1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * output's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, this file also manages 19 * setup of the VC4 HVS's display elements on the CRTC. 20 * 21 * The 2835 has 3 different pixel valves. pv0 in the audio power 22 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 23 * image domain can feed either HDMI or the SDTV controller. The 24 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 25 * SDTV, etc.) according to which output type is chosen in the mux. 26 * 27 * For power management, the pixel valve's registers are all clocked 28 * by the AXI clock, while the timings and FIFOs make use of the 29 * output-specific clock. Since the encoders also directly consume 30 * the CPRMAN clocks, and know what timings they need, they are the 31 * ones that set the clock. 32 */ 33 34 #include "drm_atomic.h" 35 #include "drm_atomic_helper.h" 36 #include "drm_crtc_helper.h" 37 #include "linux/clk.h" 38 #include "drm_fb_cma_helper.h" 39 #include "linux/component.h" 40 #include "linux/of_device.h" 41 #include "vc4_drv.h" 42 #include "vc4_regs.h" 43 44 struct vc4_crtc { 45 struct drm_crtc base; 46 const struct vc4_crtc_data *data; 47 void __iomem *regs; 48 49 /* Timestamp at start of vblank irq - unaffected by lock delays. */ 50 ktime_t t_vblank; 51 52 /* Which HVS channel we're using for our CRTC. */ 53 int channel; 54 55 u8 lut_r[256]; 56 u8 lut_g[256]; 57 u8 lut_b[256]; 58 /* Size in pixels of the COB memory allocated to this CRTC. */ 59 u32 cob_size; 60 61 struct drm_pending_vblank_event *event; 62 }; 63 64 struct vc4_crtc_state { 65 struct drm_crtc_state base; 66 /* Dlist area for this CRTC configuration. */ 67 struct drm_mm_node mm; 68 }; 69 70 static inline struct vc4_crtc * 71 to_vc4_crtc(struct drm_crtc *crtc) 72 { 73 return (struct vc4_crtc *)crtc; 74 } 75 76 static inline struct vc4_crtc_state * 77 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 78 { 79 return (struct vc4_crtc_state *)crtc_state; 80 } 81 82 struct vc4_crtc_data { 83 /* Which channel of the HVS this pixelvalve sources from. */ 84 int hvs_channel; 85 86 enum vc4_encoder_type encoder_types[4]; 87 }; 88 89 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 90 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 91 92 #define CRTC_REG(reg) { reg, #reg } 93 static const struct { 94 u32 reg; 95 const char *name; 96 } crtc_regs[] = { 97 CRTC_REG(PV_CONTROL), 98 CRTC_REG(PV_V_CONTROL), 99 CRTC_REG(PV_VSYNCD_EVEN), 100 CRTC_REG(PV_HORZA), 101 CRTC_REG(PV_HORZB), 102 CRTC_REG(PV_VERTA), 103 CRTC_REG(PV_VERTB), 104 CRTC_REG(PV_VERTA_EVEN), 105 CRTC_REG(PV_VERTB_EVEN), 106 CRTC_REG(PV_INTEN), 107 CRTC_REG(PV_INTSTAT), 108 CRTC_REG(PV_STAT), 109 CRTC_REG(PV_HACT_ACT), 110 }; 111 112 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc) 113 { 114 int i; 115 116 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 117 DRM_INFO("0x%04x (%s): 0x%08x\n", 118 crtc_regs[i].reg, crtc_regs[i].name, 119 CRTC_READ(crtc_regs[i].reg)); 120 } 121 } 122 123 #ifdef CONFIG_DEBUG_FS 124 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused) 125 { 126 struct drm_info_node *node = (struct drm_info_node *)m->private; 127 struct drm_device *dev = node->minor->dev; 128 int crtc_index = (uintptr_t)node->info_ent->data; 129 struct drm_crtc *crtc; 130 struct vc4_crtc *vc4_crtc; 131 int i; 132 133 i = 0; 134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { 135 if (i == crtc_index) 136 break; 137 i++; 138 } 139 if (!crtc) 140 return 0; 141 vc4_crtc = to_vc4_crtc(crtc); 142 143 for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) { 144 seq_printf(m, "%s (0x%04x): 0x%08x\n", 145 crtc_regs[i].name, crtc_regs[i].reg, 146 CRTC_READ(crtc_regs[i].reg)); 147 } 148 149 return 0; 150 } 151 #endif 152 153 int vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 154 unsigned int flags, int *vpos, int *hpos, 155 ktime_t *stime, ktime_t *etime, 156 const struct drm_display_mode *mode) 157 { 158 struct vc4_dev *vc4 = to_vc4_dev(dev); 159 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 160 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 161 u32 val; 162 int fifo_lines; 163 int vblank_lines; 164 int ret = 0; 165 166 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 167 168 /* Get optional system timestamp before query. */ 169 if (stime) 170 *stime = ktime_get(); 171 172 /* 173 * Read vertical scanline which is currently composed for our 174 * pixelvalve by the HVS, and also the scaler status. 