xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 260ea95c)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <linux/clk.h>
39 #include <drm/drm_fb_cma_helper.h>
40 #include <linux/component.h>
41 #include <linux/of_device.h>
42 #include "vc4_drv.h"
43 #include "vc4_regs.h"
44 
45 struct vc4_crtc {
46 	struct drm_crtc base;
47 	const struct vc4_crtc_data *data;
48 	void __iomem *regs;
49 
50 	/* Timestamp at start of vblank irq - unaffected by lock delays. */
51 	ktime_t t_vblank;
52 
53 	/* Which HVS channel we're using for our CRTC. */
54 	int channel;
55 
56 	u8 lut_r[256];
57 	u8 lut_g[256];
58 	u8 lut_b[256];
59 	/* Size in pixels of the COB memory allocated to this CRTC. */
60 	u32 cob_size;
61 
62 	struct drm_pending_vblank_event *event;
63 };
64 
65 struct vc4_crtc_state {
66 	struct drm_crtc_state base;
67 	/* Dlist area for this CRTC configuration. */
68 	struct drm_mm_node mm;
69 };
70 
71 static inline struct vc4_crtc *
72 to_vc4_crtc(struct drm_crtc *crtc)
73 {
74 	return (struct vc4_crtc *)crtc;
75 }
76 
77 static inline struct vc4_crtc_state *
78 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
79 {
80 	return (struct vc4_crtc_state *)crtc_state;
81 }
82 
83 struct vc4_crtc_data {
84 	/* Which channel of the HVS this pixelvalve sources from. */
85 	int hvs_channel;
86 
87 	enum vc4_encoder_type encoder_types[4];
88 };
89 
90 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
91 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
92 
93 #define CRTC_REG(reg) { reg, #reg }
94 static const struct {
95 	u32 reg;
96 	const char *name;
97 } crtc_regs[] = {
98 	CRTC_REG(PV_CONTROL),
99 	CRTC_REG(PV_V_CONTROL),
100 	CRTC_REG(PV_VSYNCD_EVEN),
101 	CRTC_REG(PV_HORZA),
102 	CRTC_REG(PV_HORZB),
103 	CRTC_REG(PV_VERTA),
104 	CRTC_REG(PV_VERTB),
105 	CRTC_REG(PV_VERTA_EVEN),
106 	CRTC_REG(PV_VERTB_EVEN),
107 	CRTC_REG(PV_INTEN),
108 	CRTC_REG(PV_INTSTAT),
109 	CRTC_REG(PV_STAT),
110 	CRTC_REG(PV_HACT_ACT),
111 };
112 
113 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
114 {
115 	int i;
116 
117 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
118 		DRM_INFO("0x%04x (%s): 0x%08x\n",
119 			 crtc_regs[i].reg, crtc_regs[i].name,
120 			 CRTC_READ(crtc_regs[i].reg));
121 	}
122 }
123 
124 #ifdef CONFIG_DEBUG_FS
125 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
126 {
127 	struct drm_info_node *node = (struct drm_info_node *)m->private;
128 	struct drm_device *dev = node->minor->dev;
129 	int crtc_index = (uintptr_t)node->info_ent->data;
130 	struct drm_crtc *crtc;
131 	struct vc4_crtc *vc4_crtc;
132 	int i;
133 
134 	i = 0;
135 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
136 		if (i == crtc_index)
137 			break;
138 		i++;
139 	}
140 	if (!crtc)
141 		return 0;
142 	vc4_crtc = to_vc4_crtc(crtc);
143 
144 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
145 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
146 			   crtc_regs[i].name, crtc_regs[i].reg,
147 			   CRTC_READ(crtc_regs[i].reg));
148 	}
149 
150 	return 0;
151 }
152 #endif
153 
154 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
155 			     bool in_vblank_irq, int *vpos, int *hpos,
156 			     ktime_t *stime, ktime_t *etime,
157 			     const struct drm_display_mode *mode)
158 {
159 	struct vc4_dev *vc4 = to_vc4_dev(dev);
160 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
161 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
162 	u32 val;
163 	int fifo_lines;
164 	int vblank_lines;
165 	bool ret = false;
166 
167 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
168 
169 	/* Get optional system timestamp before query. */
170 	if (stime)
171 		*stime = ktime_get();
172 
173 	/*
174 	 * Read vertical scanline which is currently composed for our
175 	 * pixelvalve by the HVS, and also the scaler status.
