xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37 
38 #include <drm/drm_atomic.h>
39 #include <drm/drm_atomic_helper.h>
40 #include <drm/drm_atomic_uapi.h>
41 #include <drm/drm_fb_dma_helper.h>
42 #include <drm/drm_framebuffer.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_print.h>
45 #include <drm/drm_probe_helper.h>
46 #include <drm/drm_vblank.h>
47 
48 #include "vc4_drv.h"
49 #include "vc4_hdmi.h"
50 #include "vc4_regs.h"
51 
52 #define HVS_FIFO_LATENCY_PIX	6
53 
54 #define CRTC_WRITE(offset, val)								\
55 	do {										\
56 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
57 		writel(val, vc4_crtc->regs + (offset));					\
58 	} while (0)
59 
60 #define CRTC_READ(offset)								\
61 	({										\
62 		kunit_fail_current_test("Accessing a register in a unit test!\n");	\
63 		readl(vc4_crtc->regs + (offset));					\
64 	})
65 
66 static const struct debugfs_reg32 crtc_regs[] = {
67 	VC4_REG32(PV_CONTROL),
68 	VC4_REG32(PV_V_CONTROL),
69 	VC4_REG32(PV_VSYNCD_EVEN),
70 	VC4_REG32(PV_HORZA),
71 	VC4_REG32(PV_HORZB),
72 	VC4_REG32(PV_VERTA),
73 	VC4_REG32(PV_VERTB),
74 	VC4_REG32(PV_VERTA_EVEN),
75 	VC4_REG32(PV_VERTB_EVEN),
76 	VC4_REG32(PV_INTEN),
77 	VC4_REG32(PV_INTSTAT),
78 	VC4_REG32(PV_STAT),
79 	VC4_REG32(PV_HACT_ACT),
80 };
81 
82 static unsigned int
83 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
84 {
85 	struct vc4_hvs *hvs = vc4->hvs;
86 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
87 	/* Top/base are supposed to be 4-pixel aligned, but the
88 	 * Raspberry Pi firmware fills the low bits (which are
89 	 * presumably ignored).
90 	 */
91 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
92 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
93 
94 	return top - base + 4;
95 }
96 
97 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
98 					  bool in_vblank_irq,
99 					  int *vpos, int *hpos,
100 					  ktime_t *stime, ktime_t *etime,
101 					  const struct drm_display_mode *mode)
102 {
103 	struct drm_device *dev = crtc->dev;
104 	struct vc4_dev *vc4 = to_vc4_dev(dev);
105 	struct vc4_hvs *hvs = vc4->hvs;
106 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
107 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
108 	unsigned int cob_size;
109 	u32 val;
110 	int fifo_lines;
111 	int vblank_lines;
112 	bool ret = false;
113 
114 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
115 
116 	/* Get optional system timestamp before query. */
117 	if (stime)
118 		*stime = ktime_get();
119 
120 	/*
121 	 * Read vertical scanline which is currently composed for our
122 	 * pixelvalve by the HVS, and also the scaler status.
123 	 */
124 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
125 
126 	/* Get optional system timestamp after query. */
127 	if (etime)
128 		*etime = ktime_get();
129 
130 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
131 
132 	/* Vertical position of hvs composed scanline. */
133 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
134 	*hpos = 0;
135 
136 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
137 		*vpos /= 2;
138 
139 		/* Use hpos to correct for field offset in interlaced mode. */
140 		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
141 			*hpos += mode->crtc_htotal / 2;
142 	}
143 
144 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
145 	/* This is the offset we need for translating hvs -> pv scanout pos. */
146 	fifo_lines = cob_size / mode->crtc_hdisplay;
147 
148 	if (fifo_lines > 0)
149 		ret = true;
150 
151 	/* HVS more than fifo_lines into frame for compositing? */
152 	if (*vpos > fifo_lines) {
153 		/*
154 		 * We are in active scanout and can get some meaningful results
155 		 * from HVS. The actual PV scanout can not trail behind more
156 		 * than fifo_lines as that is the fifo's capacity. Assume that
157 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
158 		 * refilling the fifo and PV consuming from the fifo, ie.
159 		 * whenever the PV consumes and frees up a scanline in the
160 		 * fifo, the HVS will immediately refill it, therefore
161 		 * incrementing vpos. Therefore we choose HVS read position -
162 		 * fifo size in scanlines as a estimate of the real scanout
163 		 * position of the PV.
164 		 */
165 		*vpos -= fifo_lines + 1;
166 
167 		return ret;
168 	}
169 
170 	/*
171 	 * Less: This happens when we are in vblank and the HVS, after getting
172 	 * the VSTART restart signal from the PV, just started refilling its
173 	 * fifo with new lines from the top-most lines of the new framebuffers.
174 	 * The PV does not scan out in vblank, so does not remove lines from
175 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
176 	 * We can't get meaningful readings wrt. scanline position of the PV
177 	 * and need to make things up in a approximative but consistent way.
178 	 */
179 	vblank_lines = mode->vtotal - mode->vdisplay;
180 
181 	if (in_vblank_irq) {
182 		/*
183 		 * Assume the irq handler got called close to first
184 		 * line of vblank, so PV has about a full vblank
185 		 * scanlines to go, and as a base timestamp use the
186 		 * one taken at entry into vblank irq handler, so it
187 		 * is not affected by random delays due to lock
188 		 * contention on event_lock or vblank_time lock in
189 		 * the core.
190 		 */
191 		*vpos = -vblank_lines;
192 
193 		if (stime)
194 			*stime = vc4_crtc->t_vblank;
195 		if (etime)
196 			*etime = vc4_crtc->t_vblank;
197 
198 		/*
199 		 * If the HVS fifo is not yet full then we know for certain
200 		 * we are at the very beginning of vblank, as the hvs just
201 		 * started refilling, and the stime and etime timestamps
202 		 * truly correspond to start of vblank.
203 		 *
204 		 * Unfortunately there's no way to report this to upper levels
205 		 * and make it more useful.
