xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 36a7b63f069630e854beb305e99c151cddd3b8e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48 
49 #define HVS_FIFO_LATENCY_PIX	6
50 
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53 
54 static const struct debugfs_reg32 crtc_regs[] = {
55 	VC4_REG32(PV_CONTROL),
56 	VC4_REG32(PV_V_CONTROL),
57 	VC4_REG32(PV_VSYNCD_EVEN),
58 	VC4_REG32(PV_HORZA),
59 	VC4_REG32(PV_HORZB),
60 	VC4_REG32(PV_VERTA),
61 	VC4_REG32(PV_VERTB),
62 	VC4_REG32(PV_VERTA_EVEN),
63 	VC4_REG32(PV_VERTB_EVEN),
64 	VC4_REG32(PV_INTEN),
65 	VC4_REG32(PV_INTSTAT),
66 	VC4_REG32(PV_STAT),
67 	VC4_REG32(PV_HACT_ACT),
68 };
69 
70 static unsigned int
71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73 	struct vc4_hvs *hvs = vc4->hvs;
74 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
75 	/* Top/base are supposed to be 4-pixel aligned, but the
76 	 * Raspberry Pi firmware fills the low bits (which are
77 	 * presumably ignored).
78 	 */
79 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
80 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
81 
82 	return top - base + 4;
83 }
84 
85 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
86 					  bool in_vblank_irq,
87 					  int *vpos, int *hpos,
88 					  ktime_t *stime, ktime_t *etime,
89 					  const struct drm_display_mode *mode)
90 {
91 	struct drm_device *dev = crtc->dev;
92 	struct vc4_dev *vc4 = to_vc4_dev(dev);
93 	struct vc4_hvs *hvs = vc4->hvs;
94 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
96 	unsigned int cob_size;
97 	u32 val;
98 	int fifo_lines;
99 	int vblank_lines;
100 	bool ret = false;
101 
102 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
103 
104 	/* Get optional system timestamp before query. */
105 	if (stime)
106 		*stime = ktime_get();
107 
108 	/*
109 	 * Read vertical scanline which is currently composed for our
110 	 * pixelvalve by the HVS, and also the scaler status.
111 	 */
112 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
113 
114 	/* Get optional system timestamp after query. */
115 	if (etime)
116 		*etime = ktime_get();
117 
118 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
119 
120 	/* Vertical position of hvs composed scanline. */
121 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
122 	*hpos = 0;
123 
124 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
125 		*vpos /= 2;
126 
127 		/* Use hpos to correct for field offset in interlaced mode. */
128 		if (vc4_hvs_get_fifo_frame_count(hvs, vc4_crtc_state->assigned_channel) % 2)
129 			*hpos += mode->crtc_htotal / 2;
130 	}
131 
132 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
133 	/* This is the offset we need for translating hvs -> pv scanout pos. */
134 	fifo_lines = cob_size / mode->crtc_hdisplay;
135 
136 	if (fifo_lines > 0)
137 		ret = true;
138 
139 	/* HVS more than fifo_lines into frame for compositing? */
140 	if (*vpos > fifo_lines) {
141 		/*
142 		 * We are in active scanout and can get some meaningful results
143 		 * from HVS. The actual PV scanout can not trail behind more
144 		 * than fifo_lines as that is the fifo's capacity. Assume that
145 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
146 		 * refilling the fifo and PV consuming from the fifo, ie.
147 		 * whenever the PV consumes and frees up a scanline in the
148 		 * fifo, the HVS will immediately refill it, therefore
149 		 * incrementing vpos. Therefore we choose HVS read position -
150 		 * fifo size in scanlines as a estimate of the real scanout
151 		 * position of the PV.
152 		 */
153 		*vpos -= fifo_lines + 1;
154 
155 		return ret;
156 	}
157 
158 	/*
159 	 * Less: This happens when we are in vblank and the HVS, after getting
160 	 * the VSTART restart signal from the PV, just started refilling its
161 	 * fifo with new lines from the top-most lines of the new framebuffers.
162 	 * The PV does not scan out in vblank, so does not remove lines from
163 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
164 	 * We can't get meaningful readings wrt. scanline position of the PV
165 	 * and need to make things up in a approximative but consistent way.
166 	 */
167 	vblank_lines = mode->vtotal - mode->vdisplay;
168 
169 	if (in_vblank_irq) {
170 		/*
171 		 * Assume the irq handler got called close to first
172 		 * line of vblank, so PV has about a full vblank
173 		 * scanlines to go, and as a base timestamp use the
174 		 * one taken at entry into vblank irq handler, so it
175 		 * is not affected by random delays due to lock
176 		 * contention on event_lock or vblank_time lock in
177 		 * the core.