176 	 */
177 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
178 
179 	/* Get optional system timestamp after query. */
180 	if (etime)
181 		*etime = ktime_get();
182 
183 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
184 
185 	/* Vertical position of hvs composed scanline. */
186 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
187 	*hpos = 0;
188 
189 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
190 		*vpos /= 2;
191 
192 		/* Use hpos to correct for field offset in interlaced mode. */
193 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
194 			*hpos += mode->crtc_htotal / 2;
195 	}
196 
197 	/* This is the offset we need for translating hvs -> pv scanout pos. */
198 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
199 
200 	if (fifo_lines > 0)
201 		ret = true;
202 
203 	/* HVS more than fifo_lines into frame for compositing? */
204 	if (*vpos > fifo_lines) {
205 		/*
206 		 * We are in active scanout and can get some meaningful results
207 		 * from HVS. The actual PV scanout can not trail behind more
208 		 * than fifo_lines as that is the fifo's capacity. Assume that
209 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
210 		 * refilling the fifo and PV consuming from the fifo, ie.
211 		 * whenever the PV consumes and frees up a scanline in the
212 		 * fifo, the HVS will immediately refill it, therefore
213 		 * incrementing vpos. Therefore we choose HVS read position -
214 		 * fifo size in scanlines as a estimate of the real scanout
215 		 * position of the PV.
216 		 */
217 		*vpos -= fifo_lines + 1;
218 
219 		return ret;
220 	}
221 
222 	/*
223 	 * Less: This happens when we are in vblank and the HVS, after getting
224 	 * the VSTART restart signal from the PV, just started refilling its
225 	 * fifo with new lines from the top-most lines of the new framebuffers.
226 	 * The PV does not scan out in vblank, so does not remove lines from
227 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
228 	 * We can't get meaningful readings wrt. scanline position of the PV
229 	 * and need to make things up in a approximative but consistent way.
230 	 */
231 	vblank_lines = mode->vtotal - mode->vdisplay;
232 
233 	if (in_vblank_irq) {
234 		/*
235 		 * Assume the irq handler got called close to first
236 		 * line of vblank, so PV has about a full vblank
237 		 * scanlines to go, and as a base timestamp use the
238 		 * one taken at entry into vblank irq handler, so it
239 		 * is not affected by random delays due to lock
240 		 * contention on event_lock or vblank_time lock in
241 		 * the core.
242 		 */
243 		*vpos = -vblank_lines;
244 
245 		if (stime)
246 			*stime = vc4_crtc->t_vblank;
247 		if (etime)
248 			*etime = vc4_crtc->t_vblank;
249 
250 		/*
251 		 * If the HVS fifo is not yet full then we know for certain
252 		 * we are at the very beginning of vblank, as the hvs just
253 		 * started refilling, and the stime and etime timestamps
254 		 * truly correspond to start of vblank.
255 		 *
256 		 * Unfortunately there's no way to report this to upper levels
257 		 * and make it more useful.
258 		 */
259 	} else {
260 		/*
261 		 * No clue where we are inside vblank. Return a vpos of zero,
262 		 * which will cause calling code to just return the etime
263 		 * timestamp uncorrected. At least this is no worse than the
264 		 * standard fallback.
265 		 */
266 		*vpos = 0;
267 	}
268 
269 	return ret;
270 }
271 
272 static void vc4_crtc_destroy(struct drm_crtc *crtc)
273 {
274 	drm_crtc_cleanup(crtc);
275 }
276 
277 static void
278 vc4_crtc_lut_load(struct drm_crtc *crtc)
279 {
280 	struct drm_device *dev = crtc->dev;
281 	struct vc4_dev *vc4 = to_vc4_dev(dev);
282 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
283 	u32 i;
284 
285 	/* The LUT memory is laid out with each HVS channel in order,
286 	 * each of which takes 256 writes for R, 256 for G, then 256
287 	 * for B.
