xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 1fe3a33b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 CRTC module
8  *
9  * In VC4, the Pixel Valve is what most closely corresponds to the
10  * DRM's concept of a CRTC.  The PV generates video timings from the
11  * encoder's clock plus its configuration.  It pulls scaled pixels from
12  * the HVS at that timing, and feeds it to the encoder.
13  *
14  * However, the DRM CRTC also collects the configuration of all the
15  * DRM planes attached to it.  As a result, the CRTC is also
16  * responsible for writing the display list for the HVS channel that
17  * the CRTC will use.
18  *
19  * The 2835 has 3 different pixel valves.  pv0 in the audio power
20  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
21  * image domain can feed either HDMI or the SDTV controller.  The
22  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23  * SDTV, etc.) according to which output type is chosen in the mux.
24  *
25  * For power management, the pixel valve's registers are all clocked
26  * by the AXI clock, while the timings and FIFOs make use of the
27  * output-specific clock.  Since the encoders also directly consume
28  * the CPRMAN clocks, and know what timings they need, they are the
29  * ones that set the clock.
30  */
31 
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36 
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44 
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48 
49 #define HVS_FIFO_LATENCY_PIX	6
50 
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53 
54 static const struct debugfs_reg32 crtc_regs[] = {
55 	VC4_REG32(PV_CONTROL),
56 	VC4_REG32(PV_V_CONTROL),
57 	VC4_REG32(PV_VSYNCD_EVEN),
58 	VC4_REG32(PV_HORZA),
59 	VC4_REG32(PV_HORZB),
60 	VC4_REG32(PV_VERTA),
61 	VC4_REG32(PV_VERTB),
62 	VC4_REG32(PV_VERTA_EVEN),
63 	VC4_REG32(PV_VERTB_EVEN),
64 	VC4_REG32(PV_INTEN),
65 	VC4_REG32(PV_INTSTAT),
66 	VC4_REG32(PV_STAT),
67 	VC4_REG32(PV_HACT_ACT),
68 };
69 
70 static unsigned int
71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
74 	/* Top/base are supposed to be 4-pixel aligned, but the
75 	 * Raspberry Pi firmware fills the low bits (which are
76 	 * presumably ignored).
77 	 */
78 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
79 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
80 
81 	return top - base + 4;
82 }
83 
84 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
85 					  bool in_vblank_irq,
86 					  int *vpos, int *hpos,
87 					  ktime_t *stime, ktime_t *etime,
88 					  const struct drm_display_mode *mode)
89 {
90 	struct drm_device *dev = crtc->dev;
91 	struct vc4_dev *vc4 = to_vc4_dev(dev);
92 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
93 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
94 	unsigned int cob_size;
95 	u32 val;
96 	int fifo_lines;
97 	int vblank_lines;
98 	bool ret = false;
99 
100 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
101 
102 	/* Get optional system timestamp before query. */
103 	if (stime)
104 		*stime = ktime_get();
105 
106 	/*
107 	 * Read vertical scanline which is currently composed for our
108 	 * pixelvalve by the HVS, and also the scaler status.
109 	 */
110 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
111 
112 	/* Get optional system timestamp after query. */
113 	if (etime)
114 		*etime = ktime_get();
115 
116 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
117 
118 	/* Vertical position of hvs composed scanline. */
119 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120 	*hpos = 0;
121 
122 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123 		*vpos /= 2;
124 
125 		/* Use hpos to correct for field offset in interlaced mode. */
126 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
127 			*hpos += mode->crtc_htotal / 2;
128 	}
129 
130 	cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
131 	/* This is the offset we need for translating hvs -> pv scanout pos. */
132 	fifo_lines = cob_size / mode->crtc_hdisplay;
133 
134 	if (fifo_lines > 0)
135 		ret = true;
136 
137 	/* HVS more than fifo_lines into frame for compositing? */
138 	if (*vpos > fifo_lines) {
139 		/*
140 		 * We are in active scanout and can get some meaningful results
141 		 * from HVS. The actual PV scanout can not trail behind more
142 		 * than fifo_lines as that is the fifo's capacity. Assume that
143 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
144 		 * refilling the fifo and PV consuming from the fifo, ie.