178 		 */
179 		*vpos = -vblank_lines;
180 
181 		if (stime)
182 			*stime = vc4_crtc->t_vblank;
183 		if (etime)
184 			*etime = vc4_crtc->t_vblank;
185 
186 		/*
187 		 * If the HVS fifo is not yet full then we know for certain
188 		 * we are at the very beginning of vblank, as the hvs just
189 		 * started refilling, and the stime and etime timestamps
190 		 * truly correspond to start of vblank.
191 		 *
192 		 * Unfortunately there's no way to report this to upper levels
193 		 * and make it more useful.
194 		 */
195 	} else {
196 		/*
197 		 * No clue where we are inside vblank. Return a vpos of zero,
198 		 * which will cause calling code to just return the etime
199 		 * timestamp uncorrected. At least this is no worse than the
200 		 * standard fallback.
201 		 */
202 		*vpos = 0;
203 	}
204 
205 	return ret;
206 }
207 
208 void vc4_crtc_destroy(struct drm_crtc *crtc)
209 {
210 	drm_crtc_cleanup(crtc);
211 }
212 
213 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
214 {
215 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
216 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
217 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
218 	u32 fifo_len_bytes = pv_data->fifo_depth;
219 
220 	/*
221 	 * Pixels are pulled from the HVS if the number of bytes is
222 	 * lower than the FIFO full level.
223 	 *
224 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
225 	 * need to convert those 6 pixels in bytes, depending on the
226 	 * format, and then subtract that from the length of the FIFO
227 	 * to make sure we never end up in a situation where the FIFO
228 	 * is full.
229 	 */
230 	switch (format) {
231 	case PV_CONTROL_FORMAT_DSIV_16:
232 	case PV_CONTROL_FORMAT_DSIC_16:
233 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
234 	case PV_CONTROL_FORMAT_DSIV_18:
235 		return fifo_len_bytes - 14;
236 	case PV_CONTROL_FORMAT_24:
237 	case PV_CONTROL_FORMAT_DSIV_24:
238 	default:
239 		/*
240 		 * For some reason, the pixelvalve4 doesn't work with
241 		 * the usual formula and will only work with 32.
242 		 */
243 		if (crtc_data->hvs_output == 5)
244 			return 32;
245 
246 		/*
247 		 * It looks like in some situations, we will overflow
248 		 * the PixelValve FIFO (with the bit 10 of PV stat being
249 		 * set) and stall the HVS / PV, eventually resulting in
250 		 * a page flip timeout.
251 		 *
252 		 * Displaying the video overlay during a playback with
253 		 * Kodi on an RPi3 seems to be a great solution with a
254 		 * failure rate around 50%.
255 		 *
256 		 * Removing 1 from the FIFO full level however
257 		 * seems to completely remove that issue.
258 		 */
259 		if (!vc4->hvs->hvs5)
260 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
261 
262 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
263 	}
264 }
265 
266 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
267 					     u32 format)
268 {
269 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
270 	u32 ret = 0;
271 
272 	ret |= VC4_SET_FIELD((level >> 6),
273 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
274 
275 	return ret | VC4_SET_FIELD(level & 0x3f,
276 				   PV_CONTROL_FIFO_LEVEL);
277 }
278 
279 /*
280  * Returns the encoder attached to the CRTC.
281  *
282  * VC4 can only scan out to one encoder at a time, while the DRM core
283  * allows drivers to push pixels to more than one encoder from the
284  * same CRTC.
285  */
286 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
287 					 struct drm_crtc_state *state)
288 {
289 	struct drm_encoder *encoder;
290 
291 	WARN_ON(hweight32(state->encoder_mask) > 1);
292 
293 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
294 		return encoder;
295 
296 	return NULL;
297 }
298 
299 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
300 {
301 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
302 
303 	/* The PV needs to be disabled before it can be flushed */
304 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
305 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
306 }
307 
308 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
309 			       struct drm_atomic_state *state)
310 {
311 	struct drm_device *dev = crtc->dev;
312 	struct vc4_dev *vc4 = to_vc4_dev(dev);
313 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
314 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
315 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
316 	struct drm_crtc_state *crtc_state = crtc->state;
317 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
318 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
319 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
320 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
321 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
322 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
323 	u8 ppc = pv_data->pixels_per_clock;
324 	bool debug_dump_regs = false;
325 
326 	if (debug_dump_regs) {
327 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
328 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
329 			 drm_crtc_index(crtc));
330 		drm_print_regset32(&p, &vc4_crtc->regset);
331 	}
332 
333 	vc4_crtc_pixelvalve_reset(crtc);
334 
335 	CRTC_WRITE(PV_HORZA,
336 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
337 				 PV_HORZA_HBP) |
338 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
339 				 PV_HORZA_HSYNC));
340 
341 	CRTC_WRITE(PV_HORZB,
342 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
343 				 PV_HORZB_HFP) |
344 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
345 				 PV_HORZB_HACTIVE));
346 
347 	CRTC_WRITE(PV_VERTA,
348 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
349 				 PV_VERTA_VBP) |
350 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
351 				 PV_VERTA_VSYNC));
352 	CRTC_WRITE(PV_VERTB,
353 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
354 				 PV_VERTB_VFP) |
355 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
356 
357 	if (interlace) {
358 		CRTC_WRITE(PV_VERTA_EVEN,
359 			   VC4_SET_FIELD(mode->crtc_vtotal -
360 					 mode->crtc_vsync_end - 1,
361 					 PV_VERTA_VBP) |
362 			   VC4_SET_FIELD(mode->crtc_vsync_end -
363 					 mode->crtc_vsync_start,
364 					 PV_VERTA_VSYNC));
365 		CRTC_WRITE(PV_VERTB_EVEN,
366 			   VC4_SET_FIELD(mode->crtc_vsync_start -
367 					 mode->crtc_vdisplay,
368 					 PV_VERTB_VFP) |
369 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
370 
371 		/* We set up first field even mode for HDMI.  VEC's
372 		 * NTSC mode would want first field odd instead, once
373 		 * we support it (to do so, set ODD_FIRST and put the
374 		 * delay in VSYNCD_EVEN instead).