288 	 */
289 	HVS_WRITE(SCALER_GAMADDR,
290 		  SCALER_GAMADDR_AUTOINC |
291 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
292 
293 	for (i = 0; i < crtc->gamma_size; i++)
294 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
295 	for (i = 0; i < crtc->gamma_size; i++)
296 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
297 	for (i = 0; i < crtc->gamma_size; i++)
298 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
299 }
300 
301 static int
302 vc4_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
303 		   uint32_t size,
304 		   struct drm_modeset_acquire_ctx *ctx)
305 {
306 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
307 	u32 i;
308 
309 	for (i = 0; i < size; i++) {
310 		vc4_crtc->lut_r[i] = r[i] >> 8;
311 		vc4_crtc->lut_g[i] = g[i] >> 8;
312 		vc4_crtc->lut_b[i] = b[i] >> 8;
313 	}
314 
315 	vc4_crtc_lut_load(crtc);
316 
317 	return 0;
318 }
319 
320 static u32 vc4_get_fifo_full_level(u32 format)
321 {
322 	static const u32 fifo_len_bytes = 64;
323 	static const u32 hvs_latency_pix = 6;
324 
325 	switch (format) {
326 	case PV_CONTROL_FORMAT_DSIV_16:
327 	case PV_CONTROL_FORMAT_DSIC_16:
328 		return fifo_len_bytes - 2 * hvs_latency_pix;
329 	case PV_CONTROL_FORMAT_DSIV_18:
330 		return fifo_len_bytes - 14;
331 	case PV_CONTROL_FORMAT_24:
332 	case PV_CONTROL_FORMAT_DSIV_24:
333 	default:
334 		return fifo_len_bytes - 3 * hvs_latency_pix;
335 	}
336 }
337 
338 /*
339  * Returns the encoder attached to the CRTC.
340  *
341  * VC4 can only scan out to one encoder at a time, while the DRM core
342  * allows drivers to push pixels to more than one encoder from the
343  * same CRTC.
344  */
345 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
346 {
347 	struct drm_connector *connector;
348 	struct drm_connector_list_iter conn_iter;
349 
350 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
351 	drm_for_each_connector_iter(connector, &conn_iter) {
352 		if (connector->state->crtc == crtc) {
353 			drm_connector_list_iter_end(&conn_iter);
354 			return connector->encoder;
355 		}
356 	}
357 	drm_connector_list_iter_end(&conn_iter);
358 
359 	return NULL;
360 }
361 
362 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
363 {
364 	struct drm_device *dev = crtc->dev;
365 	struct vc4_dev *vc4 = to_vc4_dev(dev);
366 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
367 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
368 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
369 	struct drm_crtc_state *state = crtc->state;
370 	struct drm_display_mode *mode = &state->adjusted_mode;
371 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
372 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
373 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
374 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
375 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
376 	bool debug_dump_regs = false;
377 
378 	if (debug_dump_regs) {
379 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
380 		vc4_crtc_dump_regs(vc4_crtc);
381 	}
382 
383 	/* Reset the PV fifo. */
384 	CRTC_WRITE(PV_CONTROL, 0);
385 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
386 	CRTC_WRITE(PV_CONTROL, 0);
387 
388 	CRTC_WRITE(PV_HORZA,
389 		   VC4_SET_FIELD((mode->htotal -
390 				  mode->hsync_end) * pixel_rep,
391 				 PV_HORZA_HBP) |
392 		   VC4_SET_FIELD((mode->hsync_end -
393 				  mode->hsync_start) * pixel_rep,
394 				 PV_HORZA_HSYNC));
395 	CRTC_WRITE(PV_HORZB,
396 		   VC4_SET_FIELD((mode->hsync_start -
397 				  mode->hdisplay) * pixel_rep,
398 				 PV_HORZB_HFP) |
399 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
400 
401 	CRTC_WRITE(PV_VERTA,
402 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
403 				 PV_VERTA_VBP) |
404 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
405 				 PV_VERTA_VSYNC));
406 	CRTC_WRITE(PV_VERTB,
407 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
408 				 PV_VERTB_VFP) |
409 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
410 
411 	if (interlace) {
412 		CRTC_WRITE(PV_VERTA_EVEN,
413 			   VC4_SET_FIELD(mode->crtc_vtotal -
414 					 mode->crtc_vsync_end - 1,
415 					 PV_VERTA_VBP) |
416 			   VC4_SET_FIELD(mode->crtc_vsync_end -
417 					 mode->crtc_vsync_start,
418 					 PV_VERTA_VSYNC));
419 		CRTC_WRITE(PV_VERTB_EVEN,
420 			   VC4_SET_FIELD(mode->crtc_vsync_start -
421 					 mode->crtc_vdisplay,
422 					 PV_VERTB_VFP) |
423 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
424 
425 		/* We set up first field even mode for HDMI.  VEC's
426 		 * NTSC mode would want first field odd instead, once
427 		 * we support it (to do so, set ODD_FIRST and put the
428 		 * delay in VSYNCD_EVEN instead).