175 */ 176 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 177 178 /* Get optional system timestamp after query. */ 179 if (etime) 180 *etime = ktime_get(); 181 182 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 183 184 /* Vertical position of hvs composed scanline. */ 185 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 186 *hpos = 0; 187 188 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 189 *vpos /= 2; 190 191 /* Use hpos to correct for field offset in interlaced mode. */ 192 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 193 *hpos += mode->crtc_htotal / 2; 194 } 195 196 /* This is the offset we need for translating hvs -> pv scanout pos. */ 197 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 198 199 if (fifo_lines > 0) 200 ret |= DRM_SCANOUTPOS_VALID; 201 202 /* HVS more than fifo_lines into frame for compositing? */ 203 if (*vpos > fifo_lines) { 204 /* 205 * We are in active scanout and can get some meaningful results 206 * from HVS. The actual PV scanout can not trail behind more 207 * than fifo_lines as that is the fifo's capacity. Assume that 208 * in active scanout the HVS and PV work in lockstep wrt. HVS 209 * refilling the fifo and PV consuming from the fifo, ie. 210 * whenever the PV consumes and frees up a scanline in the 211 * fifo, the HVS will immediately refill it, therefore 212 * incrementing vpos. Therefore we choose HVS read position - 213 * fifo size in scanlines as a estimate of the real scanout 214 * position of the PV. 215 */ 216 *vpos -= fifo_lines + 1; 217 218 ret |= DRM_SCANOUTPOS_ACCURATE; 219 return ret; 220 } 221 222 /* 223 * Less: This happens when we are in vblank and the HVS, after getting 224 * the VSTART restart signal from the PV, just started refilling its 225 * fifo with new lines from the top-most lines of the new framebuffers. 226 * The PV does not scan out in vblank, so does not remove lines from 227 * the fifo, so the fifo will be full quickly and the HVS has to pause. 228 * We can't get meaningful readings wrt. scanline position of the PV 229 * and need to make things up in a approximative but consistent way. 230 */ 231 ret |= DRM_SCANOUTPOS_IN_VBLANK; 232 vblank_lines = mode->vtotal - mode->vdisplay; 233 234 if (flags & DRM_CALLED_FROM_VBLIRQ) { 235 /* 236 * Assume the irq handler got called close to first 237 * line of vblank, so PV has about a full vblank 238 * scanlines to go, and as a base timestamp use the 239 * one taken at entry into vblank irq handler, so it 240 * is not affected by random delays due to lock 241 * contention on event_lock or vblank_time lock in 242 * the core. 243 */ 244 *vpos = -vblank_lines; 245 246 if (stime) 247 *stime = vc4_crtc->t_vblank; 248 if (etime) 249 *etime = vc4_crtc->t_vblank; 250 251 /* 252 * If the HVS fifo is not yet full then we know for certain 253 * we are at the very beginning of vblank, as the hvs just 254 * started refilling, and the stime and etime timestamps 255 * truly correspond to start of vblank. 256 */ 257 if ((val & SCALER_DISPSTATX_FULL) != SCALER_DISPSTATX_FULL) 258 ret |= DRM_SCANOUTPOS_ACCURATE; 259 } else { 260 /* 261 * No clue where we are inside vblank. Return a vpos of zero, 262 * which will cause calling code to just return the etime 263 * timestamp uncorrected. At least this is no worse than the 264 * standard fallback. 