375 		 */
376 		CRTC_WRITE(PV_V_CONTROL,
377 			   PV_VCONTROL_CONTINUOUS |
378 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
379 			   PV_VCONTROL_INTERLACE |
380 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
381 					 PV_VCONTROL_ODD_DELAY));
382 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
383 	} else {
384 		CRTC_WRITE(PV_V_CONTROL,
385 			   PV_VCONTROL_CONTINUOUS |
386 			   (is_dsi ? PV_VCONTROL_DSI : 0));
387 	}
388 
389 	if (is_dsi)
390 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
391 
392 	if (vc4->hvs->hvs5)
393 		CRTC_WRITE(PV_MUX_CFG,
394 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
395 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
396 
397 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
398 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
399 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
400 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
401 		   PV_CONTROL_CLR_AT_START |
402 		   PV_CONTROL_TRIGGER_UNDERFLOW |
403 		   PV_CONTROL_WAIT_HSTART |
404 		   VC4_SET_FIELD(vc4_encoder->clock_select,
405 				 PV_CONTROL_CLK_SELECT));
406 
407 	if (debug_dump_regs) {
408 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
409 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
410 			 drm_crtc_index(crtc));
411 		drm_print_regset32(&p, &vc4_crtc->regset);
412 	}
413 }
414 
415 static void require_hvs_enabled(struct drm_device *dev)
416 {
417 	struct vc4_dev *vc4 = to_vc4_dev(dev);
418 	struct vc4_hvs *hvs = vc4->hvs;
419 
420 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
421 		     SCALER_DISPCTRL_ENABLE);
422 }
423 
424 static int vc4_crtc_disable(struct drm_crtc *crtc,
425 			    struct drm_encoder *encoder,
426 			    struct drm_atomic_state *state,
427 			    unsigned int channel)
428 {
429 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
430 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
431 	struct drm_device *dev = crtc->dev;
432 	struct vc4_dev *vc4 = to_vc4_dev(dev);
433 	int ret;
434 
435 	CRTC_WRITE(PV_V_CONTROL,
436 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
437 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
438 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
439 
440 	/*
441 	 * This delay is needed to avoid to get a pixel stuck in an
442 	 * unflushable FIFO between the pixelvalve and the HDMI
443 	 * controllers on the BCM2711.
444 	 *
445 	 * Timing is fairly sensitive here, so mdelay is the safest
446 	 * approach.
447 	 *
448 	 * If it was to be reworked, the stuck pixel happens on a
449 	 * BCM2711 when changing mode with a good probability, so a
450 	 * script that changes mode on a regular basis should trigger
451 	 * the bug after less than 10 attempts. It manifests itself with
452 	 * every pixels being shifted by one to the right, and thus the
453 	 * last pixel of a line actually being displayed as the first
454 	 * pixel on the next line.