429 		 */
430 		CRTC_WRITE(PV_V_CONTROL,
431 			   PV_VCONTROL_CONTINUOUS |
432 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
433 			   PV_VCONTROL_INTERLACE |
434 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
435 					 PV_VCONTROL_ODD_DELAY));
436 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
437 	} else {
438 		CRTC_WRITE(PV_V_CONTROL,
439 			   PV_VCONTROL_CONTINUOUS |
440 			   (is_dsi ? PV_VCONTROL_DSI : 0));
441 	}
442 
443 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
444 
445 	CRTC_WRITE(PV_CONTROL,
446 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
447 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
448 				 PV_CONTROL_FIFO_LEVEL) |
449 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
450 		   PV_CONTROL_CLR_AT_START |
451 		   PV_CONTROL_TRIGGER_UNDERFLOW |
452 		   PV_CONTROL_WAIT_HSTART |
453 		   VC4_SET_FIELD(vc4_encoder->clock_select,
454 				 PV_CONTROL_CLK_SELECT) |
455 		   PV_CONTROL_FIFO_CLR |
456 		   PV_CONTROL_EN);
457 
458 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
459 		  SCALER_DISPBKGND_AUTOHS |
460 		  SCALER_DISPBKGND_GAMMA |
461 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
462 
463 	/* Reload the LUT, since the SRAMs would have been disabled if
464 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
465 	 */
466 	vc4_crtc_lut_load(crtc);
467 
468 	if (debug_dump_regs) {
469 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
470 		vc4_crtc_dump_regs(vc4_crtc);
471 	}
472 }
473 
474 static void require_hvs_enabled(struct drm_device *dev)
475 {
476 	struct vc4_dev *vc4 = to_vc4_dev(dev);
477 
478 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
479 		     SCALER_DISPCTRL_ENABLE);
480 }
481 
482 static void vc4_crtc_disable(struct drm_crtc *crtc)
483 {
484 	struct drm_device *dev = crtc->dev;
485 	struct vc4_dev *vc4 = to_vc4_dev(dev);
486 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
487 	u32 chan = vc4_crtc->channel;
488 	int ret;
489 	require_hvs_enabled(dev);
490 
491 	/* Disable vblank irq handling before crtc is disabled. */
492 	drm_crtc_vblank_off(crtc);
493 
494 	CRTC_WRITE(PV_V_CONTROL,
495 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
496 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
497 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
498 
499 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
500 	    SCALER_DISPCTRLX_ENABLE) {
501 		HVS_WRITE(SCALER_DISPCTRLX(chan),
502 			  SCALER_DISPCTRLX_RESET);
503 
504 		/* While the docs say that reset is self-clearing, it
505 		 * seems it doesn't actually.
506 		 */
507 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
508 	}
509 
510 	/* Once we leave, the scaler should be disabled and its fifo empty. */
511 
512 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
513 
514 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
515 				   SCALER_DISPSTATX_MODE) !=
516 		     SCALER_DISPSTATX_MODE_DISABLED);
517 
518 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
519 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
520 		     SCALER_DISPSTATX_EMPTY);
521 }
522 
523 static void vc4_crtc_enable(struct drm_crtc *crtc)
524 {
525 	struct drm_device *dev = crtc->dev;
526 	struct vc4_dev *vc4 = to_vc4_dev(dev);
527 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
528 	struct drm_crtc_state *state = crtc->state;
529 	struct drm_display_mode *mode = &state->adjusted_mode;
530 
531 	require_hvs_enabled(dev);
532 
533 	/* Turn on the scaler, which will wait for vstart to start
534 	 * compositing.