265 */ 266 *vpos = 0; 267 } 268 269 return ret; 270 } 271 272 int vc4_crtc_get_vblank_timestamp(struct drm_device *dev, unsigned int crtc_id, 273 int *max_error, struct timeval *vblank_time, 274 unsigned flags) 275 { 276 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 277 struct drm_crtc_state *state = crtc->state; 278 279 /* Helper routine in DRM core does all the work: */ 280 return drm_calc_vbltimestamp_from_scanoutpos(dev, crtc_id, max_error, 281 vblank_time, flags, 282 &state->adjusted_mode); 283 } 284 285 static void vc4_crtc_destroy(struct drm_crtc *crtc) 286 { 287 drm_crtc_cleanup(crtc); 288 } 289 290 static void 291 vc4_crtc_lut_load(struct drm_crtc *crtc) 292 { 293 struct drm_device *dev = crtc->dev; 294 struct vc4_dev *vc4 = to_vc4_dev(dev); 295 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 296 u32 i; 297 298 /* The LUT memory is laid out with each HVS channel in order, 299 * each of which takes 256 writes for R, 256 for G, then 256 300 * for B. 301 */ 302 HVS_WRITE(SCALER_GAMADDR, 303 SCALER_GAMADDR_AUTOINC | 304 (vc4_crtc->channel * 3 * crtc->gamma_size)); 305 306 for (i = 0; i < crtc->gamma_size; i++) 307 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 308 for (i = 0; i < crtc->gamma_size; i++) 309 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 310 for (i = 0; i < crtc->gamma_size; i++) 311 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 312 } 313 314 static int 315 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 316 uint32_t size) 317 { 318 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 319 u32 i; 320 321 for (i = 0; i < size; i++) { 322 vc4_crtc->lut_r[i] = r[i] >> 8; 323 vc4_crtc->lut_g[i] = g[i] >> 8; 324 vc4_crtc->lut_b[i] = b[i] >> 8; 325 } 326 327 vc4_crtc_lut_load(crtc); 328 329 return 0; 330 } 331 332 static u32 vc4_get_fifo_full_level(u32 format) 333 { 334 static const u32 fifo_len_bytes = 64; 335 static const u32 hvs_latency_pix = 6; 336 337 switch (format) { 338 case PV_CONTROL_FORMAT_DSIV_16: 339 case PV_CONTROL_FORMAT_DSIC_16: 340 return fifo_len_bytes - 2 * hvs_latency_pix; 341 case PV_CONTROL_FORMAT_DSIV_18: 342 return fifo_len_bytes - 14; 343 case PV_CONTROL_FORMAT_24: 344 case PV_CONTROL_FORMAT_DSIV_24: 345 default: 346 return fifo_len_bytes - 3 * hvs_latency_pix; 347 } 348 } 349 350 /* 351 * Returns the encoder attached to the CRTC. 352 * 353 * VC4 can only scan out to one encoder at a time, while the DRM core 354 * allows drivers to push pixels to more than one encoder from the 355 * same CRTC. 356 */ 357 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 358 { 359 struct drm_connector *connector; 360 361 drm_for_each_connector(connector, crtc->dev) { 362 if (connector->state->crtc == crtc) { 363 return connector->encoder; 364 } 365 } 366 367 return NULL; 368 } 369 370 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 371 { 372 struct drm_device *dev = crtc->dev; 373 struct vc4_dev *vc4 = to_vc4_dev(dev); 374 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 375 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 376 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 377 struct drm_crtc_state *state = crtc->state; 378 struct drm_display_mode *mode = &state->adjusted_mode; 379 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 380 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 381 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 382 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 383 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 384 bool debug_dump_regs = false; 385 386 if (debug_dump_regs) { 387 DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc)); 388 vc4_crtc_dump_regs(vc4_crtc); 389 } 390 391 /* Reset the PV fifo. */ 392 CRTC_WRITE(PV_CONTROL, 0); 393 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 394 CRTC_WRITE(PV_CONTROL, 0); 395 396 CRTC_WRITE(PV_HORZA, 397 VC4_SET_FIELD((mode->htotal - 398 mode->hsync_end) * pixel_rep, 399 PV_HORZA_HBP) | 400 VC4_SET_FIELD((mode->hsync_end - 401 mode->hsync_start) * pixel_rep, 402 PV_HORZA_HSYNC)); 403 CRTC_WRITE(PV_HORZB, 404 VC4_SET_FIELD((mode->hsync_start - 405 mode->hdisplay) * pixel_rep, 406 PV_HORZB_HFP) | 407 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 408 409 CRTC_WRITE(PV_VERTA, 410 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 411 PV_VERTA_VBP) | 412 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 413 PV_VERTA_VSYNC)); 414 CRTC_WRITE(PV_VERTB, 415 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 416 PV_VERTB_VFP) | 417 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 418 419 if (interlace) { 420 CRTC_WRITE(PV_VERTA_EVEN, 421 VC4_SET_FIELD(mode->crtc_vtotal - 422 mode->crtc_vsync_end - 1, 423 PV_VERTA_VBP) | 424 VC4_SET_FIELD(mode->crtc_vsync_end - 425 mode->crtc_vsync_start, 426 PV_VERTA_VSYNC)); 427 CRTC_WRITE(PV_VERTB_EVEN, 428 VC4_SET_FIELD(mode->crtc_vsync_start - 429 mode->crtc_vdisplay, 430 PV_VERTB_VFP) | 431 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 432 433 /* We set up first field even mode for HDMI. VEC's 434 * NTSC mode would want first field odd instead, once 435 * we support it (to do so, set ODD_FIRST and put the 436 * delay in VSYNCD_EVEN instead). 