455 	 */
456 	mdelay(20);
457 
458 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
459 		vc4_encoder->post_crtc_disable(encoder, state);
460 
461 	vc4_crtc_pixelvalve_reset(crtc);
462 	vc4_hvs_stop_channel(vc4->hvs, channel);
463 
464 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
465 		vc4_encoder->post_crtc_powerdown(encoder, state);
466 
467 	return 0;
468 }
469 
470 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
471 							enum vc4_encoder_type type)
472 {
473 	struct drm_encoder *encoder;
474 
475 	drm_for_each_encoder(encoder, crtc->dev) {
476 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
477 
478 		if (vc4_encoder->type == type)
479 			return encoder;
480 	}
481 
482 	return NULL;
483 }
484 
485 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
486 {
487 	struct drm_device *drm = crtc->dev;
488 	struct vc4_dev *vc4 = to_vc4_dev(drm);
489 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
490 	enum vc4_encoder_type encoder_type;
491 	const struct vc4_pv_data *pv_data;
492 	struct drm_encoder *encoder;
493 	struct vc4_hdmi *vc4_hdmi;
494 	unsigned encoder_sel;
495 	int channel;
496 	int ret;
497 
498 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
499 				      "brcm,bcm2711-pixelvalve2") ||
500 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
501 				      "brcm,bcm2711-pixelvalve4")))
502 		return 0;
503 
504 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
505 		return 0;
506 
507 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
508 		return 0;
509 
510 	channel = vc4_hvs_get_fifo_from_output(vc4->hvs, vc4_crtc->data->hvs_output);
511 	if (channel < 0)
512 		return 0;
513 
514 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
515 	if (WARN_ON(encoder_sel != 0))
516 		return 0;
517 
518 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
519 	encoder_type = pv_data->encoder_types[encoder_sel];
520 	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
521 	if (WARN_ON(!encoder))
522 		return 0;
523 
524 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
525 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
526 	if (ret)
527 		return ret;
528 
529 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
530 	if (ret)
531 		return ret;
532 
533 	/*
534 	 * post_crtc_powerdown will have called pm_runtime_put, so we
535 	 * don't need it here otherwise we'll get the reference counting
536 	 * wrong.
537 	 */
538 
539 	return 0;
540 }
541 
542 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
543 				    struct drm_atomic_state *state)
544 {
545 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
546 									 crtc);
547 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
548 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
549 	struct drm_device *dev = crtc->dev;
550 
551 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
552 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
553 
554 	require_hvs_enabled(dev);
555 
556 	/* Disable vblank irq handling before crtc is disabled. */
557 	drm_crtc_vblank_off(crtc);
558 
559 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
560 
561 	/*
562 	 * Make sure we issue a vblank event after disabling the CRTC if
563 	 * someone was waiting it.
564 	 */
565 	if (crtc->state->event) {
566 		unsigned long flags;
567 
568 		spin_lock_irqsave(&dev->event_lock, flags);
569 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
570 		crtc->state->event = NULL;
571 		spin_unlock_irqrestore(&dev->event_lock, flags);
572 	}
573 }
574 
575 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
576 				   struct drm_atomic_state *state)
577 {
578 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
579 									 crtc);
580 	struct drm_device *dev = crtc->dev;
581 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
582 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
583 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
584 
585 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
586 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
587 
588 	require_hvs_enabled(dev);
589 
590 	/* Enable vblank irq handling before crtc is started otherwise
591 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
592 	 */
593 	drm_crtc_vblank_on(crtc);
594 
595 	vc4_hvs_atomic_enable(crtc, state);
596 
597 	if (vc4_encoder->pre_crtc_configure)
598 		vc4_encoder->pre_crtc_configure(encoder, state);
599 
600 	vc4_crtc_config_pv(crtc, encoder, state);
601 
602 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
603 
604 	if (vc4_encoder->pre_crtc_enable)
605 		vc4_encoder->pre_crtc_enable(encoder, state);
606 
607 	/* When feeding the transposer block the pixelvalve is unneeded and
608 	 * should not be enabled.
609 	 */
610 	CRTC_WRITE(PV_V_CONTROL,
611 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
612 
613 	if (vc4_encoder->post_crtc_enable)
614 		vc4_encoder->post_crtc_enable(encoder, state);
615 }
616 
617 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
618 						const struct drm_display_mode *mode)
619 {
620 	/* Do not allow doublescan modes from user space */
621 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
622 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
623 			      crtc->base.id);
624 		return MODE_NO_DBLESCAN;
625 	}
626 
627 	return MODE_OK;
628 }
629 
630 void vc4_crtc_get_margins(struct drm_crtc_state *state,
631 			  unsigned int *left, unsigned int *right,
632 			  unsigned int *top, unsigned int *bottom)
633 {
634 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
635 	struct drm_connector_state *conn_state;
636 	struct drm_connector *conn;
637 	int i;
638 
639 	*left = vc4_state->margins.left;
640 	*right = vc4_state->margins.right;
641 	*top = vc4_state->margins.top;
642 	*bottom = vc4_state->margins.bottom;
643 
644 	/* We have to interate over all new connector states because
645 	 * vc4_crtc_get_margins() might be called before
646 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
647 	 * might be outdated.
