1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * output's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, this file also manages 19 * setup of the VC4 HVS's display elements on the CRTC. 20 * 21 * The 2835 has 3 different pixel valves. pv0 in the audio power 22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 23 * image domain can feed either HDMI or the SDTV controller. The 24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 25 * SDTV, etc.) according to which output type is chosen in the mux. 26 * 27 * For power management, the pixel valve's registers are all clocked 28 * by the AXI clock, while the timings and FIFOs make use of the 29 * output-specific clock. Since the encoders also directly consume 30 * the CPRMAN clocks, and know what timings they need, they are the 31 * ones that set the clock. 32 */ 33 34 #include "drm_atomic.h" 35 #include "drm_atomic_helper.h" 36 #include "drm_crtc_helper.h" 37 #include "linux/clk.h" 38 #include "drm_fb_cma_helper.h" 39 #include "linux/component.h" 40 #include "linux/of_device.h" 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 struct vc4_crtc { 45 struct drm_crtc base; 46 const struct vc4_crtc_data *data; 47 void __iomem *regs; 48 49 /* Which HVS channel we're using for our CRTC. */ 50 int channel; 51 52 u8 lut_r[256]; 53 u8 lut_g[256]; 54 u8 lut_b[256]; 55 56 struct drm_pending_vblank_event *event; 57 }; 58 59 struct vc4_crtc_state { 60 struct drm_crtc_state base; 61 /* Dlist area for this CRTC configuration. */ 62 struct drm_mm_node mm; 63 }; 64 65 static inline struct vc4_crtc * 66 to_vc4_crtc(struct drm_crtc *crtc) 67 { 68 return (struct vc4_crtc *)crtc; 69 } 70 71 static inline struct vc4_crtc_state * 72 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 73 { 74 return (struct vc4_crtc_state *)crtc_state; 75 } 76 77 struct vc4_crtc_data { 78 /* Which channel of the HVS this pixelvalve sources from. */ 79 int hvs_channel; 80 81 enum vc4_encoder_type encoder0_type; 82 enum vc4_encoder_type encoder1_type; 83 }; 84 85 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 86 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 87 88 #define CRTC_REG(reg) { reg, #reg } 89 static const struct { 90 u32 reg; 91 const char *name; 92 } crtc_regs[] = { 93 CRTC_REG(PV_CONTROL), 94 CRTC_REG(PV_V_CONTROL), 95 CRTC_REG(PV_VSYNCD_EVEN), 96 CRTC_REG(PV_HORZA), 97 CRTC_REG(PV_HORZB), 98 CRTC_REG(PV_VERTA), 99 CRTC_REG(PV_VERTB), 100 CRTC_REG(PV_VERTA_EVEN), 101 CRTC_REG(PV_VERTB_EVEN), 102 CRTC_REG(PV_INTEN), 103 CRTC_REG(PV_INTSTAT), 104 CRTC_REG(PV_STAT), 105 CRTC_REG(PV_HACT_ACT), 106 }; 107 108 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 109 { 110 int i; 111 112 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 113 DRM_INFO("0x%04x (%s): 0x%08x\n", 114 crtc_regs[i].reg, crtc_regs[i].name, 115 CRTC_READ(crtc_regs[i].reg)); 116 } 117 } 118 119 #ifdef CONFIG_DEBUG_FS 120 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 121 { 122 struct drm_info_node *node = (struct drm_info_node *)m->private; 123 struct drm_device *dev = node->minor->dev; 124 int crtc_index = (uintptr_t)node->info_ent->data; 125 struct drm_crtc *crtc; 126 struct vc4_crtc *vc4_crtc; 127 int i; 128 129 i = 0; 130 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 131 if (i == crtc_index) 132 break; 133 i++; 134 } 135 if (!crtc) 136 return 0; 137 vc4_crtc = to_vc4_crtc(crtc); 138 139 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 140 seq_printf(m, "%s (0x%04x): 0x%08x\n", 141 crtc_regs[i].name, crtc_regs[i].reg, 142 CRTC_READ(crtc_regs[i].reg)); 143 } 144 145 return 0; 146 } 147 #endif 148 149 static void vc4_crtc_destroy(struct drm_crtc *crtc) 150 { 151 drm_crtc_cleanup(crtc); 