437 */ 438 CRTC_WRITE(PV_V_CONTROL, 439 PV_VCONTROL_CONTINUOUS | 440 (is_dsi ? PV_VCONTROL_DSI : 0) | 441 PV_VCONTROL_INTERLACE | 442 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 443 PV_VCONTROL_ODD_DELAY)); 444 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 445 } else { 446 CRTC_WRITE(PV_V_CONTROL, 447 PV_VCONTROL_CONTINUOUS | 448 (is_dsi ? PV_VCONTROL_DSI : 0)); 449 } 450 451 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 452 453 CRTC_WRITE(PV_CONTROL, 454 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 455 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 456 PV_CONTROL_FIFO_LEVEL) | 457 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 458 PV_CONTROL_CLR_AT_START | 459 PV_CONTROL_TRIGGER_UNDERFLOW | 460 PV_CONTROL_WAIT_HSTART | 461 VC4_SET_FIELD(vc4_encoder->clock_select, 462 PV_CONTROL_CLK_SELECT) | 463 PV_CONTROL_FIFO_CLR | 464 PV_CONTROL_EN); 465 466 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 467 SCALER_DISPBKGND_AUTOHS | 468 SCALER_DISPBKGND_GAMMA | 469 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 470 471 /* Reload the LUT, since the SRAMs would have been disabled if 472 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 473 */ 474 vc4_crtc_lut_load(crtc); 475 476 if (debug_dump_regs) { 477 DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc)); 478 vc4_crtc_dump_regs(vc4_crtc); 479 } 480 } 481 482 static void require_hvs_enabled(struct drm_device *dev) 483 { 484 struct vc4_dev *vc4 = to_vc4_dev(dev); 485 486 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 487 SCALER_DISPCTRL_ENABLE); 488 } 489 490 static void vc4_crtc_disable(struct drm_crtc *crtc) 491 { 492 struct drm_device *dev = crtc->dev; 493 struct vc4_dev *vc4 = to_vc4_dev(dev); 494 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 495 u32 chan = vc4_crtc->channel; 496 int ret; 497 require_hvs_enabled(dev); 498 499 /* Disable vblank irq handling before crtc is disabled. */ 500 drm_crtc_vblank_off(crtc); 501 502 CRTC_WRITE(PV_V_CONTROL, 503 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 504 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 505 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 506 507 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 508 SCALER_DISPCTRLX_ENABLE) { 509 HVS_WRITE(SCALER_DISPCTRLX(chan), 510 SCALER_DISPCTRLX_RESET); 511 512 /* While the docs say that reset is self-clearing, it 513 * seems it doesn't actually. 514 */ 515 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 516 } 517 518 /* Once we leave, the scaler should be disabled and its fifo empty. */ 519 520 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 521 522 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 523 SCALER_DISPSTATX_MODE) != 524 SCALER_DISPSTATX_MODE_DISABLED); 525 526 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 527 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 528 SCALER_DISPSTATX_EMPTY); 529 } 530 531 static void vc4_crtc_enable(struct drm_crtc *crtc) 532 { 533 struct drm_device *dev = crtc->dev; 534 struct vc4_dev *vc4 = to_vc4_dev(dev); 535 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 536 struct drm_crtc_state *state = crtc->state; 537 struct drm_display_mode *mode = &state->adjusted_mode; 538 539 require_hvs_enabled(dev); 540 541 /* Turn on the scaler, which will wait for vstart to start 542 * compositing. 