648 	 */
649 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
650 		if (conn_state->crtc != state->crtc)
651 			continue;
652 
653 		*left = conn_state->tv.margins.left;
654 		*right = conn_state->tv.margins.right;
655 		*top = conn_state->tv.margins.top;
656 		*bottom = conn_state->tv.margins.bottom;
657 		break;
658 	}
659 }
660 
661 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
662 				 struct drm_atomic_state *state)
663 {
664 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
665 									  crtc);
666 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
667 	struct drm_connector *conn;
668 	struct drm_connector_state *conn_state;
669 	struct drm_encoder *encoder;
670 	int ret, i;
671 
672 	ret = vc4_hvs_atomic_check(crtc, state);
673 	if (ret)
674 		return ret;
675 
676 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
677 	if (encoder) {
678 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
679 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
680 
681 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
682 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
683 						  mode->clock * 9 / 10) * 1000;
684 		} else {
685 			vc4_state->hvs_load = mode->clock * 1000;
686 		}
687 	}
688 
689 	for_each_new_connector_in_state(state, conn, conn_state,
690 					i) {
691 		if (conn_state->crtc != crtc)
692 			continue;
693 
694 		vc4_state->margins.left = conn_state->tv.margins.left;
695 		vc4_state->margins.right = conn_state->tv.margins.right;
696 		vc4_state->margins.top = conn_state->tv.margins.top;
697 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
698 		break;
699 	}
700 
701 	return 0;
702 }
703 
704 static int vc4_enable_vblank(struct drm_crtc *crtc)
705 {
706 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
707 
708 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
709 
710 	return 0;
711 }
712 
713 static void vc4_disable_vblank(struct drm_crtc *crtc)
714 {
715 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
716 
717 	CRTC_WRITE(PV_INTEN, 0);
718 }
719 
720 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
721 {
722 	struct drm_crtc *crtc = &vc4_crtc->base;
723 	struct drm_device *dev = crtc->dev;
724 	struct vc4_dev *vc4 = to_vc4_dev(dev);
725 	struct vc4_hvs *hvs = vc4->hvs;
726 	u32 chan = vc4_crtc->current_hvs_channel;
727 	unsigned long flags;
728 
729 	spin_lock_irqsave(&dev->event_lock, flags);
730 	spin_lock(&vc4_crtc->irq_lock);
731 	if (vc4_crtc->event &&
732 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
733 	     vc4_crtc->feeds_txp)) {
734 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
735 		vc4_crtc->event = NULL;
736 		drm_crtc_vblank_put(crtc);
737 
738 		/* Wait for the page flip to unmask the underrun to ensure that
739 		 * the display list was updated by the hardware. Before that
740 		 * happens, the HVS will be using the previous display list with
741 		 * the CRTC and encoder already reconfigured, leading to
742 		 * underruns. This can be seen when reconfiguring the CRTC.
743 		 */
744 		vc4_hvs_unmask_underrun(hvs, chan);
745 	}
746 	spin_unlock(&vc4_crtc->irq_lock);
747 	spin_unlock_irqrestore(&dev->event_lock, flags);
748 }
749 
750 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
751 {
752 	crtc->t_vblank = ktime_get();
753 	drm_crtc_handle_vblank(&crtc->base);
754 	vc4_crtc_handle_page_flip(crtc);
755 }
756 
757 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
758 {
759 	struct vc4_crtc *vc4_crtc = data;
760 	u32 stat = CRTC_READ(PV_INTSTAT);
761 	irqreturn_t ret = IRQ_NONE;
762 
763 	if (stat & PV_INT_VFP_START) {
764 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
765 		vc4_crtc_handle_vblank(vc4_crtc);
766 		ret = IRQ_HANDLED;
767 	}
768 
769 	return ret;
770 }
771 
772 struct vc4_async_flip_state {
773 	struct drm_crtc *crtc;
774 	struct drm_framebuffer *fb;
775 	struct drm_framebuffer *old_fb;
776 	struct drm_pending_vblank_event *event;
777 
778 	struct vc4_seqno_cb cb;
779 };
780 
781 /* Called when the V3D execution for the BO being flipped to is done, so that
782  * we can actually update the plane's address to point to it.
783  */
784 static void
785 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
786 {
787 	struct vc4_async_flip_state *flip_state =
788 		container_of(cb, struct vc4_async_flip_state, cb);
789 	struct drm_crtc *crtc = flip_state->crtc;
790 	struct drm_device *dev = crtc->dev;
791 	struct drm_plane *plane = crtc->primary;
792 
793 	vc4_plane_async_set_fb(plane, flip_state->fb);
794 	if (flip_state->event) {
795 		unsigned long flags;
796 
797 		spin_lock_irqsave(&dev->event_lock, flags);
798 		drm_crtc_send_vblank_event(crtc, flip_state->event);
799 		spin_unlock_irqrestore(&dev->event_lock, flags);
800 	}
801 
802 	drm_crtc_vblank_put(crtc);
803 	drm_framebuffer_put(flip_state->fb);
804 
805 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
806 	 * when the planes are updated through the async update path.
807 	 * FIXME: we should move to generic async-page-flip when it's
808 	 * available, so that we can get rid of this hand-made cleanup_fb()
809 	 * logic.