535 	 */
536 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
537 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
538 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
539 		  SCALER_DISPCTRLX_ENABLE);
540 
541 	/* Turn on the pixel valve, which will emit the vstart signal. */
542 	CRTC_WRITE(PV_V_CONTROL,
543 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
544 
545 	/* Enable vblank irq handling after crtc is started. */
546 	drm_crtc_vblank_on(crtc);
547 }
548 
549 static bool vc4_crtc_mode_fixup(struct drm_crtc *crtc,
550 				const struct drm_display_mode *mode,
551 				struct drm_display_mode *adjusted_mode)
552 {
553 	/* Do not allow doublescan modes from user space */
554 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
555 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
556 			      crtc->base.id);
557 		return false;
558 	}
559 
560 	return true;
561 }
562 
563 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
564 				 struct drm_crtc_state *state)
565 {
566 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
567 	struct drm_device *dev = crtc->dev;
568 	struct vc4_dev *vc4 = to_vc4_dev(dev);
569 	struct drm_plane *plane;
570 	unsigned long flags;
571 	const struct drm_plane_state *plane_state;
572 	u32 dlist_count = 0;
573 	int ret;
574 
575 	/* The pixelvalve can only feed one encoder (and encoders are
576 	 * 1:1 with connectors.)
577 	 */
578 	if (hweight32(state->connector_mask) > 1)
579 		return -EINVAL;
580 
581 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
582 		dlist_count += vc4_plane_dlist_size(plane_state);
583 
584 	dlist_count++; /* Account for SCALER_CTL0_END. */
585 
586 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
587 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
588 				 dlist_count);
589 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
590 	if (ret)
591 		return ret;
592 
593 	return 0;
594 }
595 
596 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
597 				  struct drm_crtc_state *old_state)
598 {
599 	struct drm_device *dev = crtc->dev;
600 	struct vc4_dev *vc4 = to_vc4_dev(dev);
601 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
602 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
603 	struct drm_plane *plane;
604 	bool debug_dump_regs = false;
605 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
606 	u32 __iomem *dlist_next = dlist_start;
607 
608 	if (debug_dump_regs) {
609 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
610 		vc4_hvs_dump_state(dev);
611 	}
612 
613 	/* Copy all the active planes' dlist contents to the hardware dlist. */
614 	drm_atomic_crtc_for_each_plane(plane, crtc) {
615 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
616 	}
617 
618 	writel(SCALER_CTL0_END, dlist_next);
619 	dlist_next++;
620 
621 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
622 
623 	if (crtc->state->event) {
624 		unsigned long flags;
625 
626 		crtc->state->event->pipe = drm_crtc_index(crtc);
627 
628 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
629 
630 		spin_lock_irqsave(&dev->event_lock, flags);
631 		vc4_crtc->event = crtc->state->event;
632 		crtc->state->event = NULL;
633 
634 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
635 			  vc4_state->mm.start);
636 
637 		spin_unlock_irqrestore(&dev->event_lock, flags);
638 	} else {
639 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
640 			  vc4_state->mm.start);
641 	}
642 
643 	if (debug_dump_regs) {
644 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
645 		vc4_hvs_dump_state(dev);
646 	}
647 }
648 
649 static int vc4_enable_vblank(struct drm_crtc *crtc)
650 {
651 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
652 
653 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
654 
655 	return 0;
656 }
657 
658 static void vc4_disable_vblank(struct drm_crtc *crtc)
659 {
660 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
661 
662 	CRTC_WRITE(PV_INTEN, 0);