206 		 */
207 	} else {
208 		/*
209 		 * No clue where we are inside vblank. Return a vpos of zero,
210 		 * which will cause calling code to just return the etime
211 		 * timestamp uncorrected. At least this is no worse than the
212 		 * standard fallback.
213 		 */
214 		*vpos = 0;
215 	}
216 
217 	return ret;
218 }
219 
220 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
221 {
222 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
223 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
224 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
225 	u32 fifo_len_bytes = pv_data->fifo_depth;
226 
227 	/*
228 	 * Pixels are pulled from the HVS if the number of bytes is
229 	 * lower than the FIFO full level.
230 	 *
231 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
232 	 * need to convert those 6 pixels in bytes, depending on the
233 	 * format, and then subtract that from the length of the FIFO
234 	 * to make sure we never end up in a situation where the FIFO
235 	 * is full.
236 	 */
237 	switch (format) {
238 	case PV_CONTROL_FORMAT_DSIV_16:
239 	case PV_CONTROL_FORMAT_DSIC_16:
240 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
241 	case PV_CONTROL_FORMAT_DSIV_18:
242 		return fifo_len_bytes - 14;
243 	case PV_CONTROL_FORMAT_24:
244 	case PV_CONTROL_FORMAT_DSIV_24:
245 	default:
246 		/*
247 		 * For some reason, the pixelvalve4 doesn't work with
248 		 * the usual formula and will only work with 32.
249 		 */
250 		if (crtc_data->hvs_output == 5)
251 			return 32;
252 
253 		/*
254 		 * It looks like in some situations, we will overflow
255 		 * the PixelValve FIFO (with the bit 10 of PV stat being
256 		 * set) and stall the HVS / PV, eventually resulting in
257 		 * a page flip timeout.
258 		 *
259 		 * Displaying the video overlay during a playback with
260 		 * Kodi on an RPi3 seems to be a great solution with a
261 		 * failure rate around 50%.
262 		 *
263 		 * Removing 1 from the FIFO full level however
264 		 * seems to completely remove that issue.
265 		 */
266 		if (!vc4->is_vc5)
267 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
268 
269 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
270 	}
271 }
272 
273 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
274 					     u32 format)
275 {
276 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
277 	u32 ret = 0;
278 
279 	ret |= VC4_SET_FIELD((level >> 6),
280 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
281 
282 	return ret | VC4_SET_FIELD(level & 0x3f,
283 				   PV_CONTROL_FIFO_LEVEL);
284 }
285 
286 /*
287  * Returns the encoder attached to the CRTC.
288  *
289  * VC4 can only scan out to one encoder at a time, while the DRM core
290  * allows drivers to push pixels to more than one encoder from the
291  * same CRTC.
292  */
293 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
294 					 struct drm_crtc_state *state)
295 {
296 	struct drm_encoder *encoder;
297 
298 	WARN_ON(hweight32(state->encoder_mask) > 1);
299 
300 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
301 		return encoder;
302 
303 	return NULL;
304 }
305 
306 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
307 {
308 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
309 	struct drm_device *dev = crtc->dev;
310 	int idx;
311 
312 	if (!drm_dev_enter(dev, &idx))
313 		return;
314 
315 	/* The PV needs to be disabled before it can be flushed */
316 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
317 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
318 
319 	drm_dev_exit(idx);
320 }
321 
322 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
323 			       struct drm_atomic_state *state)
324 {
325 	struct drm_device *dev = crtc->dev;
326 	struct vc4_dev *vc4 = to_vc4_dev(dev);
327 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
328 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
329 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
330 	struct drm_crtc_state *crtc_state = crtc->state;
331 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
332 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
333 	bool is_hdmi = vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0 ||
334 		       vc4_encoder->type == VC4_ENCODER_TYPE_HDMI1;
335 	u32 pixel_rep = ((mode->flags & DRM_MODE_FLAG_DBLCLK) && !is_hdmi) ? 2 : 1;
336 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
337 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
338 	bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
339 	bool is_vec = vc4_encoder->type == VC4_ENCODER_TYPE_VEC;
340 	u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
341 	u8 ppc = pv_data->pixels_per_clock;
342 
343 	u16 vert_bp = mode->crtc_vtotal - mode->crtc_vsync_end;
344 	u16 vert_sync = mode->crtc_vsync_end - mode->crtc_vsync_start;
345 	u16 vert_fp = mode->crtc_vsync_start - mode->crtc_vdisplay;
346 
347 	bool debug_dump_regs = false;
348 	int idx;
349 
350 	if (!drm_dev_enter(dev, &idx))
351 		return;
352 
353 	if (debug_dump_regs) {
354 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
355 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
356 			 drm_crtc_index(crtc));
357 		drm_print_regset32(&p, &vc4_crtc->regset);
358 	}
359 
360 	vc4_crtc_pixelvalve_reset(crtc);
361 
362 	CRTC_WRITE(PV_HORZA,
363 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
364 				 PV_HORZA_HBP) |
365 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
366 				 PV_HORZA_HSYNC));
367 
368 	CRTC_WRITE(PV_HORZB,
369 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
370 				 PV_HORZB_HFP) |
371 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
372 				 PV_HORZB_HACTIVE));
373 
374 	if (interlace) {
375 		bool odd_field_first = false;
376 		u32 field_delay = mode->htotal * pixel_rep / (2 * ppc);
377 		u16 vert_bp_even = vert_bp;
378 		u16 vert_fp_even = vert_fp;
379 
380 		if (is_vec) {
381 			/* VEC (composite output) */
382 			++field_delay;
383 			if (mode->htotal == 858) {
384 				/* 525-line mode (NTSC or PAL-M) */
385 				odd_field_first = true;
386 			}
387 		}
388 
389 		if (odd_field_first)
390 			++vert_fp_even;
391 		else
392 			++vert_bp;
393 
394 		CRTC_WRITE(PV_VERTA_EVEN,
395 			   VC4_SET_FIELD(vert_bp_even, PV_VERTA_VBP) |
396 			   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
397 		CRTC_WRITE(PV_VERTB_EVEN,
398 			   VC4_SET_FIELD(vert_fp_even, PV_VERTB_VFP) |
399 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
400 
401 		/* We set up first field even mode for HDMI and VEC's PAL.
