xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 3df0e680)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 struct vc4_crtc_state {
46 	struct drm_crtc_state base;
47 	/* Dlist area for this CRTC configuration. */
48 	struct drm_mm_node mm;
49 	bool feed_txp;
50 	bool txp_armed;
51 };
52 
53 static inline struct vc4_crtc_state *
54 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
55 {
56 	return (struct vc4_crtc_state *)crtc_state;
57 }
58 
59 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
60 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
61 
62 #define CRTC_REG(reg) { reg, #reg }
63 static const struct {
64 	u32 reg;
65 	const char *name;
66 } crtc_regs[] = {
67 	CRTC_REG(PV_CONTROL),
68 	CRTC_REG(PV_V_CONTROL),
69 	CRTC_REG(PV_VSYNCD_EVEN),
70 	CRTC_REG(PV_HORZA),
71 	CRTC_REG(PV_HORZB),
72 	CRTC_REG(PV_VERTA),
73 	CRTC_REG(PV_VERTB),
74 	CRTC_REG(PV_VERTA_EVEN),
75 	CRTC_REG(PV_VERTB_EVEN),
76 	CRTC_REG(PV_INTEN),
77 	CRTC_REG(PV_INTSTAT),
78 	CRTC_REG(PV_STAT),
79 	CRTC_REG(PV_HACT_ACT),
80 };
81 
82 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
83 {
84 	int i;
85 
86 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
87 		DRM_INFO("0x%04x (%s): 0x%08x\n",
88 			 crtc_regs[i].reg, crtc_regs[i].name,
89 			 CRTC_READ(crtc_regs[i].reg));
90 	}
91 }
92 
93 #ifdef CONFIG_DEBUG_FS
94 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
95 {
96 	struct drm_info_node *node = (struct drm_info_node *)m->private;
97 	struct drm_device *dev = node->minor->dev;
98 	int crtc_index = (uintptr_t)node->info_ent->data;
99 	struct drm_crtc *crtc;
100 	struct vc4_crtc *vc4_crtc;
101 	int i;
102 
103 	i = 0;
104 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
105 		if (i == crtc_index)
106 			break;
107 		i++;
108 	}
109 	if (!crtc)
110 		return 0;
111 	vc4_crtc = to_vc4_crtc(crtc);
112 
113 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
114 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
115 			   crtc_regs[i].name, crtc_regs[i].reg,
116 			   CRTC_READ(crtc_regs[i].reg));
117 	}
118 
119 	return 0;
120 }
121 #endif
122 
123 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
124 			     bool in_vblank_irq, int *vpos, int *hpos,
125 			     ktime_t *stime, ktime_t *etime,
126 			     const struct drm_display_mode *mode)
127 {
128 	struct vc4_dev *vc4 = to_vc4_dev(dev);
129 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
130 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
131 	u32 val;
132 	int fifo_lines;
133 	int vblank_lines;
134 	bool ret = false;
135 
136 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
137 
138 	/* Get optional system timestamp before query. */
139 	if (stime)
140 		*stime = ktime_get();
141 
142 	/*
143 	 * Read vertical scanline which is currently composed for our
144 	 * pixelvalve by the HVS, and also the scaler status.
145 	 */
146 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
147 
148 	/* Get optional system timestamp after query. */
149 	if (etime)
150 		*etime = ktime_get();
151 
152 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
153 
154 	/* Vertical position of hvs composed scanline. */
155 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
156 	*hpos = 0;
157 
158 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
159 		*vpos /= 2;
160 
161 		/* Use hpos to correct for field offset in interlaced mode. */
162 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
163 			*hpos += mode->crtc_htotal / 2;
164 	}
165 
166 	/* This is the offset we need for translating hvs -> pv scanout pos. */
167 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
168 
169 	if (fifo_lines > 0)
170 		ret = true;
171 
172 	/* HVS more than fifo_lines into frame for compositing? */
173 	if (*vpos > fifo_lines) {
174 		/*
175 		 * We are in active scanout and can get some meaningful results
176 		 * from HVS. The actual PV scanout can not trail behind more
177 		 * than fifo_lines as that is the fifo's capacity. Assume that
178 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
179 		 * refilling the fifo and PV consuming from the fifo, ie.
180 		 * whenever the PV consumes and frees up a scanline in the
181 		 * fifo, the HVS will immediately refill it, therefore
182 		 * incrementing vpos. Therefore we choose HVS read position -
183 		 * fifo size in scanlines as a estimate of the real scanout
184 		 * position of the PV.
185 		 */
186 		*vpos -= fifo_lines + 1;
187 
188 		return ret;
189 	}
190 
191 	/*
192 	 * Less: This happens when we are in vblank and the HVS, after getting
193 	 * the VSTART restart signal from the PV, just started refilling its
194 	 * fifo with new lines from the top-most lines of the new framebuffers.