145 		 * whenever the PV consumes and frees up a scanline in the
146 		 * fifo, the HVS will immediately refill it, therefore
147 		 * incrementing vpos. Therefore we choose HVS read position -
148 		 * fifo size in scanlines as a estimate of the real scanout
149 		 * position of the PV.
150 		 */
151 		*vpos -= fifo_lines + 1;
152 
153 		return ret;
154 	}
155 
156 	/*
157 	 * Less: This happens when we are in vblank and the HVS, after getting
158 	 * the VSTART restart signal from the PV, just started refilling its
159 	 * fifo with new lines from the top-most lines of the new framebuffers.
160 	 * The PV does not scan out in vblank, so does not remove lines from
161 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
162 	 * We can't get meaningful readings wrt. scanline position of the PV
163 	 * and need to make things up in a approximative but consistent way.
164 	 */
165 	vblank_lines = mode->vtotal - mode->vdisplay;
166 
167 	if (in_vblank_irq) {
168 		/*
169 		 * Assume the irq handler got called close to first
170 		 * line of vblank, so PV has about a full vblank
171 		 * scanlines to go, and as a base timestamp use the
172 		 * one taken at entry into vblank irq handler, so it
173 		 * is not affected by random delays due to lock
174 		 * contention on event_lock or vblank_time lock in
175 		 * the core.
176 		 */
177 		*vpos = -vblank_lines;
178 
179 		if (stime)
180 			*stime = vc4_crtc->t_vblank;
181 		if (etime)
182 			*etime = vc4_crtc->t_vblank;
183 
184 		/*
185 		 * If the HVS fifo is not yet full then we know for certain
186 		 * we are at the very beginning of vblank, as the hvs just
187 		 * started refilling, and the stime and etime timestamps
188 		 * truly correspond to start of vblank.
189 		 *
190 		 * Unfortunately there's no way to report this to upper levels
191 		 * and make it more useful.
192 		 */
193 	} else {
194 		/*
195 		 * No clue where we are inside vblank. Return a vpos of zero,
196 		 * which will cause calling code to just return the etime
197 		 * timestamp uncorrected. At least this is no worse than the
198 		 * standard fallback.
199 		 */
200 		*vpos = 0;
201 	}
202 
203 	return ret;
204 }
205 
206 void vc4_crtc_destroy(struct drm_crtc *crtc)
207 {
208 	drm_crtc_cleanup(crtc);
209 }
210 
211 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
212 {
213 	const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
214 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
215 	struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
216 	u32 fifo_len_bytes = pv_data->fifo_depth;
217 
218 	/*
219 	 * Pixels are pulled from the HVS if the number of bytes is
220 	 * lower than the FIFO full level.
221 	 *
222 	 * The latency of the pixel fetch mechanism is 6 pixels, so we
223 	 * need to convert those 6 pixels in bytes, depending on the
224 	 * format, and then subtract that from the length of the FIFO
225 	 * to make sure we never end up in a situation where the FIFO
226 	 * is full.
227 	 */
228 	switch (format) {
229 	case PV_CONTROL_FORMAT_DSIV_16:
230 	case PV_CONTROL_FORMAT_DSIC_16:
231 		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
232 	case PV_CONTROL_FORMAT_DSIV_18:
233 		return fifo_len_bytes - 14;
234 	case PV_CONTROL_FORMAT_24:
235 	case PV_CONTROL_FORMAT_DSIV_24:
236 	default:
237 		/*
238 		 * For some reason, the pixelvalve4 doesn't work with
239 		 * the usual formula and will only work with 32.
240 		 */
241 		if (crtc_data->hvs_output == 5)
242 			return 32;
243 
244 		/*
245 		 * It looks like in some situations, we will overflow
246 		 * the PixelValve FIFO (with the bit 10 of PV stat being
247 		 * set) and stall the HVS / PV, eventually resulting in
248 		 * a page flip timeout.
249 		 *
250 		 * Displaying the video overlay during a playback with
251 		 * Kodi on an RPi3 seems to be a great solution with a
252 		 * failure rate around 50%.