152 } 153 154 static void 155 vc4_crtc_lut_load(struct drm_crtc *crtc) 156 { 157 struct drm_device *dev = crtc->dev; 158 struct vc4_dev *vc4 = to_vc4_dev(dev); 159 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 160 u32 i; 161 162 /* The LUT memory is laid out with each HVS channel in order, 163 * each of which takes 256 writes for R, 256 for G, then 256 164 * for B. 165 */ 166 HVS_WRITE(SCALER_GAMADDR, 167 SCALER_GAMADDR_AUTOINC | 168 (vc4_crtc->channel * 3 * crtc->gamma_size)); 169 170 for (i = 0; i < crtc->gamma_size; i++) 171 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 172 for (i = 0; i < crtc->gamma_size; i++) 173 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 174 for (i = 0; i < crtc->gamma_size; i++) 175 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 176 } 177 178 static void 179 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 180 uint32_t start, uint32_t size) 181 { 182 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 183 u32 i; 184 185 for (i = start; i < start + size; i++) { 186 vc4_crtc->lut_r[i] = r[i] >> 8; 187 vc4_crtc->lut_g[i] = g[i] >> 8; 188 vc4_crtc->lut_b[i] = b[i] >> 8; 189 } 190 191 vc4_crtc_lut_load(crtc); 192 } 193 194 static u32 vc4_get_fifo_full_level(u32 format) 195 { 196 static const u32 fifo_len_bytes = 64; 197 static const u32 hvs_latency_pix = 6; 198 199 switch (format) { 200 case PV_CONTROL_FORMAT_DSIV_16: 201 case PV_CONTROL_FORMAT_DSIC_16: 202 return fifo_len_bytes - 2 * hvs_latency_pix; 203 case PV_CONTROL_FORMAT_DSIV_18: 204 return fifo_len_bytes - 14; 205 case PV_CONTROL_FORMAT_24: 206 case PV_CONTROL_FORMAT_DSIV_24: 207 default: 208 return fifo_len_bytes - 3 * hvs_latency_pix; 209 } 210 } 211 212 /* 213 * Returns the clock select bit for the connector attached to the 214 * CRTC. 215 */ 216 static int vc4_get_clock_select(struct drm_crtc *crtc) 217 { 218 struct drm_connector *connector; 219 220 drm_for_each_connector(connector, crtc->dev) { 221 if (connector->state->crtc == crtc) { 222 struct drm_encoder *encoder = connector->encoder; 223 struct vc4_encoder *vc4_encoder = 224 to_vc4_encoder(encoder); 225 226 return vc4_encoder->clock_select; 227 } 228 } 229 230 return -1; 231 } 232 233 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 234 { 235 struct drm_device *dev = crtc->dev; 236 struct vc4_dev *vc4 = to_vc4_dev(dev); 237 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 238 struct drm_crtc_state *state = crtc->state; 239 struct drm_display_mode *mode = &state->adjusted_mode; 240 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 241 u32 vactive = (mode->vdisplay >> (interlace ? 1 : 0)); 242 u32 format = PV_CONTROL_FORMAT_24; 243 bool debug_dump_regs = false; 244 int clock_select = vc4_get_clock_select(crtc); 245 246 if (debug_dump_regs) { 247 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 248 vc4_crtc_dump_regs(vc4_crtc); 249 } 250 251 /* Reset the PV fifo. */ 252 CRTC_WRITE(PV_CONTROL, 0); 253 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 254 CRTC_WRITE(PV_CONTROL, 0); 255 256 CRTC_WRITE(PV_HORZA, 257 VC4_SET_FIELD(mode->htotal - mode->hsync_end, 258 PV_HORZA_HBP) | 259 VC4_SET_FIELD(mode->hsync_end - mode->hsync_start, 260 PV_HORZA_HSYNC)); 261 CRTC_WRITE(PV_HORZB, 262 VC4_SET_FIELD(mode->hsync_start - mode->hdisplay, 263 PV_HORZB_HFP) | 264 VC4_SET_FIELD(mode->hdisplay, PV_HORZB_HACTIVE)); 265 266 CRTC_WRITE(PV_VERTA, 267 VC4_SET_FIELD(mode->vtotal - mode->vsync_end, 268 PV_VERTA_VBP) | 269 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, 270 PV_VERTA_VSYNC)); 271 CRTC_WRITE(PV_VERTB, 272 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, 273 PV_VERTB_VFP) | 274 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); 