195 	 * The PV does not scan out in vblank, so does not remove lines from
196 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
197 	 * We can't get meaningful readings wrt. scanline position of the PV
198 	 * and need to make things up in a approximative but consistent way.
199 	 */
200 	vblank_lines = mode->vtotal - mode->vdisplay;
201 
202 	if (in_vblank_irq) {
203 		/*
204 		 * Assume the irq handler got called close to first
205 		 * line of vblank, so PV has about a full vblank
206 		 * scanlines to go, and as a base timestamp use the
207 		 * one taken at entry into vblank irq handler, so it
208 		 * is not affected by random delays due to lock
209 		 * contention on event_lock or vblank_time lock in
210 		 * the core.
211 		 */
212 		*vpos = -vblank_lines;
213 
214 		if (stime)
215 			*stime = vc4_crtc->t_vblank;
216 		if (etime)
217 			*etime = vc4_crtc->t_vblank;
218 
219 		/*
220 		 * If the HVS fifo is not yet full then we know for certain
221 		 * we are at the very beginning of vblank, as the hvs just
222 		 * started refilling, and the stime and etime timestamps
223 		 * truly correspond to start of vblank.
224 		 *
225 		 * Unfortunately there's no way to report this to upper levels
226 		 * and make it more useful.
227 		 */
228 	} else {
229 		/*
230 		 * No clue where we are inside vblank. Return a vpos of zero,
231 		 * which will cause calling code to just return the etime
232 		 * timestamp uncorrected. At least this is no worse than the
233 		 * standard fallback.
234 		 */
235 		*vpos = 0;
236 	}
237 
238 	return ret;
239 }
240 
241 static void vc4_crtc_destroy(struct drm_crtc *crtc)
242 {
243 	drm_crtc_cleanup(crtc);
244 }
245 
246 static void
247 vc4_crtc_lut_load(struct drm_crtc *crtc)
248 {
249 	struct drm_device *dev = crtc->dev;
250 	struct vc4_dev *vc4 = to_vc4_dev(dev);
251 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
252 	u32 i;
253 
254 	/* The LUT memory is laid out with each HVS channel in order,
255 	 * each of which takes 256 writes for R, 256 for G, then 256
256 	 * for B.
257 	 */
258 	HVS_WRITE(SCALER_GAMADDR,
259 		  SCALER_GAMADDR_AUTOINC |
260 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
261 
262 	for (i = 0; i < crtc->gamma_size; i++)
263 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
264 	for (i = 0; i < crtc->gamma_size; i++)
265 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
266 	for (i = 0; i < crtc->gamma_size; i++)
267 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
268 }
269 
270 static void
271 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
272 {
273 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
274 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
275 	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
276 	u32 i;
277 
278 	for (i = 0; i < length; i++) {
279 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
280 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
281 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
282 	}
283 
284 	vc4_crtc_lut_load(crtc);
285 }
286 
287 static u32 vc4_get_fifo_full_level(u32 format)
288 {
289 	static const u32 fifo_len_bytes = 64;
290 	static const u32 hvs_latency_pix = 6;
291 
292 	switch (format) {
293 	case PV_CONTROL_FORMAT_DSIV_16:
294 	case PV_CONTROL_FORMAT_DSIC_16:
295 		return fifo_len_bytes - 2 * hvs_latency_pix;
296 	case PV_CONTROL_FORMAT_DSIV_18:
297 		return fifo_len_bytes - 14;
298 	case PV_CONTROL_FORMAT_24:
299 	case PV_CONTROL_FORMAT_DSIV_24:
300 	default:
301 		return fifo_len_bytes - 3 * hvs_latency_pix;
302 	}
303 }
304 
305 /*
306  * Returns the encoder attached to the CRTC.
307  *
308  * VC4 can only scan out to one encoder at a time, while the DRM core
309  * allows drivers to push pixels to more than one encoder from the
310  * same CRTC.