253 		 *
254 		 * Removing 1 from the FIFO full level however
255 		 * seems to completely remove that issue.
256 		 */
257 		if (!vc4->hvs->hvs5)
258 			return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
259 
260 		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
261 	}
262 }
263 
264 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
265 					     u32 format)
266 {
267 	u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
268 	u32 ret = 0;
269 
270 	ret |= VC4_SET_FIELD((level >> 6),
271 			     PV5_CONTROL_FIFO_LEVEL_HIGH);
272 
273 	return ret | VC4_SET_FIELD(level & 0x3f,
274 				   PV_CONTROL_FIFO_LEVEL);
275 }
276 
277 /*
278  * Returns the encoder attached to the CRTC.
279  *
280  * VC4 can only scan out to one encoder at a time, while the DRM core
281  * allows drivers to push pixels to more than one encoder from the
282  * same CRTC.
283  */
284 struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
285 					 struct drm_crtc_state *state)
286 {
287 	struct drm_encoder *encoder;
288 
289 	WARN_ON(hweight32(state->encoder_mask) > 1);
290 
291 	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask)
292 		return encoder;
293 
294 	return NULL;
295 }
296 
297 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
298 {
299 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
300 
301 	/* The PV needs to be disabled before it can be flushed */
302 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
303 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
304 }
305 
306 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_encoder *encoder,
307 			       struct drm_atomic_state *state)
308 {
309 	struct drm_device *dev = crtc->dev;
310 	struct vc4_dev *vc4 = to_vc4_dev(dev);
311 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
312 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
313 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
314 	struct drm_crtc_state *crtc_state = crtc->state;
315 	struct drm_display_mode *mode = &crtc_state->adjusted_mode;
316 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
317 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
318 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
319 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
320 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
321 	u8 ppc = pv_data->pixels_per_clock;
322 	bool debug_dump_regs = false;
323 
324 	if (debug_dump_regs) {
325 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
326 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
327 			 drm_crtc_index(crtc));
328 		drm_print_regset32(&p, &vc4_crtc->regset);
329 	}
330 
331 	vc4_crtc_pixelvalve_reset(crtc);
332 
333 	CRTC_WRITE(PV_HORZA,
334 		   VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
335 				 PV_HORZA_HBP) |
336 		   VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
337 				 PV_HORZA_HSYNC));
338 
339 	CRTC_WRITE(PV_HORZB,
340 		   VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
341 				 PV_HORZB_HFP) |
342 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
343 				 PV_HORZB_HACTIVE));
344 
345 	CRTC_WRITE(PV_VERTA,
346 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
347 				 PV_VERTA_VBP) |
348 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
349 				 PV_VERTA_VSYNC));
350 	CRTC_WRITE(PV_VERTB,
351 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
352 				 PV_VERTB_VFP) |
353 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
354 
355 	if (interlace) {
356 		CRTC_WRITE(PV_VERTA_EVEN,
357 			   VC4_SET_FIELD(mode->crtc_vtotal -
358 					 mode->crtc_vsync_end - 1,
359 					 PV_VERTA_VBP) |
360 			   VC4_SET_FIELD(mode->crtc_vsync_end -
361 					 mode->crtc_vsync_start,
362 					 PV_VERTA_VSYNC));
363 		CRTC_WRITE(PV_VERTB_EVEN,
364 			   VC4_SET_FIELD(mode->crtc_vsync_start -
365 					 mode->crtc_vdisplay,
366 					 PV_VERTB_VFP) |
367 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
368 
369 		/* We set up first field even mode for HDMI.  VEC's
370 		 * NTSC mode would want first field odd instead, once
371 		 * we support it (to do so, set ODD_FIRST and put the
372 		 * delay in VSYNCD_EVEN instead).