275 276 if (interlace) { 277 CRTC_WRITE(PV_VERTA_EVEN, 278 VC4_SET_FIELD(mode->vtotal - mode->vsync_end - 1, 279 PV_VERTA_VBP) | 280 VC4_SET_FIELD(mode->vsync_end - mode->vsync_start, 281 PV_VERTA_VSYNC)); 282 CRTC_WRITE(PV_VERTB_EVEN, 283 VC4_SET_FIELD(mode->vsync_start - mode->vdisplay, 284 PV_VERTB_VFP) | 285 VC4_SET_FIELD(vactive, PV_VERTB_VACTIVE)); 286 } 287 288 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay); 289 290 CRTC_WRITE(PV_V_CONTROL, 291 PV_VCONTROL_CONTINUOUS | 292 (interlace ? PV_VCONTROL_INTERLACE : 0)); 293 294 CRTC_WRITE(PV_CONTROL, 295 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 296 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 297 PV_CONTROL_FIFO_LEVEL) | 298 PV_CONTROL_CLR_AT_START | 299 PV_CONTROL_TRIGGER_UNDERFLOW | 300 PV_CONTROL_WAIT_HSTART | 301 VC4_SET_FIELD(clock_select, PV_CONTROL_CLK_SELECT) | 302 PV_CONTROL_FIFO_CLR | 303 PV_CONTROL_EN); 304 305 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 306 SCALER_DISPBKGND_AUTOHS | 307 SCALER_DISPBKGND_GAMMA | 308 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 309 310 /* Reload the LUT, since the SRAMs would have been disabled if 311 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 312 */ 313 vc4_crtc_lut_load(crtc); 314 315 if (debug_dump_regs) { 316 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 317 vc4_crtc_dump_regs(vc4_crtc); 318 } 319 } 320 321 static void require_hvs_enabled(struct drm_device *dev) 322 { 323 struct vc4_dev *vc4 = to_vc4_dev(dev); 324 325 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 326 SCALER_DISPCTRL_ENABLE); 327 } 328 329 static void vc4_crtc_disable(struct drm_crtc *crtc) 330 { 331 struct drm_device *dev = crtc->dev; 332 struct vc4_dev *vc4 = to_vc4_dev(dev); 333 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 334 u32 chan = vc4_crtc->channel; 335 int ret; 336 require_hvs_enabled(dev); 337 338 CRTC_WRITE(PV_V_CONTROL, 339 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 340 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 341 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 342 343 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 344 SCALER_DISPCTRLX_ENABLE) { 345 HVS_WRITE(SCALER_DISPCTRLX(chan), 346 SCALER_DISPCTRLX_RESET); 347 348 /* While the docs say that reset is self-clearing, it 349 * seems it doesn't actually. 350 */ 351 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 352 } 353 354 /* Once we leave, the scaler should be disabled and its fifo empty. */ 355 356 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 357 358 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 359 SCALER_DISPSTATX_MODE) != 360 SCALER_DISPSTATX_MODE_DISABLED); 361 362 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 363 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 364 SCALER_DISPSTATX_EMPTY); 365 } 366 367 static void vc4_crtc_enable(struct drm_crtc *crtc) 368 { 369 struct drm_device *dev = crtc->dev; 370 struct vc4_dev *vc4 = to_vc4_dev(dev); 371 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 372 struct drm_crtc_state *state = crtc->state; 373 struct drm_display_mode *mode = &state->adjusted_mode; 374 375 require_hvs_enabled(dev); 376 377 /* Turn on the scaler, which will wait for vstart to start 378 * compositing. 379 */ 380 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 381 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 382 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 383 SCALER_DISPCTRLX_ENABLE); 384 385 /* Turn on the pixel valve, which will emit the vstart signal. */ 386 CRTC_WRITE(PV_V_CONTROL, 387 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 388 } 389 390 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 391 struct drm_crtc_state *state) 392 { 393 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 394 struct drm_device *dev = crtc->dev; 395 struct vc4_dev *vc4 = to_vc4_dev(dev); 396 struct drm_plane *plane; 397 unsigned long flags; 398 u32 dlist_count = 0; 399 int ret; 400 401 /* The pixelvalve can only feed one encoder (and encoders are 402 * 1:1 with connectors.) 