311  */
312 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
313 {
314 	struct drm_connector *connector;
315 	struct drm_connector_list_iter conn_iter;
316 
317 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
318 	drm_for_each_connector_iter(connector, &conn_iter) {
319 		if (connector->state->crtc == crtc) {
320 			drm_connector_list_iter_end(&conn_iter);
321 			return connector->encoder;
322 		}
323 	}
324 	drm_connector_list_iter_end(&conn_iter);
325 
326 	return NULL;
327 }
328 
329 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
330 {
331 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
332 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
333 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
334 	struct drm_crtc_state *state = crtc->state;
335 	struct drm_display_mode *mode = &state->adjusted_mode;
336 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
337 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
338 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
339 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
340 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
341 
342 	/* Reset the PV fifo. */
343 	CRTC_WRITE(PV_CONTROL, 0);
344 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
345 	CRTC_WRITE(PV_CONTROL, 0);
346 
347 	CRTC_WRITE(PV_HORZA,
348 		   VC4_SET_FIELD((mode->htotal -
349 				  mode->hsync_end) * pixel_rep,
350 				 PV_HORZA_HBP) |
351 		   VC4_SET_FIELD((mode->hsync_end -
352 				  mode->hsync_start) * pixel_rep,
353 				 PV_HORZA_HSYNC));
354 	CRTC_WRITE(PV_HORZB,
355 		   VC4_SET_FIELD((mode->hsync_start -
356 				  mode->hdisplay) * pixel_rep,
357 				 PV_HORZB_HFP) |
358 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
359 
360 	CRTC_WRITE(PV_VERTA,
361 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
362 				 PV_VERTA_VBP) |
363 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
364 				 PV_VERTA_VSYNC));
365 	CRTC_WRITE(PV_VERTB,
366 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
367 				 PV_VERTB_VFP) |
368 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
369 
370 	if (interlace) {
371 		CRTC_WRITE(PV_VERTA_EVEN,
372 			   VC4_SET_FIELD(mode->crtc_vtotal -
373 					 mode->crtc_vsync_end - 1,
374 					 PV_VERTA_VBP) |
375 			   VC4_SET_FIELD(mode->crtc_vsync_end -
376 					 mode->crtc_vsync_start,
377 					 PV_VERTA_VSYNC));
378 		CRTC_WRITE(PV_VERTB_EVEN,
379 			   VC4_SET_FIELD(mode->crtc_vsync_start -
380 					 mode->crtc_vdisplay,
381 					 PV_VERTB_VFP) |
382 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
383 
384 		/* We set up first field even mode for HDMI.  VEC's
385 		 * NTSC mode would want first field odd instead, once
386 		 * we support it (to do so, set ODD_FIRST and put the
387 		 * delay in VSYNCD_EVEN instead).
388 		 */
389 		CRTC_WRITE(PV_V_CONTROL,
390 			   PV_VCONTROL_CONTINUOUS |
391 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
392 			   PV_VCONTROL_INTERLACE |
393 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
394 					 PV_VCONTROL_ODD_DELAY));
395 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
396 	} else {
397 		CRTC_WRITE(PV_V_CONTROL,
398 			   PV_VCONTROL_CONTINUOUS |
399 			   (is_dsi ? PV_VCONTROL_DSI : 0));
400 	}
401 
402 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
403 
404 	CRTC_WRITE(PV_CONTROL,
405 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
406 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
407 				 PV_CONTROL_FIFO_LEVEL) |
408 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
409 		   PV_CONTROL_CLR_AT_START |
410 		   PV_CONTROL_TRIGGER_UNDERFLOW |
411 		   PV_CONTROL_WAIT_HSTART |
412 		   VC4_SET_FIELD(vc4_encoder->clock_select,
413 				 PV_CONTROL_CLK_SELECT) |
414 		   PV_CONTROL_FIFO_CLR |
415 		   PV_CONTROL_EN);
416 }
417 
418 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
419 {
420 	struct drm_device *dev = crtc->dev;
421 	struct vc4_dev *vc4 = to_vc4_dev(dev);
422 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
423 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
424 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
425 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
426 	bool debug_dump_regs = false;
427 
428 	if (debug_dump_regs) {
429 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
430 		vc4_crtc_dump_regs(vc4_crtc);
431 	}
432 
433 	if (vc4_crtc->channel == 2) {
434 		u32 dispctrl;
435 		u32 dsp3_mux;
436 
437 		/*
438 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
439 		 * FIFO X'.
440 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
441 		 *
442 		 * DSP3 is connected to FIFO2 unless the transposer is
443 		 * enabled. In this case, FIFO 2 is directly accessed by the
444 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
445 		 * route.