373 		 */
374 		CRTC_WRITE(PV_V_CONTROL,
375 			   PV_VCONTROL_CONTINUOUS |
376 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
377 			   PV_VCONTROL_INTERLACE |
378 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
379 					 PV_VCONTROL_ODD_DELAY));
380 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
381 	} else {
382 		CRTC_WRITE(PV_V_CONTROL,
383 			   PV_VCONTROL_CONTINUOUS |
384 			   (is_dsi ? PV_VCONTROL_DSI : 0));
385 	}
386 
387 	if (is_dsi)
388 		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
389 
390 	if (vc4->hvs->hvs5)
391 		CRTC_WRITE(PV_MUX_CFG,
392 			   VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
393 					 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
394 
395 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
396 		   vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
397 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
398 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
399 		   PV_CONTROL_CLR_AT_START |
400 		   PV_CONTROL_TRIGGER_UNDERFLOW |
401 		   PV_CONTROL_WAIT_HSTART |
402 		   VC4_SET_FIELD(vc4_encoder->clock_select,
403 				 PV_CONTROL_CLK_SELECT));
404 
405 	if (debug_dump_regs) {
406 		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
407 		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
408 			 drm_crtc_index(crtc));
409 		drm_print_regset32(&p, &vc4_crtc->regset);
410 	}
411 }
412 
413 static void require_hvs_enabled(struct drm_device *dev)
414 {
415 	struct vc4_dev *vc4 = to_vc4_dev(dev);
416 
417 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
418 		     SCALER_DISPCTRL_ENABLE);
419 }
420 
421 static int vc4_crtc_disable(struct drm_crtc *crtc,
422 			    struct drm_encoder *encoder,
423 			    struct drm_atomic_state *state,
424 			    unsigned int channel)
425 {
426 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
427 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
428 	struct drm_device *dev = crtc->dev;
429 	int ret;
430 
431 	CRTC_WRITE(PV_V_CONTROL,
432 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
433 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
434 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
435 
436 	/*
437 	 * This delay is needed to avoid to get a pixel stuck in an
438 	 * unflushable FIFO between the pixelvalve and the HDMI
439 	 * controllers on the BCM2711.
440 	 *
441 	 * Timing is fairly sensitive here, so mdelay is the safest
442 	 * approach.
443 	 *
444 	 * If it was to be reworked, the stuck pixel happens on a
445 	 * BCM2711 when changing mode with a good probability, so a
446 	 * script that changes mode on a regular basis should trigger
447 	 * the bug after less than 10 attempts. It manifests itself with
448 	 * every pixels being shifted by one to the right, and thus the
449 	 * last pixel of a line actually being displayed as the first
450 	 * pixel on the next line.
451 	 */
452 	mdelay(20);
453 
454 	if (vc4_encoder && vc4_encoder->post_crtc_disable)
455 		vc4_encoder->post_crtc_disable(encoder, state);
456 
457 	vc4_crtc_pixelvalve_reset(crtc);
458 	vc4_hvs_stop_channel(dev, channel);
459 
460 	if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
461 		vc4_encoder->post_crtc_powerdown(encoder, state);
462 
463 	return 0;
464 }
465 
466 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
467 							enum vc4_encoder_type type)
468 {
469 	struct drm_encoder *encoder;
470 
471 	drm_for_each_encoder(encoder, crtc->dev) {
472 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
473 
474 		if (vc4_encoder->type == type)
475 			return encoder;
476 	}
477 
478 	return NULL;
479 }
480 
481 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
482 {
483 	struct drm_device *drm = crtc->dev;
484 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
485 	enum vc4_encoder_type encoder_type;
486 	const struct vc4_pv_data *pv_data;
487 	struct drm_encoder *encoder;
488 	struct vc4_hdmi *vc4_hdmi;
489 	unsigned encoder_sel;
490 	int channel;
491 	int ret;
492 
493 	if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
494 				      "brcm,bcm2711-pixelvalve2") ||
495 	      of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
496 				      "brcm,bcm2711-pixelvalve4")))
497 		return 0;
498 
499 	if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
500 		return 0;
501 
502 	if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
503 		return 0;
504 
505 	channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
506 	if (channel < 0)
507 		return 0;
508 
509 	encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
510 	if (WARN_ON(encoder_sel != 0))
511 		return 0;
512 
513 	pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
514 	encoder_type = pv_data->encoder_types[encoder_sel];
515 	encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
516 	if (WARN_ON(!encoder))
517 		return 0;
518 
519 	vc4_hdmi = encoder_to_vc4_hdmi(encoder);
520 	ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
521 	if (ret)
522 		return ret;
523 
524 	ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
525 	if (ret)
526 		return ret;
527 
528 	ret = pm_runtime_put(&vc4_hdmi->pdev->dev);
529 	if (ret)
530 		return ret;
531 
532 	return 0;
533 }
534 
535 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
536 				    struct drm_atomic_state *state)
537 {
538 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
539 									 crtc);
540 	struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
541 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, old_state);
542 	struct drm_device *dev = crtc->dev;
543 
544 	drm_dbg(dev, "Disabling CRTC %s (%u) connected to Encoder %s (%u)",
545 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
546 
547 	require_hvs_enabled(dev);
548 
549 	/* Disable vblank irq handling before crtc is disabled. */
550 	drm_crtc_vblank_off(crtc);
551 
552 	vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
553 
554 	/*
555 	 * Make sure we issue a vblank event after disabling the CRTC if
556 	 * someone was waiting it.