403 */ 404 if (hweight32(state->connector_mask) > 1) 405 return -EINVAL; 406 407 drm_atomic_crtc_state_for_each_plane(plane, state) { 408 struct drm_plane_state *plane_state = 409 state->state->plane_states[drm_plane_index(plane)]; 410 411 /* plane might not have changed, in which case take 412 * current state: 413 */ 414 if (!plane_state) 415 plane_state = plane->state; 416 417 dlist_count += vc4_plane_dlist_size(plane_state); 418 } 419 420 dlist_count++; /* Account for SCALER_CTL0_END. */ 421 422 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 423 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 424 dlist_count, 1, 0); 425 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 426 if (ret) 427 return ret; 428 429 return 0; 430 } 431 432 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 433 struct drm_crtc_state *old_state) 434 { 435 struct drm_device *dev = crtc->dev; 436 struct vc4_dev *vc4 = to_vc4_dev(dev); 437 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 438 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 439 struct drm_plane *plane; 440 bool debug_dump_regs = false; 441 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 442 u32 __iomem *dlist_next = dlist_start; 443 444 if (debug_dump_regs) { 445 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 446 vc4_hvs_dump_state(dev); 447 } 448 449 /* Copy all the active planes' dlist contents to the hardware dlist. */ 450 drm_atomic_crtc_for_each_plane(plane, crtc) { 451 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 452 } 453 454 writel(SCALER_CTL0_END, dlist_next); 455 dlist_next++; 456 457 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 458 459 if (crtc->state->event) { 460 unsigned long flags; 461 462 crtc->state->event->pipe = drm_crtc_index(crtc); 463 464 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 465 466 spin_lock_irqsave(&dev->event_lock, flags); 467 vc4_crtc->event = crtc->state->event; 468 crtc->state->event = NULL; 469 470 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 471 vc4_state->mm.start); 472 473 spin_unlock_irqrestore(&dev->event_lock, flags); 474 } else { 475 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 476 vc4_state->mm.start); 477 } 478 479 if (debug_dump_regs) { 480 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 481 vc4_hvs_dump_state(dev); 482 } 483 } 484 485 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) 486 { 487 struct vc4_dev *vc4 = to_vc4_dev(dev); 488 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 489 490 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 491 492 return 0; 493 } 494 495 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) 496 { 497 struct vc4_dev *vc4 = to_vc4_dev(dev); 498 struct vc4_crtc *vc4_crtc = vc4->crtc[crtc_id]; 499 500 CRTC_WRITE(PV_INTEN, 0); 501 } 502 503 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 504 { 505 struct drm_crtc *crtc = &vc4_crtc->base; 506 struct drm_device *dev = crtc->dev; 507 struct vc4_dev *vc4 = to_vc4_dev(dev); 508 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 509 u32 chan = vc4_crtc->channel; 510 unsigned long flags; 511 512 spin_lock_irqsave(&dev->event_lock, flags); 513 if (vc4_crtc->event && 514 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { 515 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 