446 		 */
447 		if (vc4_state->feed_txp)
448 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
449 		else
450 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
451 
452 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
453 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
454 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
455 	}
456 
457 	if (!vc4_state->feed_txp)
458 		vc4_crtc_config_pv(crtc);
459 
460 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
461 		  SCALER_DISPBKGND_AUTOHS |
462 		  SCALER_DISPBKGND_GAMMA |
463 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
464 
465 	/* Reload the LUT, since the SRAMs would have been disabled if
466 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
467 	 */
468 	vc4_crtc_lut_load(crtc);
469 
470 	if (debug_dump_regs) {
471 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
472 		vc4_crtc_dump_regs(vc4_crtc);
473 	}
474 }
475 
476 static void require_hvs_enabled(struct drm_device *dev)
477 {
478 	struct vc4_dev *vc4 = to_vc4_dev(dev);
479 
480 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
481 		     SCALER_DISPCTRL_ENABLE);
482 }
483 
484 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
485 				    struct drm_crtc_state *old_state)
486 {
487 	struct drm_device *dev = crtc->dev;
488 	struct vc4_dev *vc4 = to_vc4_dev(dev);
489 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
490 	u32 chan = vc4_crtc->channel;
491 	int ret;
492 	require_hvs_enabled(dev);
493 
494 	/* Disable vblank irq handling before crtc is disabled. */
495 	drm_crtc_vblank_off(crtc);
496 
497 	CRTC_WRITE(PV_V_CONTROL,
498 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
499 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
500 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
501 
502 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
503 	    SCALER_DISPCTRLX_ENABLE) {
504 		HVS_WRITE(SCALER_DISPCTRLX(chan),
505 			  SCALER_DISPCTRLX_RESET);
506 
507 		/* While the docs say that reset is self-clearing, it
508 		 * seems it doesn't actually.
509 		 */
510 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
511 	}
512 
513 	/* Once we leave, the scaler should be disabled and its fifo empty. */
514 
515 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
516 
517 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
518 				   SCALER_DISPSTATX_MODE) !=
519 		     SCALER_DISPSTATX_MODE_DISABLED);
520 
521 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
522 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
523 		     SCALER_DISPSTATX_EMPTY);
524 
525 	/*
526 	 * Make sure we issue a vblank event after disabling the CRTC if
527 	 * someone was waiting it.
528 	 */
529 	if (crtc->state->event) {
530 		unsigned long flags;
531 
532 		spin_lock_irqsave(&dev->event_lock, flags);
533 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
534 		crtc->state->event = NULL;
535 		spin_unlock_irqrestore(&dev->event_lock, flags);
536 	}
537 }
538 
539 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
540 {
541 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
542 
543 	vc4_state->txp_armed = true;
544 }
545 
546 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
547 {
548 	struct drm_device *dev = crtc->dev;
549 	struct vc4_dev *vc4 = to_vc4_dev(dev);
550 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
551 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
552 
553 	if (crtc->state->event) {
554 		unsigned long flags;
555 
556 		crtc->state->event->pipe = drm_crtc_index(crtc);
557 
558 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
559 
560 		spin_lock_irqsave(&dev->event_lock, flags);
561 
562 		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
563 			vc4_crtc->event = crtc->state->event;
564 			crtc->state->event = NULL;
565 		}
566 
567 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
568 			  vc4_state->mm.start);
569 
570 		spin_unlock_irqrestore(&dev->event_lock, flags);
571 	} else {
572 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
573 			  vc4_state->mm.start);
574 	}
575 }
576 
577 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
578 				   struct drm_crtc_state *old_state)
579 {
580 	struct drm_device *dev = crtc->dev;
581 	struct vc4_dev *vc4 = to_vc4_dev(dev);
582 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
583 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
584 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
585 
586 	require_hvs_enabled(dev);
587 
588 	/* Enable vblank irq handling before crtc is started otherwise
589 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
590 	 */
591 	drm_crtc_vblank_on(crtc);
592 	vc4_crtc_update_dlist(crtc);
593 
594 	/* Turn on the scaler, which will wait for vstart to start
595 	 * compositing.
596 	 * When feeding the transposer, we should operate in oneshot
597 	 * mode.
598 	 */
599 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
600 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
601 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
602 		  SCALER_DISPCTRLX_ENABLE |
603 		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
604 
605 	/* When feeding the transposer block the pixelvalve is unneeded and
606 	 * should not be enabled.
607 	 */
608 	if (!vc4_state->feed_txp)
609 		CRTC_WRITE(PV_V_CONTROL,
610 			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
611 }
612 
613 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
614 						const struct drm_display_mode *mode)
615 {
616 	/* Do not allow doublescan modes from user space */
617 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
618 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
619 			      crtc->base.id);
620 		return MODE_NO_DBLESCAN;
621 	}
622 
623 	return MODE_OK;
624 }
625 
626 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
627 				 struct drm_crtc_state *state)
628 {
629 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
630 	struct drm_device *dev = crtc->dev;
631 	struct vc4_dev *vc4 = to_vc4_dev(dev);
632 	struct drm_plane *plane;
633 	unsigned long flags;
634 	const struct drm_plane_state *plane_state;
635 	struct drm_connector *conn;
636 	struct drm_connector_state *conn_state;
637 	u32 dlist_count = 0;
638 	int ret, i;
639 
640 	/* The pixelvalve can only feed one encoder (and encoders are
641 	 * 1:1 with connectors.)