810 	 */
811 	if (flip_state->old_fb) {
812 		struct drm_gem_cma_object *cma_bo;
813 		struct vc4_bo *bo;
814 
815 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
816 		bo = to_vc4_bo(&cma_bo->base);
817 		vc4_bo_dec_usecnt(bo);
818 		drm_framebuffer_put(flip_state->old_fb);
819 	}
820 
821 	kfree(flip_state);
822 }
823 
824 /* Implements async (non-vblank-synced) page flips.
825  *
826  * The page flip ioctl needs to return immediately, so we grab the
827  * modeset semaphore on the pipe, and queue the address update for
828  * when V3D is done with the BO being flipped to.
829  */
830 static int vc4_async_page_flip(struct drm_crtc *crtc,
831 			       struct drm_framebuffer *fb,
832 			       struct drm_pending_vblank_event *event,
833 			       uint32_t flags)
834 {
835 	struct drm_device *dev = crtc->dev;
836 	struct drm_plane *plane = crtc->primary;
837 	int ret = 0;
838 	struct vc4_async_flip_state *flip_state;
839 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
840 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
841 
842 	/* Increment the BO usecnt here, so that we never end up with an
843 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
844 	 * plane is later updated through the non-async path.
845 	 * FIXME: we should move to generic async-page-flip when it's
846 	 * available, so that we can get rid of this hand-made prepare_fb()
847 	 * logic.
848 	 */
849 	ret = vc4_bo_inc_usecnt(bo);
850 	if (ret)
851 		return ret;
852 
853 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
854 	if (!flip_state) {
855 		vc4_bo_dec_usecnt(bo);
856 		return -ENOMEM;
857 	}
858 
859 	drm_framebuffer_get(fb);
860 	flip_state->fb = fb;
861 	flip_state->crtc = crtc;
862 	flip_state->event = event;
863 
864 	/* Save the current FB before it's replaced by the new one in
865 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
866 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
867 	 * it consistent.
868 	 * FIXME: we should move to generic async-page-flip when it's
869 	 * available, so that we can get rid of this hand-made cleanup_fb()
870 	 * logic.
871 	 */
872 	flip_state->old_fb = plane->state->fb;
873 	if (flip_state->old_fb)
874 		drm_framebuffer_get(flip_state->old_fb);
875 
876 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
877 
878 	/* Immediately update the plane's legacy fb pointer, so that later
879 	 * modeset prep sees the state that will be present when the semaphore
880 	 * is released.
881 	 */
882 	drm_atomic_set_fb_for_plane(plane->state, fb);
883 
884 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
885 			   vc4_async_page_flip_complete);
886 
887 	/* Driver takes ownership of state on successful async commit. */
888 	return 0;
889 }
890 
891 int vc4_page_flip(struct drm_crtc *crtc,
892 		  struct drm_framebuffer *fb,
893 		  struct drm_pending_vblank_event *event,
894 		  uint32_t flags,
895 		  struct drm_modeset_acquire_ctx *ctx)
896 {
897 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
898 		return vc4_async_page_flip(crtc, fb, event, flags);
899 	else
900 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
901 }
902 
903 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
904 {
905 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
906 
907 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
908 	if (!vc4_state)
909 		return NULL;
910 
911 	old_vc4_state = to_vc4_crtc_state(crtc->state);
912 	vc4_state->margins = old_vc4_state->margins;
913 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
914 
915 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
916 	return &vc4_state->base;
917 }
918 
919 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
920 			    struct drm_crtc_state *state)
921 {
922 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
923 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
924 
925 	if (drm_mm_node_allocated(&vc4_state->mm)) {
926 		unsigned long flags;
927 
928 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
929 		drm_mm_remove_node(&vc4_state->mm);
930 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
931 
932 	}
933 
934 	drm_atomic_helper_crtc_destroy_state(crtc, state);
935 }
936 
937 void vc4_crtc_reset(struct drm_crtc *crtc)
938 {
939 	struct vc4_crtc_state *vc4_crtc_state;
940 
941 	if (crtc->state)
942 		vc4_crtc_destroy_state(crtc, crtc->state);
943 
944 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
945 	if (!vc4_crtc_state) {
946 		crtc->state = NULL;
947 		return;
948 	}
949 
950 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
951 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
952 }
953 
954 static const struct drm_crtc_funcs vc4_crtc_funcs = {
955 	.set_config = drm_atomic_helper_set_config,
956 	.destroy = vc4_crtc_destroy,
957 	.page_flip = vc4_page_flip,
958 	.set_property = NULL,
959 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
960 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
961 	.reset = vc4_crtc_reset,
962 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
963 	.atomic_destroy_state = vc4_crtc_destroy_state,
964 	.enable_vblank = vc4_enable_vblank,
965 	.disable_vblank = vc4_disable_vblank,
966 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
967 };
968 
969 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