516 vc4_crtc->event = NULL; 517 drm_crtc_vblank_put(crtc); 518 } 519 spin_unlock_irqrestore(&dev->event_lock, flags); 520 } 521 522 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 523 { 524 struct vc4_crtc *vc4_crtc = data; 525 u32 stat = CRTC_READ(PV_INTSTAT); 526 irqreturn_t ret = IRQ_NONE; 527 528 if (stat & PV_INT_VFP_START) { 529 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 530 drm_crtc_handle_vblank(&vc4_crtc->base); 531 vc4_crtc_handle_page_flip(vc4_crtc); 532 ret = IRQ_HANDLED; 533 } 534 535 return ret; 536 } 537 538 struct vc4_async_flip_state { 539 struct drm_crtc *crtc; 540 struct drm_framebuffer *fb; 541 struct drm_pending_vblank_event *event; 542 543 struct vc4_seqno_cb cb; 544 }; 545 546 /* Called when the V3D execution for the BO being flipped to is done, so that 547 * we can actually update the plane's address to point to it. 548 */ 549 static void 550 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 551 { 552 struct vc4_async_flip_state *flip_state = 553 container_of(cb, struct vc4_async_flip_state, cb); 554 struct drm_crtc *crtc = flip_state->crtc; 555 struct drm_device *dev = crtc->dev; 556 struct vc4_dev *vc4 = to_vc4_dev(dev); 557 struct drm_plane *plane = crtc->primary; 558 559 vc4_plane_async_set_fb(plane, flip_state->fb); 560 if (flip_state->event) { 561 unsigned long flags; 562 563 spin_lock_irqsave(&dev->event_lock, flags); 564 drm_crtc_send_vblank_event(crtc, flip_state->event); 565 spin_unlock_irqrestore(&dev->event_lock, flags); 566 } 567 568 drm_crtc_vblank_put(crtc); 569 drm_framebuffer_unreference(flip_state->fb); 570 kfree(flip_state); 571 572 up(&vc4->async_modeset); 573 } 574 575 /* Implements async (non-vblank-synced) page flips. 576 * 577 * The page flip ioctl needs to return immediately, so we grab the 578 * modeset semaphore on the pipe, and queue the address update for 579 * when V3D is done with the BO being flipped to. 580 */ 581 static int vc4_async_page_flip(struct drm_crtc *crtc, 582 struct drm_framebuffer *fb, 583 struct drm_pending_vblank_event *event, 584 uint32_t flags) 585 { 586 struct drm_device *dev = crtc->dev; 587 struct vc4_dev *vc4 = to_vc4_dev(dev); 588 struct drm_plane *plane = crtc->primary; 589 int ret = 0; 590 struct vc4_async_flip_state *flip_state; 591 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 592 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 593 594 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 595 if (!flip_state) 596 return -ENOMEM; 597 598 drm_framebuffer_reference(fb); 599 flip_state->fb = fb; 600 flip_state->crtc = crtc; 601 flip_state->event = event; 602 603 /* Make sure all other async modesetes have landed. */ 604 ret = down_interruptible(&vc4->async_modeset); 605 if (ret) { 606 drm_framebuffer_unreference(fb); 607 kfree(flip_state); 608 return ret; 609 } 610 611 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 612 613 /* Immediately update the plane's legacy fb pointer, so that later 614 * modeset prep sees the state that will be present when the semaphore 615 * is released. 616 */ 617 drm_atomic_set_fb_for_plane(plane->state, fb); 618 plane->fb = fb; 619 620 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 621 vc4_async_page_flip_complete); 622 623 /* Driver takes ownership of state on successful async commit. */ 624 return 0; 625 } 626 627 static int vc4_page_flip(struct drm_crtc *crtc, 628 struct drm_framebuffer *fb, 629 struct drm_pending_vblank_event *event, 630 uint32_t flags) 631 { 632 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 633 return vc4_async_page_flip(crtc, fb, event, flags); 634 else 635 return drm_atomic_helper_page_flip(crtc, fb, event, flags); 636 } 637 638 