642 	 */
643 	if (hweight32(state->connector_mask) > 1)
644 		return -EINVAL;
645 
646 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
647 		dlist_count += vc4_plane_dlist_size(plane_state);
648 
649 	dlist_count++; /* Account for SCALER_CTL0_END. */
650 
651 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
652 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
653 				 dlist_count);
654 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
655 	if (ret)
656 		return ret;
657 
658 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
659 		if (conn_state->crtc != crtc)
660 			continue;
661 
662 		/* The writeback connector is implemented using the transposer
663 		 * block which is directly taking its data from the HVS FIFO.
664 		 */
665 		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
666 			state->no_vblank = true;
667 			vc4_state->feed_txp = true;
668 		} else {
669 			state->no_vblank = false;
670 			vc4_state->feed_txp = false;
671 		}
672 
673 		break;
674 	}
675 
676 	return 0;
677 }
678 
679 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
680 				  struct drm_crtc_state *old_state)
681 {
682 	struct drm_device *dev = crtc->dev;
683 	struct vc4_dev *vc4 = to_vc4_dev(dev);
684 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
685 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
686 	struct drm_plane *plane;
687 	struct vc4_plane_state *vc4_plane_state;
688 	bool debug_dump_regs = false;
689 	bool enable_bg_fill = false;
690 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
691 	u32 __iomem *dlist_next = dlist_start;
692 
693 	if (debug_dump_regs) {
694 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
695 		vc4_hvs_dump_state(dev);
696 	}
697 
698 	/* Copy all the active planes' dlist contents to the hardware dlist. */
699 	drm_atomic_crtc_for_each_plane(plane, crtc) {
700 		/* Is this the first active plane? */
701 		if (dlist_next == dlist_start) {
702 			/* We need to enable background fill when a plane
703 			 * could be alpha blending from the background, i.e.
704 			 * where no other plane is underneath. It suffices to
705 			 * consider the first active plane here since we set
706 			 * needs_bg_fill such that either the first plane
707 			 * already needs it or all planes on top blend from
708 			 * the first or a lower plane.
709 			 */
710 			vc4_plane_state = to_vc4_plane_state(plane->state);
711 			enable_bg_fill = vc4_plane_state->needs_bg_fill;
712 		}
713 
714 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
715 	}
716 
717 	writel(SCALER_CTL0_END, dlist_next);
718 	dlist_next++;
719 
720 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
721 
722 	if (enable_bg_fill)
723 		/* This sets a black background color fill, as is the case
724 		 * with other DRM drivers.
725 		 */
726 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
727 			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
728 			  SCALER_DISPBKGND_FILL);
729 
730 	/* Only update DISPLIST if the CRTC was already running and is not
731 	 * being disabled.
732 	 * vc4_crtc_enable() takes care of updating the dlist just after
733 	 * re-enabling VBLANK interrupts and before enabling the engine.
734 	 * If the CRTC is being disabled, there's no point in updating this
735 	 * information.
736 	 */
737 	if (crtc->state->active && old_state->active)
738 		vc4_crtc_update_dlist(crtc);
739 
740 	if (crtc->state->color_mgmt_changed) {
741 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
742 
743 		if (crtc->state->gamma_lut) {
744 			vc4_crtc_update_gamma_lut(crtc);
745 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
746 		} else {
747 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
748 			 * in hardware, which is the same as a linear lut that
749 			 * DRM expects us to use in absence of a user lut.
750 			 */
751 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
752 		}
753 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
754 	}
755 
756 	if (debug_dump_regs) {
757 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
758 		vc4_hvs_dump_state(dev);
759 	}
760 }
761 
762 static int vc4_enable_vblank(struct drm_crtc *crtc)
763 {
764 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
765 
766 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
767 
768 	return 0;
769 }
770 
771 static void vc4_disable_vblank(struct drm_crtc *crtc)
772 {
773 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
774 
775 	CRTC_WRITE(PV_INTEN, 0);
776 }
777 
778 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
779 {
780 	struct drm_crtc *crtc = &vc4_crtc->base;
781 	struct drm_device *dev = crtc->dev;
782 	struct vc4_dev *vc4 = to_vc4_dev(dev);
783 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
784 	u32 chan = vc4_crtc->channel;
785 	unsigned long flags;
786 
787 	spin_lock_irqsave(&dev->event_lock, flags);
788 	if (vc4_crtc->event &&
789 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
790 	     vc4_state->feed_txp)) {
791 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
792 		vc4_crtc->event = NULL;
793 		drm_crtc_vblank_put(crtc);
794 	}
795 	spin_unlock_irqrestore(&dev->event_lock, flags);
796 }
797 
798 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
799 {
800 	crtc->t_vblank = ktime_get();
801 	drm_crtc_handle_vblank(&crtc->base);
802 	vc4_crtc_handle_page_flip(crtc);
803 }
804 
805 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
806 {
807 	struct vc4_crtc *vc4_crtc = data;
808 	u32 stat = CRTC_READ(PV_INTSTAT);
809 	irqreturn_t ret = IRQ_NONE;
810 
811 	if (stat & PV_INT_VFP_START) {
812 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
813 		vc4_crtc_handle_vblank(vc4_crtc);
814 		ret = IRQ_HANDLED;
815 	}
816 
817 	return ret;
818 }
819 
820 struct vc4_async_flip_state {
821 	struct drm_crtc *crtc;
822 	struct drm_framebuffer *fb;
823 	struct drm_framebuffer *old_fb;
824 	struct drm_pending_vblank_event *event;
825 
826 	struct vc4_seqno_cb cb;
827 };
828 
829 /* Called when the V3D execution for the BO being flipped to is done, so that
830  * we can actually update the plane's address to point to it.