557 	 */
558 	if (crtc->state->event) {
559 		unsigned long flags;
560 
561 		spin_lock_irqsave(&dev->event_lock, flags);
562 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
563 		crtc->state->event = NULL;
564 		spin_unlock_irqrestore(&dev->event_lock, flags);
565 	}
566 }
567 
568 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
569 				   struct drm_atomic_state *state)
570 {
571 	struct drm_crtc_state *new_state = drm_atomic_get_new_crtc_state(state,
572 									 crtc);
573 	struct drm_device *dev = crtc->dev;
574 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
575 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, new_state);
576 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
577 
578 	drm_dbg(dev, "Enabling CRTC %s (%u) connected to Encoder %s (%u)",
579 		crtc->name, crtc->base.id, encoder->name, encoder->base.id);
580 
581 	require_hvs_enabled(dev);
582 
583 	/* Enable vblank irq handling before crtc is started otherwise
584 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
585 	 */
586 	drm_crtc_vblank_on(crtc);
587 
588 	vc4_hvs_atomic_enable(crtc, state);
589 
590 	if (vc4_encoder->pre_crtc_configure)
591 		vc4_encoder->pre_crtc_configure(encoder, state);
592 
593 	vc4_crtc_config_pv(crtc, encoder, state);
594 
595 	CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
596 
597 	if (vc4_encoder->pre_crtc_enable)
598 		vc4_encoder->pre_crtc_enable(encoder, state);
599 
600 	/* When feeding the transposer block the pixelvalve is unneeded and
601 	 * should not be enabled.
602 	 */
603 	CRTC_WRITE(PV_V_CONTROL,
604 		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
605 
606 	if (vc4_encoder->post_crtc_enable)
607 		vc4_encoder->post_crtc_enable(encoder, state);
608 }
609 
610 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
611 						const struct drm_display_mode *mode)
612 {
613 	/* Do not allow doublescan modes from user space */
614 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
615 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
616 			      crtc->base.id);
617 		return MODE_NO_DBLESCAN;
618 	}
619 
620 	return MODE_OK;
621 }
622 
623 void vc4_crtc_get_margins(struct drm_crtc_state *state,
624 			  unsigned int *left, unsigned int *right,
625 			  unsigned int *top, unsigned int *bottom)
626 {
627 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
628 	struct drm_connector_state *conn_state;
629 	struct drm_connector *conn;
630 	int i;
631 
632 	*left = vc4_state->margins.left;
633 	*right = vc4_state->margins.right;
634 	*top = vc4_state->margins.top;
635 	*bottom = vc4_state->margins.bottom;
636 
637 	/* We have to interate over all new connector states because
638 	 * vc4_crtc_get_margins() might be called before
639 	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
640 	 * might be outdated.