970 	.mode_valid = vc4_crtc_mode_valid,
971 	.atomic_check = vc4_crtc_atomic_check,
972 	.atomic_begin = vc4_hvs_atomic_begin,
973 	.atomic_flush = vc4_hvs_atomic_flush,
974 	.atomic_enable = vc4_crtc_atomic_enable,
975 	.atomic_disable = vc4_crtc_atomic_disable,
976 	.get_scanout_position = vc4_crtc_get_scanout_position,
977 };
978 
979 static const struct vc4_pv_data bcm2835_pv0_data = {
980 	.base = {
981 		.hvs_available_channels = BIT(0),
982 		.hvs_output = 0,
983 	},
984 	.debugfs_name = "crtc0_regs",
985 	.fifo_depth = 64,
986 	.pixels_per_clock = 1,
987 	.encoder_types = {
988 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
989 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
990 	},
991 };
992 
993 static const struct vc4_pv_data bcm2835_pv1_data = {
994 	.base = {
995 		.hvs_available_channels = BIT(2),
996 		.hvs_output = 2,
997 	},
998 	.debugfs_name = "crtc1_regs",
999 	.fifo_depth = 64,
1000 	.pixels_per_clock = 1,
1001 	.encoder_types = {
1002 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1003 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1004 	},
1005 };
1006 
1007 static const struct vc4_pv_data bcm2835_pv2_data = {
1008 	.base = {
1009 		.hvs_available_channels = BIT(1),
1010 		.hvs_output = 1,
1011 	},
1012 	.debugfs_name = "crtc2_regs",
1013 	.fifo_depth = 64,
1014 	.pixels_per_clock = 1,
1015 	.encoder_types = {
1016 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1017 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1018 	},
1019 };
1020 
1021 static const struct vc4_pv_data bcm2711_pv0_data = {
1022 	.base = {
1023 		.hvs_available_channels = BIT(0),
1024 		.hvs_output = 0,
1025 	},
1026 	.debugfs_name = "crtc0_regs",
1027 	.fifo_depth = 64,
1028 	.pixels_per_clock = 1,
1029 	.encoder_types = {
1030 		[0] = VC4_ENCODER_TYPE_DSI0,
1031 		[1] = VC4_ENCODER_TYPE_DPI,
1032 	},
1033 };
1034 
1035 static const struct vc4_pv_data bcm2711_pv1_data = {
1036 	.base = {
1037 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1038 		.hvs_output = 3,
1039 	},
1040 	.debugfs_name = "crtc1_regs",
1041 	.fifo_depth = 64,
1042 	.pixels_per_clock = 1,
1043 	.encoder_types = {
1044 		[0] = VC4_ENCODER_TYPE_DSI1,
1045 		[1] = VC4_ENCODER_TYPE_SMI,
1046 	},
1047 };
1048 
1049 static const struct vc4_pv_data bcm2711_pv2_data = {
1050 	.base = {
1051 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1052 		.hvs_output = 4,
1053 	},
1054 	.debugfs_name = "crtc2_regs",
1055 	.fifo_depth = 256,
1056 	.pixels_per_clock = 2,
1057 	.encoder_types = {
1058 		[0] = VC4_ENCODER_TYPE_HDMI0,
1059 	},
1060 };
1061 
1062 static const struct vc4_pv_data bcm2711_pv3_data = {
1063 	.base = {
1064 		.hvs_available_channels = BIT(1),
1065 		.hvs_output = 1,
1066 	},
1067 	.debugfs_name = "crtc3_regs",
1068 	.fifo_depth = 64,
1069 	.pixels_per_clock = 1,
1070 	.encoder_types = {
1071 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1072 	},
1073 };
1074 
1075 static const struct vc4_pv_data bcm2711_pv4_data = {
1076 	.base = {
1077 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1078 		.hvs_output = 5,
1079 	},
1080 	.debugfs_name = "crtc4_regs",
1081 	.fifo_depth = 64,
1082 	.pixels_per_clock = 2,
1083 	.encoder_types = {
1084 		[0] = VC4_ENCODER_TYPE_HDMI1,
1085 	},
1086 };
1087 
1088 static const struct of_device_id vc4_crtc_dt_match[] = {
1089 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1090 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1091 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1092 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1093 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1094 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1095 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1096 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1097 	{}
1098 };
1099 
1100 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1101 					struct drm_crtc *crtc)
1102 {
1103 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1104 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1105 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1106 	struct drm_encoder *encoder;
1107 
1108 	drm_for_each_encoder(encoder, drm) {
1109 		struct vc4_encoder *vc4_encoder;
1110 		int i;
1111 
1112 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1113 			continue;
1114 
1115 		vc4_encoder = to_vc4_encoder(encoder);
1116 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1117 			if (vc4_encoder->type == encoder_types[i]) {
1118 				vc4_encoder->clock_select = i;
1119 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1120 				break;
1121 			}
1122 		}
1123 	}
1124 }
1125 
1126 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1127 		  const struct drm_crtc_funcs *crtc_funcs,
1128 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1129 {
1130 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1131 	struct drm_crtc *crtc = &vc4_crtc->base;
1132 	struct drm_plane *primary_plane;
1133 	unsigned int i;
1134 
1135 	/* For now, we create just the primary and the legacy cursor
1136 	 * planes.  We should be able to stack more planes on easily,
1137 	 * but to do that we would need to compute the bandwidth
1138 	 * requirement of the plane configuration, and reject ones
1139 	 * that will take too much.