831  */
832 static void
833 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
834 {
835 	struct vc4_async_flip_state *flip_state =
836 		container_of(cb, struct vc4_async_flip_state, cb);
837 	struct drm_crtc *crtc = flip_state->crtc;
838 	struct drm_device *dev = crtc->dev;
839 	struct vc4_dev *vc4 = to_vc4_dev(dev);
840 	struct drm_plane *plane = crtc->primary;
841 
842 	vc4_plane_async_set_fb(plane, flip_state->fb);
843 	if (flip_state->event) {
844 		unsigned long flags;
845 
846 		spin_lock_irqsave(&dev->event_lock, flags);
847 		drm_crtc_send_vblank_event(crtc, flip_state->event);
848 		spin_unlock_irqrestore(&dev->event_lock, flags);
849 	}
850 
851 	drm_crtc_vblank_put(crtc);
852 	drm_framebuffer_put(flip_state->fb);
853 
854 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
855 	 * when the planes are updated through the async update path.
856 	 * FIXME: we should move to generic async-page-flip when it's
857 	 * available, so that we can get rid of this hand-made cleanup_fb()
858 	 * logic.
859 	 */
860 	if (flip_state->old_fb) {
861 		struct drm_gem_cma_object *cma_bo;
862 		struct vc4_bo *bo;
863 
864 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
865 		bo = to_vc4_bo(&cma_bo->base);
866 		vc4_bo_dec_usecnt(bo);
867 		drm_framebuffer_put(flip_state->old_fb);
868 	}
869 
870 	kfree(flip_state);
871 
872 	up(&vc4->async_modeset);
873 }
874 
875 /* Implements async (non-vblank-synced) page flips.
876  *
877  * The page flip ioctl needs to return immediately, so we grab the
878  * modeset semaphore on the pipe, and queue the address update for
879  * when V3D is done with the BO being flipped to.
880  */
881 static int vc4_async_page_flip(struct drm_crtc *crtc,
882 			       struct drm_framebuffer *fb,
883 			       struct drm_pending_vblank_event *event,
884 			       uint32_t flags)
885 {
886 	struct drm_device *dev = crtc->dev;
887 	struct vc4_dev *vc4 = to_vc4_dev(dev);
888 	struct drm_plane *plane = crtc->primary;
889 	int ret = 0;
890 	struct vc4_async_flip_state *flip_state;
891 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
892 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
893 
894 	/* Increment the BO usecnt here, so that we never end up with an
895 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
896 	 * plane is later updated through the non-async path.
897 	 * FIXME: we should move to generic async-page-flip when it's
898 	 * available, so that we can get rid of this hand-made prepare_fb()
899 	 * logic.
900 	 */
901 	ret = vc4_bo_inc_usecnt(bo);
902 	if (ret)
903 		return ret;
904 
905 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
906 	if (!flip_state) {
907 		vc4_bo_dec_usecnt(bo);
908 		return -ENOMEM;
909 	}
910 
911 	drm_framebuffer_get(fb);
912 	flip_state->fb = fb;
913 	flip_state->crtc = crtc;
914 	flip_state->event = event;
915 
916 	/* Make sure all other async modesetes have landed. */
917 	ret = down_interruptible(&vc4->async_modeset);
918 	if (ret) {
919 		drm_framebuffer_put(fb);
920 		vc4_bo_dec_usecnt(bo);
921 		kfree(flip_state);
922 		return ret;
923 	}
924 
925 	/* Save the current FB before it's replaced by the new one in
926 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
927 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
928 	 * it consistent.
929 	 * FIXME: we should move to generic async-page-flip when it's
930 	 * available, so that we can get rid of this hand-made cleanup_fb()
931 	 * logic.
932 	 */
933 	flip_state->old_fb = plane->state->fb;
934 	if (flip_state->old_fb)
935 		drm_framebuffer_get(flip_state->old_fb);
936 
937 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
938 
939 	/* Immediately update the plane's legacy fb pointer, so that later
940 	 * modeset prep sees the state that will be present when the semaphore
941 	 * is released.
