 1240 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1241 if (IS_ERR(primary_plane)) { 1242 dev_err(drm->dev, "failed to construct primary plane\n"); 1243 return PTR_ERR(primary_plane); 1244 } 1245 1246 spin_lock_init(&vc4_crtc->irq_lock); 1247 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1248 crtc_funcs, NULL); 1249 drm_crtc_helper_add(crtc, crtc_helper_funcs); 1250 1251 if (!vc4->is_vc5) { 1252 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1253 1254 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1255 1256 /* We support CTM, but only for one CRTC at a time. It's therefore 1257 * implemented as private driver state in vc4_kms, not here. 1258 */ 1259 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1260 } 1261 1262 for (i = 0; i < crtc->gamma_size; i++) { 1263 vc4_crtc->lut_r[i] = i; 1264 vc4_crtc->lut_g[i] = i; 1265 vc4_crtc->lut_b[i] = i; 1266 } 1267 1268 return 0; 1269 } 1270 1271 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1272 { 1273 struct platform_device *pdev = to_platform_device(dev); 1274 struct drm_device *drm = dev_get_drvdata(master); 1275 const struct vc4_pv_data *pv_data; 1276 struct vc4_crtc *vc4_crtc; 1277 struct drm_crtc *crtc; 1278 struct drm_plane *destroy_plane, *temp; 1279 int ret; 1280 1281 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1282 if (!vc4_crtc) 1283 return -ENOMEM; 1284 crtc = &vc4_crtc->base; 1285 1286 pv_data = of_device_get_match_data(dev); 1287 if (!pv_data) 1288 return -ENODEV; 1289 vc4_crtc->data = &pv_data->base; 1290 vc4_crtc->pdev = pdev; 1291 1292 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1293 if (IS_ERR(vc4_crtc->regs)) 1294 return PTR_ERR(vc4_crtc->regs); 1295 1296 vc4_crtc->regset.base = vc4_crtc->regs; 1297 vc4_crtc->regset.regs = crtc_regs; 1298 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1299 1300 ret = vc4_crtc_init(drm, vc4_crtc, 1301 &vc4_crtc_funcs, &vc4_crtc_helper_funcs); 1302 if (ret) 1303 return ret; 1304 vc4_set_crtc_possible_masks(drm, crtc); 1305 1306 CRTC_WRITE(PV_INTEN, 0); 1307 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1308 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1309 vc4_crtc_irq_handler, 1310 IRQF_SHARED, 1311 "vc4 crtc", vc4_crtc); 1312 if (ret) 1313 goto err_destroy_planes; 1314 1315 platform_set_drvdata(pdev, vc4_crtc); 1316 1317 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name, 1318 &vc4_crtc->regset); 1319 1320 return 0; 1321 1322 err_destroy_planes: 1323 list_for_each_entry_safe(destroy_plane, temp, 1324 &drm->mode_config.plane_list, head) { 1325 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1326 destroy_plane->funcs->destroy(destroy_plane); 1327 } 1328 1329 return ret; 1330 } 1331 1332 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1333 void *data) 1334 { 1335 struct platform_device *pdev = to_platform_device(dev); 1336 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1337 1338 vc4_crtc_destroy(&vc4_crtc->base); 1339 1340 CRTC_WRITE(PV_INTEN, 0); 1341 1342 platform_set_drvdata(pdev, NULL); 1343 } 1344 1345 static const struct component_ops vc4_crtc_ops = { 1346 .bind = vc4_crtc_bind, 1347 .unbind = vc4_crtc_unbind, 1348 }; 1349 1350 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1351 { 1352 return component_add(&pdev->dev, &vc4_crtc_ops); 1353 } 1354 1355 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1356 { 1357 component_del(&pdev->dev, &vc4_crtc_ops); 1358 return 0; 1359 } 1360 1361 struct platform_driver vc4_crtc_driver = { 1362 .probe = vc4_crtc_dev_probe, 1363 .remove = vc4_crtc_dev_remove, 1364 .driver = { 1365 .name = "vc4_crtc", 1366 .of_match_table = vc4_crtc_dt_match, 1367 }, 1368 }; 1369