1140 	 */
1141 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1142 	if (IS_ERR(primary_plane)) {
1143 		dev_err(drm->dev, "failed to construct primary plane\n");
1144 		return PTR_ERR(primary_plane);
1145 	}
1146 
1147 	spin_lock_init(&vc4_crtc->irq_lock);
1148 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1149 				  crtc_funcs, NULL);
1150 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1151 
1152 	if (!vc4->hvs->hvs5) {
1153 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1154 
1155 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1156 
1157 		/* We support CTM, but only for one CRTC at a time. It's therefore
1158 		 * implemented as private driver state in vc4_kms, not here.
1159 		 */
1160 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1161 	}
1162 
1163 	for (i = 0; i < crtc->gamma_size; i++) {
1164 		vc4_crtc->lut_r[i] = i;
1165 		vc4_crtc->lut_g[i] = i;
1166 		vc4_crtc->lut_b[i] = i;
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1173 {
1174 	struct platform_device *pdev = to_platform_device(dev);
1175 	struct drm_device *drm = dev_get_drvdata(master);
1176 	const struct vc4_pv_data *pv_data;
1177 	struct vc4_crtc *vc4_crtc;
1178 	struct drm_crtc *crtc;
1179 	struct drm_plane *destroy_plane, *temp;
1180 	int ret;
1181 
1182 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1183 	if (!vc4_crtc)
1184 		return -ENOMEM;
1185 	crtc = &vc4_crtc->base;
1186 
1187 	pv_data = of_device_get_match_data(dev);
1188 	if (!pv_data)
1189 		return -ENODEV;
1190 	vc4_crtc->data = &pv_data->base;
1191 	vc4_crtc->pdev = pdev;
1192 
1193 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1194 	if (IS_ERR(vc4_crtc->regs))
1195 		return PTR_ERR(vc4_crtc->regs);
1196 
1197 	vc4_crtc->regset.base = vc4_crtc->regs;
1198 	vc4_crtc->regset.regs = crtc_regs;
1199 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1200 
1201 	ret = vc4_crtc_init(drm, vc4_crtc,
1202 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1203 	if (ret)
1204 		return ret;
1205 	vc4_set_crtc_possible_masks(drm, crtc);
1206 
1207 	CRTC_WRITE(PV_INTEN, 0);
1208 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1209 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1210 			       vc4_crtc_irq_handler,
1211 			       IRQF_SHARED,
1212 			       "vc4 crtc", vc4_crtc);
1213 	if (ret)
1214 		goto err_destroy_planes;
1215 
1216 	platform_set_drvdata(pdev, vc4_crtc);
1217 
1218 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1219 				 &vc4_crtc->regset);
1220 
1221 	return 0;
1222 
1223 err_destroy_planes:
1224 	list_for_each_entry_safe(destroy_plane, temp,
1225 				 &drm->mode_config.plane_list, head) {
1226 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1227 		    destroy_plane->funcs->destroy(destroy_plane);
1228 	}
1229 
1230 	return ret;
1231 }
1232 
1233 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1234 			    void *data)
1235 {
1236 	struct platform_device *pdev = to_platform_device(dev);
1237 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1238 
1239 	vc4_crtc_destroy(&vc4_crtc->base);
1240 
1241 	CRTC_WRITE(PV_INTEN, 0);
1242 
1243 	platform_set_drvdata(pdev, NULL);
1244 }
1245 
1246 static const struct component_ops vc4_crtc_ops = {
1247 	.bind   = vc4_crtc_bind,
1248 	.unbind = vc4_crtc_unbind,
1249 };
1250 
1251 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1252 {
1253 	return component_add(&pdev->dev, &vc4_crtc_ops);
1254 }
1255 
1256 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1257 {
1258 	component_del(&pdev->dev, &vc4_crtc_ops);
1259 	return 0;
1260 }
1261 
1262 struct platform_driver vc4_crtc_driver = {
1263 	.probe = vc4_crtc_dev_probe,
1264 	.remove = vc4_crtc_dev_remove,
1265 	.driver = {
1266 		.name = "vc4_crtc",
1267 		.of_match_table = vc4_crtc_dt_match,
1268 	},
1269 };
1270