942 	 */
943 	drm_atomic_set_fb_for_plane(plane->state, fb);
944 
945 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
946 			   vc4_async_page_flip_complete);
947 
948 	/* Driver takes ownership of state on successful async commit. */
949 	return 0;
950 }
951 
952 static int vc4_page_flip(struct drm_crtc *crtc,
953 			 struct drm_framebuffer *fb,
954 			 struct drm_pending_vblank_event *event,
955 			 uint32_t flags,
956 			 struct drm_modeset_acquire_ctx *ctx)
957 {
958 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
959 		return vc4_async_page_flip(crtc, fb, event, flags);
960 	else
961 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
962 }
963 
964 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
965 {
966 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
967 
968 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
969 	if (!vc4_state)
970 		return NULL;
971 
972 	old_vc4_state = to_vc4_crtc_state(crtc->state);
973 	vc4_state->feed_txp = old_vc4_state->feed_txp;
974 
975 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
976 	return &vc4_state->base;
977 }
978 
979 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
980 				   struct drm_crtc_state *state)
981 {
982 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
983 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
984 
985 	if (vc4_state->mm.allocated) {
986 		unsigned long flags;
987 
988 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
989 		drm_mm_remove_node(&vc4_state->mm);
990 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
991 
992 	}
993 
994 	drm_atomic_helper_crtc_destroy_state(crtc, state);
995 }
996 
997 static void
998 vc4_crtc_reset(struct drm_crtc *crtc)
999 {
1000 	if (crtc->state)
1001 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1002 
1003 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1004 	if (crtc->state)
1005 		crtc->state->crtc = crtc;
1006 }
1007 
1008 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1009 	.set_config = drm_atomic_helper_set_config,
1010 	.destroy = vc4_crtc_destroy,
1011 	.page_flip = vc4_page_flip,
1012 	.set_property = NULL,
1013 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1014 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1015 	.reset = vc4_crtc_reset,
1016 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1017 	.atomic_destroy_state = vc4_crtc_destroy_state,
1018 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1019 	.enable_vblank = vc4_enable_vblank,
1020 	.disable_vblank = vc4_disable_vblank,
1021 };
1022 
1023 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1024 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
1025 	.mode_valid = vc4_crtc_mode_valid,
1026 	.atomic_check = vc4_crtc_atomic_check,
1027 	.atomic_flush = vc4_crtc_atomic_flush,
1028 	.atomic_enable = vc4_crtc_atomic_enable,
1029 	.atomic_disable = vc4_crtc_atomic_disable,
1030 };
1031 
1032 static const struct vc4_crtc_data pv0_data = {
1033 	.hvs_channel = 0,
1034 	.encoder_types = {
1035 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1036 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1037 	},
1038 };
1039 
1040 static const struct vc4_crtc_data pv1_data = {
1041 	.hvs_channel = 2,
1042 	.encoder_types = {
1043 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1044 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1045 	},
1046 };
1047 
1048 static const struct vc4_crtc_data pv2_data = {
1049 	.hvs_channel = 1,
1050 	.encoder_types = {
1051 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1052 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1053 	},
1054 };
1055 
1056 static const struct of_device_id vc4_crtc_dt_match[] = {
1057 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1058 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1059 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1060 	{}
1061 };
1062 
1063 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1064 					struct drm_crtc *crtc)
1065 {
1066 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1067 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1068 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1069 	struct drm_encoder *encoder;
1070 
1071 	drm_for_each_encoder(encoder, drm) {
1072 		struct vc4_encoder *vc4_encoder;
1073 		int i;
1074 
1075 		/* HVS FIFO2 can feed the TXP IP. */
1076 		if (crtc_data->hvs_channel == 2 &&
1077 		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1078 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
1079 			continue;
1080 		}
1081 
1082 		vc4_encoder = to_vc4_encoder(encoder);
1083 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1084 			if (vc4_encoder->type == encoder_types[i]) {
1085 				vc4_encoder->clock_select = i;
1086 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1087 				break;
1088 			}
1089 		}
1090 	}
1091 }
1092 
1093 static void
1094 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1095 {
1096 	struct drm_device *drm = vc4_crtc->base.dev;
1097 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1098 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1099 	/* Top/base are supposed to be 4-pixel aligned, but the
1100 	 * Raspberry Pi firmware fills the low bits (which are
1101 	 * presumably ignored).