543 */ 544 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 545 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 546 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 547 SCALER_DISPCTRLX_ENABLE); 548 549 /* Turn on the pixel valve, which will emit the vstart signal. */ 550 CRTC_WRITE(PV_V_CONTROL, 551 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 552 553 /* Enable vblank irq handling after crtc is started. */ 554 drm_crtc_vblank_on(crtc); 555 } 556 557 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc, 558 const struct drm_display_mode *mode, 559 struct drm_display_mode *adjusted_mode) 560 { 561 /* Do not allow doublescan modes from user space */ 562 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) { 563 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 564 crtc->base.id); 565 return false; 566 } 567 568 return true; 569 } 570 571 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 572 struct drm_crtc_state *state) 573 { 574 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 575 struct drm_device *dev = crtc->dev; 576 struct vc4_dev *vc4 = to_vc4_dev(dev); 577 struct drm_plane *plane; 578 unsigned long flags; 579 const struct drm_plane_state *plane_state; 580 u32 dlist_count = 0; 581 int ret; 582 583 /* The pixelvalve can only feed one encoder (and encoders are 584 * 1:1 with connectors.) 585 */ 586 if (hweight32(state->connector_mask) > 1) 587 return -EINVAL; 588 589 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 590 dlist_count += vc4_plane_dlist_size(plane_state); 591 592 dlist_count++; /* Account for SCALER_CTL0_END. */ 593 594 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 595 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 596 dlist_count); 597 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 598 if (ret) 599 return ret; 600 601 return 0; 602 } 603 604 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 605 struct drm_crtc_state *old_state) 606 { 607 struct drm_device *dev = crtc->dev; 608 struct vc4_dev *vc4 = to_vc4_dev(dev); 609 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 610 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 611 struct drm_plane *plane; 612 bool debug_dump_regs = false; 613 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 614 u32 __iomem *dlist_next = dlist_start; 615 616 if (debug_dump_regs) { 617 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 618 vc4_hvs_dump_state(dev); 619 } 620 621 /* Copy all the active planes' dlist contents to the hardware dlist. */ 622 drm_atomic_crtc_for_each_plane(plane, crtc) { 623 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 624 } 625 626 writel(SCALER_CTL0_END, dlist_next); 627 dlist_next++; 628 629 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 630 631 if (crtc->state->event) { 632 unsigned long flags; 633 634 crtc->state->event->pipe = drm_crtc_index(crtc); 635 636 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 637 638 spin_lock_irqsave(&dev->event_lock, flags); 639 vc4_crtc->event = crtc->state->event; 640 crtc->state->event = NULL; 641 642 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 643 vc4_state->mm.start); 644 645 spin_unlock_irqrestore(&dev->event_lock, flags); 646 } else { 647 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 648 vc4_state->mm.start); 649 } 650 651 if (debug_dump_regs) { 652 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 653 vc4_hvs_dump_state(dev); 654 } 655 } 656 657 int vc4_enable_vblank(struct drm_device *dev, unsigned int crtc_id) 658 { 659 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 660 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 661 662 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 663 664 return 0; 665 } 666 667 void vc4_disable_vblank(struct drm_device *dev, unsigned int crtc_id) 668 { 669 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 670 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 671 672 CRTC_WRITE(PV_INTEN, 0); 673 } 674 675 /* Must be called with the event lock held */ 676 bool vc4_event_pending(struct drm_crtc *crtc) 677 { 678 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 679 680 return !!vc4_crtc->event; 681 } 682 683 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 684 { 685 struct drm_crtc *crtc = &vc4_crtc->base; 686 struct drm_device *dev = crtc->dev; 687 struct vc4_dev *vc4 = to_vc4_dev(dev); 688 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 