402 		 * For NTSC, we need first field odd.
403 		 */
404 		CRTC_WRITE(PV_V_CONTROL,
405 			   PV_VCONTROL_CONTINUOUS |
406 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
407 			   PV_VCONTROL_INTERLACE |
408 			   (odd_field_first
409 				   ? PV_VCONTROL_ODD_FIRST
410 				   : VC4_SET_FIELD(field_delay,
411 						   PV_VCONTROL_ODD_DELAY)));
412 		CRTC_WRITE(PV_VSYNCD_EVEN,
413 			   (odd_field_first ? field_delay : 0));
414 	} else {
415 		CRTC_WRITE(PV_V_CONTROL,
416 			   PV_VCONTROL_CONTINUOUS |
417 			   (is_dsi ? PV_VCONTROL_DSI : 0));
418 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
419 	}
420 
421 	CRTC_WRITE(PV_VERTA,
422 		   VC4_SET_FIELD(vert_bp, PV_VERTA_VBP) |
423 		   VC4_SET_FIELD(vert_sync, PV_VERTA_VSYNC));
424 	CRTC_WRITE(PV_VERTB,
425 		   VC4_SET_FIELD(vert_fp, PV_VERTB_VFP) |
426 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
427 
428 	if (is_dsi)
429 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
430 
431 	if (vc4->is_vc5)
432 		CRTC_WRITE(PV_MUX_CFG,
433 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
434 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
435 
436 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
437 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
438 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
439 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
440 		   PV_CONTROL_CLR_AT_START |
441 		   PV_CONTROL_TRIGGER_UNDERFLOW |
442 		   PV_CONTROL_WAIT_HSTART |
443 		   VC4_SET_FIELD(vc4_encoder->clock_select,
444 				 PV_CONTROL_CLK_SELECT));
445 
446 	if (debug_dump_regs) {
447 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
448 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
449 			 drm_crtc_index(crtc));
450 		drm_print_regset32(&p, &vc4_crtc->regset);
451 	}
452 
453 	drm_dev_exit(idx);
454 }
455 
456 static void require_hvs_enabled(struct drm_device *dev)
457 {
458 	struct vc4_dev *vc4 = to_vc4_dev(dev);
459 	struct vc4_hvs *hvs = vc4->hvs;
460 
461 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
462 		     SCALER_DISPCTRL_ENABLE);
463 }
464 
465 static int vc4_crtc_disable(struct drm_crtc *crtc,
466 			    struct drm_encoder *encoder,
467 			    struct drm_atomic_state *state,
468 			    unsigned int channel)
469 {
470 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
471 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
472 	struct drm_device *dev = crtc->dev;
473 	struct vc4_dev *vc4 = to_vc4_dev(dev);
474 	int idx, ret;
475 
476 	if (!drm_dev_enter(dev, &idx))
477 		return -ENODEV;
478 
479 	CRTC_WRITE(PV_V_CONTROL,
480 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
481 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
482 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
483 
484 	/*
485 	 * This delay is needed to avoid to get a pixel stuck in an
486 	 * unflushable FIFO between the pixelvalve and the HDMI
487 	 * controllers on the BCM2711.
488 	 *
489 	 * Timing is fairly sensitive here, so mdelay is the safest
490 	 * approach.
491 	 *
492 	 * If it was to be reworked, the stuck pixel happens on a
493 	 * BCM2711 when changing mode with a good probability, so a
494 	 * script that changes mode on a regular basis should trigger
495 	 * the bug after less than 10 attempts. It manifests itself with
496 	 * every pixels being shifted by one to the right, and thus the
497 	 * last pixel of a line actually being displayed as the first
498 	 * pixel on the next line.
499 	 */
500 	mdelay(20);
501 
502 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
503 		vc4_encoder->post_crtc_disable(encoder, state);
504 
505 	vc4_crtc_pixelvalve_reset(crtc);
506 	vc4_hvs_stop_channel(vc4->hvs, channel);
507 
508 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
509 		vc4_encoder->post_crtc_powerdown(encoder, state);
510 
511 	drm_dev_exit(idx);
512 
513 	return 0;
514 }
515 
516 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
517 {
518 	struct drm_device *drm = crtc->dev;
519 	struct vc4_dev *vc4 = to_vc4_dev(drm);
520 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
521 	enum vc4_encoder_type encoder_type;
522 	const struct vc4_pv_data *pv_data;
523 	struct drm_encoder *encoder;
524 	struct vc4_hdmi *vc4_hdmi;
525 	unsigned encoder_sel;
526 	int channel;
527 	int ret;
528 
529 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
530 				      "brcm,bcm2711-pixelvalve2") ||
531 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
532 				      "brcm,bcm2711-pixelvalve4")))
533 		return 0;
534 
535 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
536 		return 0;
537 
538 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
539 		return 0;
540 
541 	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
542 	if (channel < 0)
543 		return 0;
544 
545 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
546 	if (WARN_ON(encoder_sel != 0))
547 		return 0;
548 
549 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
550 	encoder_type = pv_data->encoder_types[encoder_sel];
551 	encoder = vc4_find_encoder_by_type(drm, encoder_type);
552 	if (WARN_ON(!encoder))
553 		return 0;
554 
555 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
556 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
557 	if (ret)
558 		return ret;
559 
560 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
561 	if (ret)
562 		return ret;
563 
564 	/*
565 	 * post_crtc_powerdown will have called pm_runtime_put, so we
566 	 * don't need it here otherwise we'll get the reference counting
567 	 * wrong.