663 }
664 
665 /* Must be called with the event lock held */
666 bool vc4_event_pending(struct drm_crtc *crtc)
667 {
668 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
669 
670 	return !!vc4_crtc->event;
671 }
672 
673 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
674 {
675 	struct drm_crtc *crtc = &vc4_crtc->base;
676 	struct drm_device *dev = crtc->dev;
677 	struct vc4_dev *vc4 = to_vc4_dev(dev);
678 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
679 	u32 chan = vc4_crtc->channel;
680 	unsigned long flags;
681 
682 	spin_lock_irqsave(&dev->event_lock, flags);
683 	if (vc4_crtc->event &&
684 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
685 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
686 		vc4_crtc->event = NULL;
687 		drm_crtc_vblank_put(crtc);
688 	}
689 	spin_unlock_irqrestore(&dev->event_lock, flags);
690 }
691 
692 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
693 {
694 	struct vc4_crtc *vc4_crtc = data;
695 	u32 stat = CRTC_READ(PV_INTSTAT);
696 	irqreturn_t ret = IRQ_NONE;
697 
698 	if (stat & PV_INT_VFP_START) {
699 		vc4_crtc->t_vblank = ktime_get();
700 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
701 		drm_crtc_handle_vblank(&vc4_crtc->base);
702 		vc4_crtc_handle_page_flip(vc4_crtc);
703 		ret = IRQ_HANDLED;
704 	}
705 
706 	return ret;
707 }
708 
709 struct vc4_async_flip_state {
710 	struct drm_crtc *crtc;
711 	struct drm_framebuffer *fb;
712 	struct drm_pending_vblank_event *event;
713 
714 	struct vc4_seqno_cb cb;
715 };
716 
717 /* Called when the V3D execution for the BO being flipped to is done, so that
718  * we can actually update the plane's address to point to it.
719  */
720 static void
721 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
722 {
723 	struct vc4_async_flip_state *flip_state =
724 		container_of(cb, struct vc4_async_flip_state, cb);
725 	struct drm_crtc *crtc = flip_state->crtc;
726 	struct drm_device *dev = crtc->dev;
727 	struct vc4_dev *vc4 = to_vc4_dev(dev);
728 	struct drm_plane *plane = crtc->primary;
729 
730 	vc4_plane_async_set_fb(plane, flip_state->fb);
731 	if (flip_state->event) {
732 		unsigned long flags;
733 
734 		spin_lock_irqsave(&dev->event_lock, flags);
735 		drm_crtc_send_vblank_event(crtc, flip_state->event);
736 		spin_unlock_irqrestore(&dev->event_lock, flags);
737 	}
738 
739 	drm_crtc_vblank_put(crtc);
740 	drm_framebuffer_unreference(flip_state->fb);
741 	kfree(flip_state);
742 
743 	up(&vc4->async_modeset);
744 }
745 
746 /* Implements async (non-vblank-synced) page flips.
747  *
748  * The page flip ioctl needs to return immediately, so we grab the
749  * modeset semaphore on the pipe, and queue the address update for
750  * when V3D is done with the BO being flipped to.
751  */
752 static int vc4_async_page_flip(struct drm_crtc *crtc,
753 			       struct drm_framebuffer *fb,
754 			       struct drm_pending_vblank_event *event,
755 			       uint32_t flags)
756 {
757 	struct drm_device *dev = crtc->dev;
758 	struct vc4_dev *vc4 = to_vc4_dev(dev);
759 	struct drm_plane *plane = crtc->primary;
760 	int ret = 0;
761 	struct vc4_async_flip_state *flip_state;
762 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
763 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
764 
765 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
766 	if (!flip_state)
767 		return -ENOMEM;
768 
769 	drm_framebuffer_reference(fb);
770 	flip_state->fb = fb;
771 	flip_state->crtc = crtc;
772 	flip_state->event = event;
773 
774 	/* Make sure all other async modesetes have landed. */
775 	ret = down_interruptible(&vc4->async_modeset);
776 	if (ret) {
777 		drm_framebuffer_unreference(fb);
778 		kfree(flip_state);
779 		return ret;
780 	}
781 
782 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
783 
784 	/* Immediately update the plane's legacy fb pointer, so that later
785 	 * modeset prep sees the state that will be present when the semaphore
786 	 * is released.