641 	 */
642 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
643 		if (conn_state->crtc != state->crtc)
644 			continue;
645 
646 		*left = conn_state->tv.margins.left;
647 		*right = conn_state->tv.margins.right;
648 		*top = conn_state->tv.margins.top;
649 		*bottom = conn_state->tv.margins.bottom;
650 		break;
651 	}
652 }
653 
654 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
655 				 struct drm_atomic_state *state)
656 {
657 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
658 									  crtc);
659 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
660 	struct drm_connector *conn;
661 	struct drm_connector_state *conn_state;
662 	struct drm_encoder *encoder;
663 	int ret, i;
664 
665 	ret = vc4_hvs_atomic_check(crtc, state);
666 	if (ret)
667 		return ret;
668 
669 	encoder = vc4_get_crtc_encoder(crtc, crtc_state);
670 	if (encoder) {
671 		const struct drm_display_mode *mode = &crtc_state->adjusted_mode;
672 		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
673 
674 		mode = &crtc_state->adjusted_mode;
675 		if (vc4_encoder->type == VC4_ENCODER_TYPE_HDMI0) {
676 			vc4_state->hvs_load = max(mode->clock * mode->hdisplay / mode->htotal + 1000,
677 						  mode->clock * 9 / 10) * 1000;
678 		} else {
679 			vc4_state->hvs_load = mode->clock * 1000;
680 		}
681 	}
682 
683 	for_each_new_connector_in_state(state, conn, conn_state,
684 					i) {
685 		if (conn_state->crtc != crtc)
686 			continue;
687 
688 		vc4_state->margins.left = conn_state->tv.margins.left;
689 		vc4_state->margins.right = conn_state->tv.margins.right;
690 		vc4_state->margins.top = conn_state->tv.margins.top;
691 		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
692 		break;
693 	}
694 
695 	return 0;
696 }
697 
698 static int vc4_enable_vblank(struct drm_crtc *crtc)
699 {
700 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
701 
702 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
703 
704 	return 0;
705 }
706 
707 static void vc4_disable_vblank(struct drm_crtc *crtc)
708 {
709 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
710 
711 	CRTC_WRITE(PV_INTEN, 0);
712 }
713 
714 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
715 {
716 	struct drm_crtc *crtc = &vc4_crtc->base;
717 	struct drm_device *dev = crtc->dev;
718 	struct vc4_dev *vc4 = to_vc4_dev(dev);
719 	u32 chan = vc4_crtc->current_hvs_channel;
720 	unsigned long flags;
721 
722 	spin_lock_irqsave(&dev->event_lock, flags);
723 	spin_lock(&vc4_crtc->irq_lock);
724 	if (vc4_crtc->event &&
725 	    (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
726 	     vc4_crtc->feeds_txp)) {
727 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
728 		vc4_crtc->event = NULL;
729 		drm_crtc_vblank_put(crtc);
730 
731 		/* Wait for the page flip to unmask the underrun to ensure that
732 		 * the display list was updated by the hardware. Before that
733 		 * happens, the HVS will be using the previous display list with
734 		 * the CRTC and encoder already reconfigured, leading to
735 		 * underruns. This can be seen when reconfiguring the CRTC.
736 		 */
737 		vc4_hvs_unmask_underrun(dev, chan);
738 	}
739 	spin_unlock(&vc4_crtc->irq_lock);
740 	spin_unlock_irqrestore(&dev->event_lock, flags);
741 }
742 
743 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
744 {
745 	crtc->t_vblank = ktime_get();
746 	drm_crtc_handle_vblank(&crtc->base);
747 	vc4_crtc_handle_page_flip(crtc);
748 }
749 
750 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
751 {
752 	struct vc4_crtc *vc4_crtc = data;
753 	u32 stat = CRTC_READ(PV_INTSTAT);
754 	irqreturn_t ret = IRQ_NONE;
755 
756 	if (stat & PV_INT_VFP_START) {
757 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
758 		vc4_crtc_handle_vblank(vc4_crtc);
759 		ret = IRQ_HANDLED;
760 	}
761 
762 	return ret;
763 }
764 
765 struct vc4_async_flip_state {
766 	struct drm_crtc *crtc;
767 	struct drm_framebuffer *fb;
768 	struct drm_framebuffer *old_fb;
769 	struct drm_pending_vblank_event *event;
770 
771 	struct vc4_seqno_cb cb;
772 };
773 
774 /* Called when the V3D execution for the BO being flipped to is done, so that
775  * we can actually update the plane's address to point to it.