568 	 */
569 
570 	return 0;
571 }
572 
573 void vc4_crtc_send_vblank(struct drm_crtc *crtc)
574 {
575 	struct drm_device *dev = crtc->dev;
576 	unsigned long flags;
577 
578 	if (!crtc->state || !crtc->state->event)
579 		return;
580 
581 	spin_lock_irqsave(&dev->event_lock, flags);
582 	drm_crtc_send_vblank_event(crtc, crtc->state->event);
583 	crtc->state->event = NULL;
584 	spin_unlock_irqrestore(&dev->event_lock, flags);
585 }
586 
587 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
588 				    struct drm_atomic_state *state)
589 {
590 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
591 									 crtc);
592 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
593 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
594 	struct drm_device *dev = crtc->dev;
595 
596 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
597 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
598 
599 	require_hvs_enabled(dev);
600 
601 	/* Disable vblank irq handling before crtc is disabled. */
602 	drm_crtc_vblank_off(crtc);
603 
604 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
605 
606 	/*
607 	 * Make sure we issue a vblank event after disabling the CRTC if
608 	 * someone was waiting it.
609 	 */
610 	vc4_crtc_send_vblank(crtc);
611 }
612 
613 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
614 				   struct drm_atomic_state *state)
615 {
616 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
617 									 crtc);
618 	struct drm_device *dev = crtc->dev;
619 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
620 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
621 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
622 	int idx;
623 
624 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
625 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
626 
627 	if (!drm_dev_enter(dev, &idx))
628 		return;
629 
630 	require_hvs_enabled(dev);
631 
632 	/* Enable vblank irq handling before crtc is started otherwise
633 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
634 	 */
635 	drm_crtc_vblank_on(crtc);
636 
637 	vc4_hvs_atomic_enable(crtc, state);
638 
639 	if (vc4_encoder->pre_crtc_configure)
640 		vc4_encoder->pre_crtc_configure(encoder, state);
641 
642 	vc4_crtc_config_pv(crtc, encoder, state);
643 
644 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
645 
646 	if (vc4_encoder->pre_crtc_enable)
647 		vc4_encoder->pre_crtc_enable(encoder, state);
648 
649 	/* When feeding the transposer block the pixelvalve is unneeded and
650 	 * should not be enabled.
651 	 */
652 	CRTC_WRITE(PV_V_CONTROL,
653 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
654 
655 	if (vc4_encoder->post_crtc_enable)
656 		vc4_encoder->post_crtc_enable(encoder, state);
657 
658 	drm_dev_exit(idx);
659 }
660 
661 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
662 						const struct drm_display_mode *mode)
663 {
664 	/* Do not allow doublescan modes from user space */
665 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
666 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
667 			      crtc->base.id);
668 		return MODE_NO_DBLESCAN;
669 	}
670 
671 	return MODE_OK;
672 }
673 
674 void vc4_crtc_get_margins(struct drm_crtc_state *state,
675 			  unsigned int *left, unsigned int *right,
676 			  unsigned int *top, unsigned int *bottom)
677 {
678 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
679 	struct drm_connector_state *conn_state;
680 	struct drm_connector *conn;
681 	int i;
682 
683 	*left = vc4_state->margins.left;
684 	*right = vc4_state->margins.right;
685 	*top = vc4_state->margins.top;
686 	*bottom = vc4_state->margins.bottom;
687 
688 	/* We have to interate over all new connector states because
689 	 * vc4_crtc_get_margins() might be called before
690 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
691 	 * might be outdated.
692 	 */
693 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
694 		if (conn_state->crtc != state->crtc)
695 			continue;
696 
697 		*left = conn_state->tv.margins.left;
698 		*right = conn_state->tv.margins.right;
699 		*top = conn_state->tv.margins.top;
700 		*bottom = conn_state->tv.margins.bottom;
701 		break;
702 	}
703 }
704 
705 int vc4_crtc_atomic_check(struct drm_crtc *crtc,
706 			  struct drm_atomic_state *state)
707 {
708 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
709 									  crtc);
710 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
711 	struct drm_connector *conn;
712 	struct drm_connector_state *conn_state;
713 	struct drm_encoder *encoder;
714 	int ret, i;
715 
716 	ret = vc4_hvs_atomic_check(crtc, state);
717 	if (ret)
718 		return ret;
719 
720 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
721 	if (encoder) {
722 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
723 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
724 
725 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
726 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 8000,
727 						  mode->clock * 9 / 10) * 1000;
728 		} else {
729 			vc4_state->hvs_load = mode->clock * 1000;
730 		}
731 	}
732 
733 	for_each_new_connector_in_state(state, conn, conn_state,
734 					i) {
735 		if (conn_state->crtc != crtc)
736 			continue;
737 
738 		vc4_state->margins.left = conn_state->tv.margins.left;
739 		vc4_state->margins.right = conn_state->tv.margins.right;
740 		vc4_state->margins.top = conn_state->tv.margins.top;
741 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
742 		break;
743 	}
744 
745 	return 0;
746 }
747 
748 static int vc4_enable_vblank(struct drm_crtc *crtc)
749 {
750 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
751 	struct drm_device *dev = crtc->dev;
752 	int idx;
753 
754 	if (!drm_dev_enter(dev, &idx))
755 		return -ENODEV;
756 
757 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
758 
759 	drm_dev_exit(idx);
760 
761 	return 0;
762 }
763 
764 static void vc4_disable_vblank(struct drm_crtc *crtc)
765 {
766 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
767 	struct drm_device *dev = crtc->dev;
768 	int idx;
769 
770 	if (!drm_dev_enter(dev, &idx))
771 		return;
772 
773 	CRTC_WRITE(PV_INTEN, 0);
774 
775 	drm_dev_exit(idx);
776 }
777 
778 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
779 {
780 	struct drm_crtc *crtc = &vc4_crtc->base;
781 	struct drm_device *dev = crtc->dev;
782 	struct vc4_dev *vc4 = to_vc4_dev(dev);
783 	struct vc4_hvs *hvs = vc4->hvs;
784 	u32 chan = vc4_crtc->current_hvs_channel;
785 	unsigned long flags;
786 
787 	spin_lock_irqsave(&dev->event_lock, flags);
788 	spin_lock(&vc4_crtc->irq_lock);
789 	if (vc4_crtc->event &&
790 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
791 	     vc4_crtc->feeds_txp)) {
792 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
793 		vc4_crtc->event = NULL;
794 		drm_crtc_vblank_put(crtc);
795 
796 		/* Wait for the page flip to unmask the underrun to ensure that
797 		 * the display list was updated by the hardware. Before that
798 		 * happens, the HVS will be using the previous display list with
799 		 * the CRTC and encoder already reconfigured, leading to
800 		 * underruns. This can be seen when reconfiguring the CRTC.