787 	 */
788 	drm_atomic_set_fb_for_plane(plane->state, fb);
789 	plane->fb = fb;
790 
791 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
792 			   vc4_async_page_flip_complete);
793 
794 	/* Driver takes ownership of state on successful async commit. */
795 	return 0;
796 }
797 
798 static int vc4_page_flip(struct drm_crtc *crtc,
799 			 struct drm_framebuffer *fb,
800 			 struct drm_pending_vblank_event *event,
801 			 uint32_t flags,
802 			 struct drm_modeset_acquire_ctx *ctx)
803 {
804 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
805 		return vc4_async_page_flip(crtc, fb, event, flags);
806 	else
807 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
808 }
809 
810 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
811 {
812 	struct vc4_crtc_state *vc4_state;
813 
814 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
815 	if (!vc4_state)
816 		return NULL;
817 
818 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
819 	return &vc4_state->base;
820 }
821 
822 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
823 				   struct drm_crtc_state *state)
824 {
825 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
826 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
827 
828 	if (vc4_state->mm.allocated) {
829 		unsigned long flags;
830 
831 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
832 		drm_mm_remove_node(&vc4_state->mm);
833 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
834 
835 	}
836 
837 	drm_atomic_helper_crtc_destroy_state(crtc, state);
838 }
839 
840 static void
841 vc4_crtc_reset(struct drm_crtc *crtc)
842 {
843 	if (crtc->state)
844 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
845 
846 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
847 	if (crtc->state)
848 		crtc->state->crtc = crtc;
849 }
850 
851 static const struct drm_crtc_funcs vc4_crtc_funcs = {
852 	.set_config = drm_atomic_helper_set_config,
853 	.destroy = vc4_crtc_destroy,
854 	.page_flip = vc4_page_flip,
855 	.set_property = NULL,
856 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
857 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
858 	.reset = vc4_crtc_reset,
859 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
860 	.atomic_destroy_state = vc4_crtc_destroy_state,
861 	.gamma_set = vc4_crtc_gamma_set,
862 	.enable_vblank = vc4_enable_vblank,
863 	.disable_vblank = vc4_disable_vblank,
864 };
865 
866 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
867 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
868 	.disable = vc4_crtc_disable,
869 	.enable = vc4_crtc_enable,
870 	.mode_fixup = vc4_crtc_mode_fixup,
871 	.atomic_check = vc4_crtc_atomic_check,
872 	.atomic_flush = vc4_crtc_atomic_flush,
873 };
874 
875 static const struct vc4_crtc_data pv0_data = {
876 	.hvs_channel = 0,
877 	.encoder_types = {
878 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
879 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
880 	},
881 };
882 
883 static const struct vc4_crtc_data pv1_data = {
884 	.hvs_channel = 2,
885 	.encoder_types = {
886 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
887 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
888 	},
889 };
890 
891 static const struct vc4_crtc_data pv2_data = {
892 	.hvs_channel = 1,
893 	.encoder_types = {
894 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
895 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
896 	},
897 };
898 
899 static const struct of_device_id vc4_crtc_dt_match[] = {
900 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
901 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
902 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
903 	{}
904 };
905 
906 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
907 					struct drm_crtc *crtc)
908 {
909 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
910 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
911 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
912 	struct drm_encoder *encoder;
913 
914 	drm_for_each_encoder(encoder, drm) {
915 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
916 		int i;
917 
918 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
919 			if (vc4_encoder->type == encoder_types[i]) {
920 				vc4_encoder->clock_select = i;
921 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
922 				break;
923 			}
924 		}
925 	}
926 }
927 
928 static void
929 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
930 {
931 	struct drm_device *drm = vc4_crtc->base.dev;
932 	struct vc4_dev *vc4 = to_vc4_dev(drm);
933 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
934 	/* Top/base are supposed to be 4-pixel aligned, but the
935 	 * Raspberry Pi firmware fills the low bits (which are
936 	 * presumably ignored).
937 	 */
938 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
939 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
940 
941 	vc4_crtc->cob_size = top - base + 4;
942 }
943 
944 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
945 {
946 	struct platform_device *pdev = to_platform_device(dev);
947 	struct drm_device *drm = dev_get_drvdata(master);
948 	struct vc4_crtc *vc4_crtc;
949 	struct drm_crtc *crtc;
950 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
951 	const struct of_device_id *match;
952 	int ret, i;
953 
954 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
955 	if (!vc4_crtc)
956 		return -ENOMEM;
957 	crtc = &vc4_crtc->base;
958 
959 	match = of_match_device(vc4_crtc_dt_match, dev);
960 	if (!match)
961 		return -ENODEV;
962 	vc4_crtc->data = match->data;
963 
964 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
965 	if (IS_ERR(vc4_crtc->regs))
966 		return PTR_ERR(vc4_crtc->regs);
967 
968 	/* For now, we create just the primary and the legacy cursor
969 	 * planes.  We should be able to stack more planes on easily,
970 	 * but to do that we would need to compute the bandwidth
971 	 * requirement of the plane configuration, and reject ones
972 	 * that will take too much.