689 u32 chan = vc4_crtc->channel; 690 unsigned long flags; 691 692 spin_lock_irqsave(&dev->event_lock, flags); 693 if (vc4_crtc->event && 694 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) { 695 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 696 vc4_crtc->event = NULL; 697 drm_crtc_vblank_put(crtc); 698 } 699 spin_unlock_irqrestore(&dev->event_lock, flags); 700 } 701 702 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 703 { 704 struct vc4_crtc *vc4_crtc = data; 705 u32 stat = CRTC_READ(PV_INTSTAT); 706 irqreturn_t ret = IRQ_NONE; 707 708 if (stat & PV_INT_VFP_START) { 709 vc4_crtc->t_vblank = ktime_get(); 710 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 711 drm_crtc_handle_vblank(&vc4_crtc->base); 712 vc4_crtc_handle_page_flip(vc4_crtc); 713 ret = IRQ_HANDLED; 714 } 715 716 return ret; 717 } 718 719 struct vc4_async_flip_state { 720 struct drm_crtc *crtc; 721 struct drm_framebuffer *fb; 722 struct drm_pending_vblank_event *event; 723 724 struct vc4_seqno_cb cb; 725 }; 726 727 /* Called when the V3D execution for the BO being flipped to is done, so that 728 * we can actually update the plane's address to point to it. 729 */ 730 static void 731 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 732 { 733 struct vc4_async_flip_state *flip_state = 734 container_of(cb, struct vc4_async_flip_state, cb); 735 struct drm_crtc *crtc = flip_state->crtc; 736 struct drm_device *dev = crtc->dev; 737 struct vc4_dev *vc4 = to_vc4_dev(dev); 738 struct drm_plane *plane = crtc->primary; 739 740 vc4_plane_async_set_fb(plane, flip_state->fb); 741 if (flip_state->event) { 742 unsigned long flags; 743 744 spin_lock_irqsave(&dev->event_lock, flags); 745 drm_crtc_send_vblank_event(crtc, flip_state->event); 746 spin_unlock_irqrestore(&dev->event_lock, flags); 747 } 748 749 drm_crtc_vblank_put(crtc); 750 drm_framebuffer_unreference(flip_state->fb); 751 kfree(flip_state); 752 753 up(&vc4->async_modeset); 754 } 755 756 /* Implements async (non-vblank-synced) page flips. 757 * 758 * The page flip ioctl needs to return immediately, so we grab the 759 * modeset semaphore on the pipe, and queue the address update for 760 * when V3D is done with the BO being flipped to. 761 */ 762 static int vc4_async_page_flip(struct drm_crtc *crtc, 763 struct drm_framebuffer *fb, 764 struct drm_pending_vblank_event *event, 765 uint32_t flags) 766 { 767 struct drm_device *dev = crtc->dev; 768 struct vc4_dev *vc4 = to_vc4_dev(dev); 769 struct drm_plane *plane = crtc->primary; 770 int ret = 0; 771 struct vc4_async_flip_state *flip_state; 772 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 773 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 774 775 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 776 if (!flip_state) 777 return -ENOMEM; 778 779 drm_framebuffer_reference(fb); 780 flip_state->fb = fb; 781 flip_state->crtc = crtc; 782 flip_state->event = event; 783 784 /* Make sure all other async modesetes have landed. */ 785 ret = down_interruptible(&vc4->async_modeset); 786 if (ret) { 787 drm_framebuffer_unreference(fb); 788 kfree(flip_state); 789 return ret; 790 } 791 792 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 793 794 /* Immediately update the plane's legacy fb pointer, so that later 795 * modeset prep sees the state that will be present when the semaphore 796 * is released. 797 */ 798 drm_atomic_set_fb_for_plane(plane->state, fb); 799 plane->fb = fb; 800 801 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 802 vc4_async_page_flip_complete); 803 804 /* Driver takes ownership of state on successful async commit. */ 805 return 0; 806 } 807 808 static int vc4_page_flip(struct drm_crtc *crtc, 809 struct drm_framebuffer *fb, 810 struct drm_pending_vblank_event *event, 811 uint32_t flags) 812 { 813 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 814 return vc4_async_page_flip(crtc, fb, event, flags); 815 else 816 return drm_atomic_helper_page_flip(crtc, fb, event, flags); 817 } 818 819 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 820 { 821 struct vc4_crtc_state *vc4_state; 822 823 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 