801 		 */
802 		vc4_hvs_unmask_underrun(hvs, chan);
803 	}
804 	spin_unlock(&vc4_crtc->irq_lock);
805 	spin_unlock_irqrestore(&dev->event_lock, flags);
806 }
807 
808 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
809 {
810 	crtc->t_vblank = ktime_get();
811 	drm_crtc_handle_vblank(&crtc->base);
812 	vc4_crtc_handle_page_flip(crtc);
813 }
814 
815 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
816 {
817 	struct vc4_crtc *vc4_crtc = data;
818 	u32 stat = CRTC_READ(PV_INTSTAT);
819 	irqreturn_t ret = IRQ_NONE;
820 
821 	if (stat & PV_INT_VFP_START) {
822 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
823 		vc4_crtc_handle_vblank(vc4_crtc);
824 		ret = IRQ_HANDLED;
825 	}
826 
827 	return ret;
828 }
829 
830 struct vc4_async_flip_state {
831 	struct drm_crtc *crtc;
832 	struct drm_framebuffer *fb;
833 	struct drm_framebuffer *old_fb;
834 	struct drm_pending_vblank_event *event;
835 
836 	union {
837 		struct dma_fence_cb fence;
838 		struct vc4_seqno_cb seqno;
839 	} cb;
840 };
841 
842 /* Called when the V3D execution for the BO being flipped to is done, so that
843  * we can actually update the plane's address to point to it.
844  */
845 static void
846 vc4_async_page_flip_complete(struct vc4_async_flip_state *flip_state)
847 {
848 	struct drm_crtc *crtc = flip_state->crtc;
849 	struct drm_device *dev = crtc->dev;
850 	struct drm_plane *plane = crtc->primary;
851 
852 	vc4_plane_async_set_fb(plane, flip_state->fb);
853 	if (flip_state->event) {
854 		unsigned long flags;
855 
856 		spin_lock_irqsave(&dev->event_lock, flags);
857 		drm_crtc_send_vblank_event(crtc, flip_state->event);
858 		spin_unlock_irqrestore(&dev->event_lock, flags);
859 	}
860 
861 	drm_crtc_vblank_put(crtc);
862 	drm_framebuffer_put(flip_state->fb);
863 
864 	if (flip_state->old_fb)
865 		drm_framebuffer_put(flip_state->old_fb);
866 
867 	kfree(flip_state);
868 }
869 
870 static void vc4_async_page_flip_seqno_complete(struct vc4_seqno_cb *cb)
871 {
872 	struct vc4_async_flip_state *flip_state =
873 		container_of(cb, struct vc4_async_flip_state, cb.seqno);
874 	struct vc4_bo *bo = NULL;
875 
876 	if (flip_state->old_fb) {
877 		struct drm_gem_dma_object *dma_bo =
878 			drm_fb_dma_get_gem_obj(flip_state->old_fb, 0);
879 		bo = to_vc4_bo(&dma_bo->base);
880 	}
881 
882 	vc4_async_page_flip_complete(flip_state);
883 
884 	/*
885 	 * Decrement the BO usecnt in order to keep the inc/dec
886 	 * calls balanced when the planes are updated through
887 	 * the async update path.
888 	 *
889 	 * FIXME: we should move to generic async-page-flip when
890 	 * it's available, so that we can get rid of this
891 	 * hand-made cleanup_fb() logic.
892 	 */
893 	if (bo)
894 		vc4_bo_dec_usecnt(bo);
895 }
896 
897 static void vc4_async_page_flip_fence_complete(struct dma_fence *fence,
898 					       struct dma_fence_cb *cb)
899 {
900 	struct vc4_async_flip_state *flip_state =
901 		container_of(cb, struct vc4_async_flip_state, cb.fence);
902 
903 	vc4_async_page_flip_complete(flip_state);
904 	dma_fence_put(fence);
905 }
906 
907 static int vc4_async_set_fence_cb(struct drm_device *dev,
908 				  struct vc4_async_flip_state *flip_state)
909 {
910 	struct drm_framebuffer *fb = flip_state->fb;
911 	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
912 	struct vc4_dev *vc4 = to_vc4_dev(dev);
913 	struct dma_fence *fence;
914 	int ret;
915 
916 	if (!vc4->is_vc5) {
917 		struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
918 
919 		return vc4_queue_seqno_cb(dev, &flip_state->cb.seqno, bo->seqno,
920 					  vc4_async_page_flip_seqno_complete);
921 	}
922 
923 	ret = dma_resv_get_singleton(dma_bo->base.resv, DMA_RESV_USAGE_READ, &fence);
924 	if (ret)
925 		return ret;
926 
927 	/* If there's no fence, complete the page flip immediately */
928 	if (!fence) {
929 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
930 		return 0;
931 	}
932 
933 	/* If the fence has already been completed, complete the page flip */
934 	if (dma_fence_add_callback(fence, &flip_state->cb.fence,
935 				   vc4_async_page_flip_fence_complete))
936 		vc4_async_page_flip_fence_complete(fence, &flip_state->cb.fence);
937 
938 	return 0;
939 }
940 
941 static int
942 vc4_async_page_flip_common(struct drm_crtc *crtc,
943 			   struct drm_framebuffer *fb,
944 			   struct drm_pending_vblank_event *event,
945 			   uint32_t flags)
946 {
947 	struct drm_device *dev = crtc->dev;
948 	struct drm_plane *plane = crtc->primary;
949 	struct vc4_async_flip_state *flip_state;
950 
951 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
952 	if (!flip_state)
953 		return -ENOMEM;
954 
955 	drm_framebuffer_get(fb);
956 	flip_state->fb = fb;
957 	flip_state->crtc = crtc;
958 	flip_state->event = event;
959 
960 	/* Save the current FB before it's replaced by the new one in
961 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
962 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
963 	 * it consistent.