1102 	 */
1103 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1104 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1105 
1106 	vc4_crtc->cob_size = top - base + 4;
1107 }
1108 
1109 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1110 {
1111 	struct platform_device *pdev = to_platform_device(dev);
1112 	struct drm_device *drm = dev_get_drvdata(master);
1113 	struct vc4_crtc *vc4_crtc;
1114 	struct drm_crtc *crtc;
1115 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1116 	const struct of_device_id *match;
1117 	int ret, i;
1118 
1119 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1120 	if (!vc4_crtc)
1121 		return -ENOMEM;
1122 	crtc = &vc4_crtc->base;
1123 
1124 	match = of_match_device(vc4_crtc_dt_match, dev);
1125 	if (!match)
1126 		return -ENODEV;
1127 	vc4_crtc->data = match->data;
1128 
1129 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1130 	if (IS_ERR(vc4_crtc->regs))
1131 		return PTR_ERR(vc4_crtc->regs);
1132 
1133 	/* For now, we create just the primary and the legacy cursor
1134 	 * planes.  We should be able to stack more planes on easily,
1135 	 * but to do that we would need to compute the bandwidth
1136 	 * requirement of the plane configuration, and reject ones
1137 	 * that will take too much.
1138 	 */
1139 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1140 	if (IS_ERR(primary_plane)) {
1141 		dev_err(dev, "failed to construct primary plane\n");
1142 		ret = PTR_ERR(primary_plane);
1143 		goto err;
1144 	}
1145 
1146 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1147 				  &vc4_crtc_funcs, NULL);
1148 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1149 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1150 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1151 	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1152 
1153 	/* We support CTM, but only for one CRTC at a time. It's therefore
1154 	 * implemented as private driver state in vc4_kms, not here.
1155 	 */
1156 	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1157 
1158 	/* Set up some arbitrary number of planes.  We're not limited
1159 	 * by a set number of physical registers, just the space in
1160 	 * the HVS (16k) and how small an plane can be (28 bytes).
1161 	 * However, each plane we set up takes up some memory, and
1162 	 * increases the cost of looping over planes, which atomic
1163 	 * modesetting does quite a bit.  As a result, we pick a
1164 	 * modest number of planes to expose, that should hopefully
1165 	 * still cover any sane usecase.
1166 	 */
1167 	for (i = 0; i < 8; i++) {
1168 		struct drm_plane *plane =
1169 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1170 
1171 		if (IS_ERR(plane))
1172 			continue;
1173 
1174 		plane->possible_crtcs = drm_crtc_mask(crtc);
1175 	}
1176 
1177 	/* Set up the legacy cursor after overlay initialization,
1178 	 * since we overlay planes on the CRTC in the order they were
1179 	 * initialized.
1180 	 */
1181 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1182 	if (!IS_ERR(cursor_plane)) {
1183 		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1184 		crtc->cursor = cursor_plane;
1185 	}
1186 
1187 	vc4_crtc_get_cob_allocation(vc4_crtc);
1188 
1189 	CRTC_WRITE(PV_INTEN, 0);
1190 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1191 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1192 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1193 	if (ret)
1194 		goto err_destroy_planes;
1195 
1196 	vc4_set_crtc_possible_masks(drm, crtc);
1197 
1198 	for (i = 0; i < crtc->gamma_size; i++) {
1199 		vc4_crtc->lut_r[i] = i;
1200 		vc4_crtc->lut_g[i] = i;
1201 		vc4_crtc->lut_b[i] = i;
1202 	}
1203 
1204 	platform_set_drvdata(pdev, vc4_crtc);
1205 
1206 	return 0;
1207 
1208 err_destroy_planes:
1209 	list_for_each_entry_safe(destroy_plane, temp,
1210 				 &drm->mode_config.plane_list, head) {
1211 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1212 		    destroy_plane->funcs->destroy(destroy_plane);
1213 	}
1214 err:
1215 	return ret;
1216 }
1217 
1218 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1219 			    void *data)
1220 {
1221 	struct platform_device *pdev = to_platform_device(dev);
1222 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1223 
1224 	vc4_crtc_destroy(&vc4_crtc->base);
1225 
1226 	CRTC_WRITE(PV_INTEN, 0);
1227 
1228 	platform_set_drvdata(pdev, NULL);
1229 }
1230 
1231 static const struct component_ops vc4_crtc_ops = {
1232 	.bind   = vc4_crtc_bind,
1233 	.unbind = vc4_crtc_unbind,
1234 };
1235 
1236 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1237 {
1238 	return component_add(&pdev->dev, &vc4_crtc_ops);
1239 }
1240 
1241 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1242 {
1243 	component_del(&pdev->dev, &vc4_crtc_ops);
1244 	return 0;
1245 }
1246 
1247 struct platform_driver vc4_crtc_driver = {
1248 	.probe = vc4_crtc_dev_probe,
1249 	.remove = vc4_crtc_dev_remove,
1250 	.driver = {
1251 		.name = "vc4_crtc",
1252 		.of_match_table = vc4_crtc_dt_match,
1253 	},
1254 };
1255