824 if (!vc4_state) 825 return NULL; 826 827 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 828 return &vc4_state->base; 829 } 830 831 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 832 struct drm_crtc_state *state) 833 { 834 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 835 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 836 837 if (vc4_state->mm.allocated) { 838 unsigned long flags; 839 840 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 841 drm_mm_remove_node(&vc4_state->mm); 842 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 843 844 } 845 846 drm_atomic_helper_crtc_destroy_state(crtc, state); 847 } 848 849 static void 850 vc4_crtc_reset(struct drm_crtc *crtc) 851 { 852 if (crtc->state) 853 __drm_atomic_helper_crtc_destroy_state(crtc->state); 854 855 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 856 if (crtc->state) 857 crtc->state->crtc = crtc; 858 } 859 860 static const struct drm_crtc_funcs vc4_crtc_funcs = { 861 .set_config = drm_atomic_helper_set_config, 862 .destroy = vc4_crtc_destroy, 863 .page_flip = vc4_page_flip, 864 .set_property = NULL, 865 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 866 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 867 .reset = vc4_crtc_reset, 868 .atomic_duplicate_state = vc4_crtc_duplicate_state, 869 .atomic_destroy_state = vc4_crtc_destroy_state, 870 .gamma_set = vc4_crtc_gamma_set, 871 }; 872 873 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 874 .mode_set_nofb = vc4_crtc_mode_set_nofb, 875 .disable = vc4_crtc_disable, 876 .enable = vc4_crtc_enable, 877 .mode_fixup = vc4_crtc_mode_fixup, 878 .atomic_check = vc4_crtc_atomic_check, 879 .atomic_flush = vc4_crtc_atomic_flush, 880 }; 881 882 static const struct vc4_crtc_data pv0_data = { 883 .hvs_channel = 0, 884 .encoder_types = { 885 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 886 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 887 }, 888 }; 889 890 static const struct vc4_crtc_data pv1_data = { 891 .hvs_channel = 2, 892 .encoder_types = { 893 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 894 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 895 }, 896 }; 897 898 static const struct vc4_crtc_data pv2_data = { 899 .hvs_channel = 1, 900 .encoder_types = { 901 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 902 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 903 }, 904 }; 905 906 static const struct of_device_id vc4_crtc_dt_match[] = { 907 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 908 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 909 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 910 {} 911 }; 912 913 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 914 struct drm_crtc *crtc) 915 { 916 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 917 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 918 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 919 struct drm_encoder *encoder; 920 921 drm_for_each_encoder(encoder, drm) { 922 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 923 int i; 924 925 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 926 if (vc4_encoder->type == encoder_types[i]) { 927 vc4_encoder->clock_select = i; 928 encoder->possible_crtcs |= drm_crtc_mask(crtc); 929 break; 930 } 931 } 932 } 933 } 934 935 static void 936 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 937 { 938 struct drm_device *drm = vc4_crtc->base.dev; 939 struct vc4_dev *vc4 = to_vc4_dev(drm); 940 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 941 /* Top/base are supposed to be 4-pixel aligned, but the 942 * Raspberry Pi firmware fills the low bits (which are 943 * presumably ignored). 