964 	 * FIXME: we should move to generic async-page-flip when it's
965 	 * available, so that we can get rid of this hand-made cleanup_fb()
966 	 * logic.
967 	 */
968 	flip_state->old_fb = plane->state->fb;
969 	if (flip_state->old_fb)
970 		drm_framebuffer_get(flip_state->old_fb);
971 
972 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
973 
974 	/* Immediately update the plane's legacy fb pointer, so that later
975 	 * modeset prep sees the state that will be present when the semaphore
976 	 * is released.
977 	 */
978 	drm_atomic_set_fb_for_plane(plane->state, fb);
979 
980 	vc4_async_set_fence_cb(dev, flip_state);
981 
982 	/* Driver takes ownership of state on successful async commit. */
983 	return 0;
984 }
985 
986 /* Implements async (non-vblank-synced) page flips.
987  *
988  * The page flip ioctl needs to return immediately, so we grab the
989  * modeset semaphore on the pipe, and queue the address update for
990  * when V3D is done with the BO being flipped to.
991  */
992 static int vc4_async_page_flip(struct drm_crtc *crtc,
993 			       struct drm_framebuffer *fb,
994 			       struct drm_pending_vblank_event *event,
995 			       uint32_t flags)
996 {
997 	struct drm_device *dev = crtc->dev;
998 	struct vc4_dev *vc4 = to_vc4_dev(dev);
999 	struct drm_gem_dma_object *dma_bo = drm_fb_dma_get_gem_obj(fb, 0);
1000 	struct vc4_bo *bo = to_vc4_bo(&dma_bo->base);
1001 	int ret;
1002 
1003 	if (WARN_ON_ONCE(vc4->is_vc5))
1004 		return -ENODEV;
1005 
1006 	/*
1007 	 * Increment the BO usecnt here, so that we never end up with an
1008 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
1009 	 * plane is later updated through the non-async path.
1010 	 *
1011 	 * FIXME: we should move to generic async-page-flip when
1012 	 * it's available, so that we can get rid of this
1013 	 * hand-made prepare_fb() logic.
1014 	 */
1015 	ret = vc4_bo_inc_usecnt(bo);
1016 	if (ret)
1017 		return ret;
1018 
1019 	ret = vc4_async_page_flip_common(crtc, fb, event, flags);
1020 	if (ret) {
1021 		vc4_bo_dec_usecnt(bo);
1022 		return ret;
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static int vc5_async_page_flip(struct drm_crtc *crtc,
1029 			       struct drm_framebuffer *fb,
1030 			       struct drm_pending_vblank_event *event,
1031 			       uint32_t flags)
1032 {
1033 	return vc4_async_page_flip_common(crtc, fb, event, flags);
1034 }
1035 
1036 int vc4_page_flip(struct drm_crtc *crtc,
1037 		  struct drm_framebuffer *fb,
1038 		  struct drm_pending_vblank_event *event,
1039 		  uint32_t flags,
1040 		  struct drm_modeset_acquire_ctx *ctx)
1041 {
1042 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC) {
1043 		struct drm_device *dev = crtc->dev;
1044 		struct vc4_dev *vc4 = to_vc4_dev(dev);
1045 
1046 		if (vc4->is_vc5)
1047 			return vc5_async_page_flip(crtc, fb, event, flags);
1048 		else
1049 			return vc4_async_page_flip(crtc, fb, event, flags);
1050 	} else {
1051 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
1052 	}
1053 }
1054 
1055 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
1056 {
1057 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
1058 
1059 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
1060 	if (!vc4_state)
1061 		return NULL;
1062 
1063 	old_vc4_state = to_vc4_crtc_state(crtc->state);
1064 	vc4_state->margins = old_vc4_state->margins;
1065 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
1066 
1067 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
1068 	return &vc4_state->base;
1069 }
1070 
1071 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
1072 			    struct drm_crtc_state *state)
1073 {
1074 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
1075 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
1076 
1077 	if (drm_mm_node_allocated(&vc4_state->mm)) {
1078 		unsigned long flags;
1079 
1080 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1081 		drm_mm_remove_node(&vc4_state->mm);
1082 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1083 
1084 	}
1085 
1086 	drm_atomic_helper_crtc_destroy_state(crtc, state);
1087 }
1088 
1089 void vc4_crtc_reset(struct drm_crtc *crtc)
1090 {
1091 	struct vc4_crtc_state *vc4_crtc_state;
1092 
1093 	if (crtc->state)
1094 		vc4_crtc_destroy_state(crtc, crtc->state);
1095 
1096 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
1097 	if (!vc4_crtc_state) {
1098 		crtc->state = NULL;
1099 		return;
1100 	}
1101 
1102 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
1103 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
1104 }
1105 
1106 int vc4_crtc_late_register(struct drm_crtc *crtc)
1107 {
1108 	struct drm_device *drm = crtc->dev;
1109 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1110 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
1111 
1112 	vc4_debugfs_add_regset32(drm, crtc_data->debugfs_name,
1113 				 &vc4_crtc->regset);
1114 
1115 	return 0;
1116 }
1117 
1118 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1119 	.set_config = drm_atomic_helper_set_config,
1120 	.page_flip = vc4_page_flip,
1121 	.set_property = NULL,
1122 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1123 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1124 	.reset = vc4_crtc_reset,
1125 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1126 	.atomic_destroy_state = vc4_crtc_destroy_state,
1127 	.enable_vblank = vc4_enable_vblank,
1128 	.disable_vblank = vc4_disable_vblank,