973 	 */
974 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
975 	if (IS_ERR(primary_plane)) {
976 		dev_err(dev, "failed to construct primary plane\n");
977 		ret = PTR_ERR(primary_plane);
978 		goto err;
979 	}
980 
981 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
982 				  &vc4_crtc_funcs, NULL);
983 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
984 	primary_plane->crtc = crtc;
985 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
986 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
987 
988 	/* Set up some arbitrary number of planes.  We're not limited
989 	 * by a set number of physical registers, just the space in
990 	 * the HVS (16k) and how small an plane can be (28 bytes).
991 	 * However, each plane we set up takes up some memory, and
992 	 * increases the cost of looping over planes, which atomic
993 	 * modesetting does quite a bit.  As a result, we pick a
994 	 * modest number of planes to expose, that should hopefully
995 	 * still cover any sane usecase.
996 	 */
997 	for (i = 0; i < 8; i++) {
998 		struct drm_plane *plane =
999 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1000 
1001 		if (IS_ERR(plane))
1002 			continue;
1003 
1004 		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1005 	}
1006 
1007 	/* Set up the legacy cursor after overlay initialization,
1008 	 * since we overlay planes on the CRTC in the order they were
1009 	 * initialized.
1010 	 */
1011 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1012 	if (!IS_ERR(cursor_plane)) {
1013 		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
1014 		cursor_plane->crtc = crtc;
1015 		crtc->cursor = cursor_plane;
1016 	}
1017 
1018 	vc4_crtc_get_cob_allocation(vc4_crtc);
1019 
1020 	CRTC_WRITE(PV_INTEN, 0);
1021 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1022 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1023 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1024 	if (ret)
1025 		goto err_destroy_planes;
1026 
1027 	vc4_set_crtc_possible_masks(drm, crtc);
1028 
1029 	for (i = 0; i < crtc->gamma_size; i++) {
1030 		vc4_crtc->lut_r[i] = i;
1031 		vc4_crtc->lut_g[i] = i;
1032 		vc4_crtc->lut_b[i] = i;
1033 	}
1034 
1035 	platform_set_drvdata(pdev, vc4_crtc);
1036 
1037 	return 0;
1038 
1039 err_destroy_planes:
1040 	list_for_each_entry_safe(destroy_plane, temp,
1041 				 &drm->mode_config.plane_list, head) {
1042 		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
1043 		    destroy_plane->funcs->destroy(destroy_plane);
1044 	}
1045 err:
1046 	return ret;
1047 }
1048 
1049 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1050 			    void *data)
1051 {
1052 	struct platform_device *pdev = to_platform_device(dev);
1053 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1054 
1055 	vc4_crtc_destroy(&vc4_crtc->base);
1056 
1057 	CRTC_WRITE(PV_INTEN, 0);
1058 
1059 	platform_set_drvdata(pdev, NULL);
1060 }
1061 
1062 static const struct component_ops vc4_crtc_ops = {
1063 	.bind   = vc4_crtc_bind,
1064 	.unbind = vc4_crtc_unbind,
1065 };
1066 
1067 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1068 {
1069 	return component_add(&pdev->dev, &vc4_crtc_ops);
1070 }
1071 
1072 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1073 {
1074 	component_del(&pdev->dev, &vc4_crtc_ops);
1075 	return 0;
1076 }
1077 
1078 struct platform_driver vc4_crtc_driver = {
1079 	.probe = vc4_crtc_dev_probe,
1080 	.remove = vc4_crtc_dev_remove,
1081 	.driver = {
1082 		.name = "vc4_crtc",
1083 		.of_match_table = vc4_crtc_dt_match,
1084 	},
1085 };
1086