944 */ 945 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 946 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 947 948 vc4_crtc->cob_size = top - base + 4; 949 } 950 951 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 952 { 953 struct platform_device *pdev = to_platform_device(dev); 954 struct drm_device *drm = dev_get_drvdata(master); 955 struct vc4_crtc *vc4_crtc; 956 struct drm_crtc *crtc; 957 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 958 const struct of_device_id *match; 959 int ret, i; 960 961 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 962 if (!vc4_crtc) 963 return -ENOMEM; 964 crtc = &vc4_crtc->base; 965 966 match = of_match_device(vc4_crtc_dt_match, dev); 967 if (!match) 968 return -ENODEV; 969 vc4_crtc->data = match->data; 970 971 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 972 if (IS_ERR(vc4_crtc->regs)) 973 return PTR_ERR(vc4_crtc->regs); 974 975 /* For now, we create just the primary and the legacy cursor 976 * planes. We should be able to stack more planes on easily, 977 * but to do that we would need to compute the bandwidth 978 * requirement of the plane configuration, and reject ones 979 * that will take too much. 980 */ 981 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 982 if (IS_ERR(primary_plane)) { 983 dev_err(dev, "failed to construct primary plane\n"); 984 ret = PTR_ERR(primary_plane); 985 goto err; 986 } 987 988 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 989 &vc4_crtc_funcs, NULL); 990 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 991 primary_plane->crtc = crtc; 992 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 993 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 994 995 /* Set up some arbitrary number of planes. We're not limited 996 * by a set number of physical registers, just the space in 997 * the HVS (16k) and how small an plane can be (28 bytes). 998 * However, each plane we set up takes up some memory, and 999 * increases the cost of looping over planes, which atomic 1000 * modesetting does quite a bit. As a result, we pick a 1001 * modest number of planes to expose, that should hopefully 1002 * still cover any sane usecase. 1003 */ 1004 for (i = 0; i < 8; i++) { 1005 struct drm_plane *plane = 1006 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1007 1008 if (IS_ERR(plane)) 1009 continue; 1010 1011 plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1012 } 1013 1014 /* Set up the legacy cursor after overlay initialization, 1015 * since we overlay planes on the CRTC in the order they were 1016 * initialized. 1017 */ 1018 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1019 if (!IS_ERR(cursor_plane)) { 1020 cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc); 1021 cursor_plane->crtc = crtc; 1022 crtc->cursor = cursor_plane; 1023 } 1024 1025 vc4_crtc_get_cob_allocation(vc4_crtc); 1026 1027 CRTC_WRITE(PV_INTEN, 0); 1028 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1029 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1030 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1031 if (ret) 1032 goto err_destroy_planes; 1033 1034 vc4_set_crtc_possible_masks(drm, crtc); 1035 1036 for (i = 0; i < crtc->gamma_size; i++) { 1037 vc4_crtc->lut_r[i] = i; 1038 vc4_crtc->lut_g[i] = i; 1039 vc4_crtc->lut_b[i] = i; 1040 } 1041 1042 platform_set_drvdata(pdev, vc4_crtc); 1043 1044 return 0; 1045 1046 err_destroy_planes: 1047 list_for_each_entry_safe(destroy_plane, temp, 1048 &drm->mode_config.plane_list, head) { 1049 if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc)) 1050 destroy_plane->funcs->destroy(destroy_plane); 1051 } 1052 err: 1053 return ret; 1054 } 1055 1056 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1057 void *data) 1058 { 1059 struct platform_device *pdev = to_platform_device(dev); 1060 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1061 1062 vc4_crtc_destroy(&vc4_crtc->base); 1063 1064 CRTC_WRITE(PV_INTEN, 0); 1065 1066 platform_set_drvdata(pdev, NULL); 1067 } 1068 1069 static const struct component_ops vc4_crtc_ops = { 1070 .bind = vc4_crtc_bind, 1071 .unbind = vc4_crtc_unbind, 1072 }; 1073 1074 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1075 { 1076 return component_add(&pdev->dev, &vc4_crtc_ops); 1077 } 1078 1079 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1080 { 1081 component_del(&pdev->dev, &vc4_crtc_ops); 1082 return 0; 1083 } 1084 1085 struct platform_driver vc4_crtc_driver = { 1086 .probe = vc4_crtc_dev_probe, 1087 .remove = vc4_crtc_dev_remove, 1088 .driver = { 1089 .name = "vc4_crtc", 1090 .of_match_table = vc4_crtc_dt_match, 1091 }, 1092 }; 1093