1129 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1130 	.late_register = vc4_crtc_late_register,
1131 };
1132 
1133 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1134 	.mode_valid = vc4_crtc_mode_valid,
1135 	.atomic_check = vc4_crtc_atomic_check,
1136 	.atomic_begin = vc4_hvs_atomic_begin,
1137 	.atomic_flush = vc4_hvs_atomic_flush,
1138 	.atomic_enable = vc4_crtc_atomic_enable,
1139 	.atomic_disable = vc4_crtc_atomic_disable,
1140 	.get_scanout_position = vc4_crtc_get_scanout_position,
1141 };
1142 
1143 const struct vc4_pv_data bcm2835_pv0_data = {
1144 	.base = {
1145 		.name = "pixelvalve-0",
1146 		.debugfs_name = "crtc0_regs",
1147 		.hvs_available_channels = BIT(0),
1148 		.hvs_output = 0,
1149 	},
1150 	.fifo_depth = 64,
1151 	.pixels_per_clock = 1,
1152 	.encoder_types = {
1153 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1154 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1155 	},
1156 };
1157 
1158 const struct vc4_pv_data bcm2835_pv1_data = {
1159 	.base = {
1160 		.name = "pixelvalve-1",
1161 		.debugfs_name = "crtc1_regs",
1162 		.hvs_available_channels = BIT(2),
1163 		.hvs_output = 2,
1164 	},
1165 	.fifo_depth = 64,
1166 	.pixels_per_clock = 1,
1167 	.encoder_types = {
1168 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1169 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1170 	},
1171 };
1172 
1173 const struct vc4_pv_data bcm2835_pv2_data = {
1174 	.base = {
1175 		.name = "pixelvalve-2",
1176 		.debugfs_name = "crtc2_regs",
1177 		.hvs_available_channels = BIT(1),
1178 		.hvs_output = 1,
1179 	},
1180 	.fifo_depth = 64,
1181 	.pixels_per_clock = 1,
1182 	.encoder_types = {
1183 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1184 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1185 	},
1186 };
1187 
1188 const struct vc4_pv_data bcm2711_pv0_data = {
1189 	.base = {
1190 		.name = "pixelvalve-0",
1191 		.debugfs_name = "crtc0_regs",
1192 		.hvs_available_channels = BIT(0),
1193 		.hvs_output = 0,
1194 	},
1195 	.fifo_depth = 64,
1196 	.pixels_per_clock = 1,
1197 	.encoder_types = {
1198 		[0] = VC4_ENCODER_TYPE_DSI0,
1199 		[1] = VC4_ENCODER_TYPE_DPI,
1200 	},
1201 };
1202 
1203 const struct vc4_pv_data bcm2711_pv1_data = {
1204 	.base = {
1205 		.name = "pixelvalve-1",
1206 		.debugfs_name = "crtc1_regs",
1207 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1208 		.hvs_output = 3,
1209 	},
1210 	.fifo_depth = 64,
1211 	.pixels_per_clock = 1,
1212 	.encoder_types = {
1213 		[0] = VC4_ENCODER_TYPE_DSI1,
1214 		[1] = VC4_ENCODER_TYPE_SMI,
1215 	},
1216 };
1217 
1218 const struct vc4_pv_data bcm2711_pv2_data = {
1219 	.base = {
1220 		.name = "pixelvalve-2",
1221 		.debugfs_name = "crtc2_regs",
1222 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1223 		.hvs_output = 4,
1224 	},
1225 	.fifo_depth = 256,
1226 	.pixels_per_clock = 2,
1227 	.encoder_types = {
1228 		[0] = VC4_ENCODER_TYPE_HDMI0,
1229 	},
1230 };
1231 
1232 const struct vc4_pv_data bcm2711_pv3_data = {
1233 	.base = {
1234 		.name = "pixelvalve-3",
1235 		.debugfs_name = "crtc3_regs",
1236 		.hvs_available_channels = BIT(1),
1237 		.hvs_output = 1,
1238 	},
1239 	.fifo_depth = 64,
1240 	.pixels_per_clock = 1,
1241 	.encoder_types = {
1242 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1243 	},
1244 };
1245 
1246 const struct vc4_pv_data bcm2711_pv4_data = {
1247 	.base = {
1248 		.name = "pixelvalve-4",
1249 		.debugfs_name = "crtc4_regs",
1250 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1251 		.hvs_output = 5,
1252 	},
1253 	.fifo_depth = 64,
1254 	.pixels_per_clock = 2,
1255 	.encoder_types = {
1256 		[0] = VC4_ENCODER_TYPE_HDMI1,
1257 	},
1258 };
1259 
1260 static const struct of_device_id vc4_crtc_dt_match[] = {
1261 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1262 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1263 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1264 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1265 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1266 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1267 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1268 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1269 	{}
1270 };
1271 
1272 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1273 					struct drm_crtc *crtc)
1274 {
1275 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1276 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1277 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1278 	struct drm_encoder *encoder;
1279 
1280 	drm_for_each_encoder(encoder, drm) {
1281 		struct vc4_encoder *vc4_encoder;
1282 		int i;
1283 
1284 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1285 			continue;
1286 
1287 		vc4_encoder = to_vc4_encoder(encoder);
1288 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1289 			if (vc4_encoder->type == encoder_types[i]) {
1290 				vc4_encoder->clock_select = i;
1291 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1292 				break;
1293 			}
1294 		}
1295 	}
1296 }
1297 
1298 /**
1299  * __vc4_crtc_init - Initializes a CRTC
1300  * @drm: DRM Device
1301  * @pdev: CRTC Platform Device
1302  * @vc4_crtc: CRTC Object to Initialize
1303  * @data: Configuration data associated with this CRTC
1304  * @primary_plane: Primary plane for CRTC
1305  * @crtc_funcs: Callbacks for the new CRTC
1306  * @crtc_helper_funcs: Helper Callbacks for the new CRTC
1307  * @feeds_txp: Is this CRTC connected to the TXP?