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 639 { 640 struct vc4_crtc_state *vc4_state; 641 642 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 643 if (!vc4_state) 644 return NULL; 645 646 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 647 return &vc4_state->base; 648 } 649 650 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 651 struct drm_crtc_state *state) 652 { 653 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 654 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 655 656 if (vc4_state->mm.allocated) { 657 unsigned long flags; 658 659 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 660 drm_mm_remove_node(&vc4_state->mm); 661 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 662 663 } 664 665 __drm_atomic_helper_crtc_destroy_state(state); 666 } 667 668 static const struct drm_crtc_funcs vc4_crtc_funcs = { 669 .set_config = drm_atomic_helper_set_config, 670 .destroy = vc4_crtc_destroy, 671 .page_flip = vc4_page_flip, 672 .set_property = NULL, 673 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 674 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 675 .reset = drm_atomic_helper_crtc_reset, 676 .atomic_duplicate_state = vc4_crtc_duplicate_state, 677 .atomic_destroy_state = vc4_crtc_destroy_state, 678 .gamma_set = vc4_crtc_gamma_set, 679 }; 680 681 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 682 .mode_set_nofb = vc4_crtc_mode_set_nofb, 683 .disable = vc4_crtc_disable, 684 .enable = vc4_crtc_enable, 685 .atomic_check = vc4_crtc_atomic_check, 686 .atomic_flush = vc4_crtc_atomic_flush, 687 }; 688 689 static const struct vc4_crtc_data pv0_data = { 690 .hvs_channel = 0, 691 .encoder0_type = VC4_ENCODER_TYPE_DSI0, 692 .encoder1_type = VC4_ENCODER_TYPE_DPI, 693 }; 694 695 static const struct vc4_crtc_data pv1_data = { 696 .hvs_channel = 2, 697 .encoder0_type = VC4_ENCODER_TYPE_DSI1, 698 .encoder1_type = VC4_ENCODER_TYPE_SMI, 699 }; 700 701 static const struct vc4_crtc_data pv2_data = { 702 .hvs_channel = 1, 703 .encoder0_type = VC4_ENCODER_TYPE_VEC, 704 .encoder1_type = VC4_ENCODER_TYPE_HDMI, 705 }; 706 707 static const struct of_device_id vc4_crtc_dt_match[] = { 708 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 709 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 710 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 711 {} 712 }; 713 714 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 715 struct drm_crtc *crtc) 716 { 717 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 718 struct drm_encoder *encoder; 719 720 drm_for_each_encoder(encoder, drm) { 721 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 722 723 if (vc4_encoder->type == vc4_crtc->data->encoder0_type) { 724 vc4_encoder->clock_select = 0; 725 encoder->possible_crtcs |= drm_crtc_mask(crtc); 726 } else if (vc4_encoder->type == vc4_crtc->data->encoder1_type) { 727 vc4_encoder->clock_select = 1; 728 encoder->possible_crtcs |= drm_crtc_mask(crtc); 729 } 730 } 731 } 732 733 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 734 { 735 struct platform_device *pdev = to_platform_device(dev); 736 struct drm_device *drm = dev_get_drvdata(master); 737 struct vc4_dev *vc4 = to_vc4_dev(drm); 738 struct vc4_crtc *vc4_crtc; 739 struct drm_crtc *crtc; 740 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 741 const struct of_device_id *match; 742 int ret, i; 743 744 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 745 if (!vc4_crtc) 746 return -ENOMEM; 747 crtc = &vc4_crtc->base; 748 749 match = of_match_device(vc4_crtc_dt_match, dev); 750 if (!match) 751 return -ENODEV; 752 vc4_crtc->data = match->data; 753 754 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 755 if (IS_ERR(vc4_crtc->regs)) 756 return PTR_ERR(vc4_crtc->regs); 757 758 /* For now, we create just the primary and the legacy cursor 759 * planes. We should be able to stack more planes on easily, 760 * but to do that we would need to compute the bandwidth 761 * requirement of the plane configuration, and reject ones 762 * that will take too much. 763 */ 764 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 765 if (IS_ERR(primary_plane)) { 766 dev_err(dev, "failed to construct primary plane\n"); 767 ret = PTR_ERR(primary_plane); 768 goto err; 769 } 770 771 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 772 &vc4_crtc_funcs, NULL); 773 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 774 primary_plane->crtc = crtc; 775 vc4->crtc[drm_crtc_index(crtc)] = vc4_crtc; 776 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 777 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 778 779 /* Set up some arbitrary number of planes. We're not limited 780 * by a set number of physical registers, just the space in 781 * the HVS (16k) and how small an plane can be (28 bytes). 782 * However, each plane we set up takes up some memory, and 783 * increases the cost of looping over planes, which atomic 784 * modesetting does quite a bit. As a result, we pick a 785 * modest number of planes to expose, that should hopefully 786 * still cover any sane usecase. 787 */ 788 for (i = 0; i < 8; i++) { 789 struct drm_plane *plane = 790 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 791 792 if (IS_ERR(plane)) 793 continue; 794 795 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 796 } 797 798 /* Set up the legacy cursor after overlay initialization, 799 * since we overlay planes on the CRTC in the order they were 800 * initialized. 801 */ 802 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 803 if (!IS_ERR(cursor_plane)) { 804 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 805 cursor_plane->crtc = crtc; 806 crtc->cursor = cursor_plane; 807 } 808 809 CRTC_WRITE(PV_INTEN, 0); 810 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 811 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 812 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 813 if (ret) 814 goto err_destroy_planes; 815 816 vc4_set_crtc_possible_masks(drm, crtc); 817 818 for (i = 0; i < crtc->gamma_size; i++) { 819 vc4_crtc->lut_r[i] = i; 820 vc4_crtc->lut_g[i] = i; 821 vc4_crtc->lut_b[i] = i; 822 } 823 824 platform_set_drvdata(pdev, vc4_crtc); 825 826 return 0; 827 828 err_destroy_planes: 829 list_for_each_entry_safe(destroy_plane, temp, 830 &drm->mode_config.plane_list, head) { 831 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 832 destroy_plane->funcs->destroy(destroy_plane); 833 } 834 err: 835 return ret; 836 } 837 838 static void vc4_crtc_unbind(struct device *dev, struct device *master, 839 void *data) 840 { 841 struct platform_device *pdev = to_platform_device(dev); 842 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 843 844 vc4_crtc_destroy(&vc4_crtc->base); 845 846 CRTC_WRITE(PV_INTEN, 0); 847 848 platform_set_drvdata(pdev, NULL); 849 } 850 851 static const struct component_ops vc4_crtc_ops = { 852 .bind = vc4_crtc_bind, 853 .unbind = vc4_crtc_unbind, 854 }; 855 856 static int vc4_crtc_dev_probe(struct platform_device *pdev) 857 { 858 return component_add(&pdev->dev, &vc4_crtc_ops); 859 } 860 861 static int vc4_crtc_dev_remove(struct platform_device *pdev) 862 { 863 component_del(&pdev->dev, &vc4_crtc_ops); 864 return 0; 865 } 866 867 struct platform_driver vc4_crtc_driver = { 868 .probe = vc4_crtc_dev_probe, 869 .remove = vc4_crtc_dev_remove, 870 .driver = { 871 .name = "vc4_crtc", 872 .of_match_table = vc4_crtc_dt_match, 873 }, 874 }; 875