1308  *
1309  * Initializes our private CRTC structure. This function is mostly
1310  * relevant for KUnit testing, all other users should use
1311  * vc4_crtc_init() instead.
1312  *
1313  * Returns:
1314  * 0 on success, a negative error code on failure.
1315  */
1316 int __vc4_crtc_init(struct drm_device *drm,
1317 		    struct platform_device *pdev,
1318 		    struct vc4_crtc *vc4_crtc,
1319 		    const struct vc4_crtc_data *data,
1320 		    struct drm_plane *primary_plane,
1321 		    const struct drm_crtc_funcs *crtc_funcs,
1322 		    const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1323 		    bool feeds_txp)
1324 {
1325 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1326 	struct drm_crtc *crtc = &vc4_crtc->base;
1327 	unsigned int i;
1328 	int ret;
1329 
1330 	vc4_crtc->data = data;
1331 	vc4_crtc->pdev = pdev;
1332 	vc4_crtc->feeds_txp = feeds_txp;
1333 	spin_lock_init(&vc4_crtc->irq_lock);
1334 	ret = drmm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1335 					 crtc_funcs, data->name);
1336 	if (ret)
1337 		return ret;
1338 
1339 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1340 
1341 	if (!vc4->is_vc5) {
1342 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1343 
1344 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1345 
1346 		/* We support CTM, but only for one CRTC at a time. It's therefore
1347 		 * implemented as private driver state in vc4_kms, not here.
1348 		 */
1349 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1350 	}
1351 
1352 	for (i = 0; i < crtc->gamma_size; i++) {
1353 		vc4_crtc->lut_r[i] = i;
1354 		vc4_crtc->lut_g[i] = i;
1355 		vc4_crtc->lut_b[i] = i;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 int vc4_crtc_init(struct drm_device *drm, struct platform_device *pdev,
1362 		  struct vc4_crtc *vc4_crtc,
1363 		  const struct vc4_crtc_data *data,
1364 		  const struct drm_crtc_funcs *crtc_funcs,
1365 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs,
1366 		  bool feeds_txp)
1367 {
1368 	struct drm_plane *primary_plane;
1369 
1370 	/* For now, we create just the primary and the legacy cursor
1371 	 * planes.  We should be able to stack more planes on easily,
1372 	 * but to do that we would need to compute the bandwidth
1373 	 * requirement of the plane configuration, and reject ones
1374 	 * that will take too much.
1375 	 */
1376 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY, 0);
1377 	if (IS_ERR(primary_plane)) {
1378 		dev_err(drm->dev, "failed to construct primary plane\n");
1379 		return PTR_ERR(primary_plane);
1380 	}
1381 
1382 	return __vc4_crtc_init(drm, pdev, vc4_crtc, data, primary_plane,
1383 			       crtc_funcs, crtc_helper_funcs, feeds_txp);
1384 }
1385 
1386 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1387 {
1388 	struct platform_device *pdev = to_platform_device(dev);
1389 	struct drm_device *drm = dev_get_drvdata(master);
1390 	const struct vc4_pv_data *pv_data;
1391 	struct vc4_crtc *vc4_crtc;
1392 	struct drm_crtc *crtc;
1393 	int ret;
1394 
1395 	vc4_crtc = drmm_kzalloc(drm, sizeof(*vc4_crtc), GFP_KERNEL);
1396 	if (!vc4_crtc)
1397 		return -ENOMEM;
1398 	crtc = &vc4_crtc->base;
1399 
1400 	pv_data = of_device_get_match_data(dev);
1401 	if (!pv_data)
1402 		return -ENODEV;
1403 
1404 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1405 	if (IS_ERR(vc4_crtc->regs))
1406 		return PTR_ERR(vc4_crtc->regs);
1407 
1408 	vc4_crtc->regset.base = vc4_crtc->regs;
1409 	vc4_crtc->regset.regs = crtc_regs;
1410 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1411 
1412 	ret = vc4_crtc_init(drm, pdev, vc4_crtc, &pv_data->base,
1413 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs,
1414 			    false);
1415 	if (ret)
1416 		return ret;
1417 	vc4_set_crtc_possible_masks(drm, crtc);
1418 
1419 	CRTC_WRITE(PV_INTEN, 0);
1420 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1421 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1422 			       vc4_crtc_irq_handler,
1423 			       IRQF_SHARED,
1424 			       "vc4 crtc", vc4_crtc);
1425 	if (ret)
1426 		return ret;
1427 
1428 	platform_set_drvdata(pdev, vc4_crtc);
1429 
1430 	return 0;
1431 }
1432 
1433 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1434 			    void *data)
1435 {
1436 	struct platform_device *pdev = to_platform_device(dev);
1437 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1438 
1439 	CRTC_WRITE(PV_INTEN, 0);
1440 
1441 	platform_set_drvdata(pdev, NULL);
1442 }
1443 
1444 static const struct component_ops vc4_crtc_ops = {
1445 	.bind   = vc4_crtc_bind,
1446 	.unbind = vc4_crtc_unbind,
1447 };
1448 
1449 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1450 {
1451 	return component_add(&pdev->dev, &vc4_crtc_ops);
1452 }
1453 
1454 static void vc4_crtc_dev_remove(struct platform_device *pdev)
1455 {
1456 	component_del(&pdev->dev, &vc4_crtc_ops);
1457 }
1458 
1459 struct platform_driver vc4_crtc_driver = {
1460 	.probe = vc4_crtc_dev_probe,
1461 	.remove_new = vc4_crtc_dev_remove,
1462 	.driver = {
1463 		.name = "vc4_crtc",
1464 		.of_match_table = vc4_crtc_dt_match,
1465 	},
1466 };
1467