776  */
777 static void
778 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
779 {
780 	struct vc4_async_flip_state *flip_state =
781 		container_of(cb, struct vc4_async_flip_state, cb);
782 	struct drm_crtc *crtc = flip_state->crtc;
783 	struct drm_device *dev = crtc->dev;
784 	struct drm_plane *plane = crtc->primary;
785 
786 	vc4_plane_async_set_fb(plane, flip_state->fb);
787 	if (flip_state->event) {
788 		unsigned long flags;
789 
790 		spin_lock_irqsave(&dev->event_lock, flags);
791 		drm_crtc_send_vblank_event(crtc, flip_state->event);
792 		spin_unlock_irqrestore(&dev->event_lock, flags);
793 	}
794 
795 	drm_crtc_vblank_put(crtc);
796 	drm_framebuffer_put(flip_state->fb);
797 
798 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
799 	 * when the planes are updated through the async update path.
800 	 * FIXME: we should move to generic async-page-flip when it's
801 	 * available, so that we can get rid of this hand-made cleanup_fb()
802 	 * logic.
803 	 */
804 	if (flip_state->old_fb) {
805 		struct drm_gem_cma_object *cma_bo;
806 		struct vc4_bo *bo;
807 
808 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
809 		bo = to_vc4_bo(&cma_bo->base);
810 		vc4_bo_dec_usecnt(bo);
811 		drm_framebuffer_put(flip_state->old_fb);
812 	}
813 
814 	kfree(flip_state);
815 }
816 
817 /* Implements async (non-vblank-synced) page flips.
818  *
819  * The page flip ioctl needs to return immediately, so we grab the
820  * modeset semaphore on the pipe, and queue the address update for
821  * when V3D is done with the BO being flipped to.
822  */
823 static int vc4_async_page_flip(struct drm_crtc *crtc,
824 			       struct drm_framebuffer *fb,
825 			       struct drm_pending_vblank_event *event,
826 			       uint32_t flags)
827 {
828 	struct drm_device *dev = crtc->dev;
829 	struct drm_plane *plane = crtc->primary;
830 	int ret = 0;
831 	struct vc4_async_flip_state *flip_state;
832 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
833 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
834 
835 	/* Increment the BO usecnt here, so that we never end up with an
836 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
837 	 * plane is later updated through the non-async path.
838 	 * FIXME: we should move to generic async-page-flip when it's
839 	 * available, so that we can get rid of this hand-made prepare_fb()
840 	 * logic.
841 	 */
842 	ret = vc4_bo_inc_usecnt(bo);
843 	if (ret)
844 		return ret;
845 
846 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
847 	if (!flip_state) {
848 		vc4_bo_dec_usecnt(bo);
849 		return -ENOMEM;
850 	}
851 
852 	drm_framebuffer_get(fb);
853 	flip_state->fb = fb;
854 	flip_state->crtc = crtc;
855 	flip_state->event = event;
856 
857 	/* Save the current FB before it's replaced by the new one in
858 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
859 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
860 	 * it consistent.
861 	 * FIXME: we should move to generic async-page-flip when it's
862 	 * available, so that we can get rid of this hand-made cleanup_fb()
863 	 * logic.
864 	 */
865 	flip_state->old_fb = plane->state->fb;
866 	if (flip_state->old_fb)
867 		drm_framebuffer_get(flip_state->old_fb);
868 
869 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
870 
871 	/* Immediately update the plane's legacy fb pointer, so that later
872 	 * modeset prep sees the state that will be present when the semaphore
873 	 * is released.
874 	 */
875 	drm_atomic_set_fb_for_plane(plane->state, fb);
876 
877 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
878 			   vc4_async_page_flip_complete);
879 
880 	/* Driver takes ownership of state on successful async commit. */
881 	return 0;
882 }
883 
884 int vc4_page_flip(struct drm_crtc *crtc,
885 		  struct drm_framebuffer *fb,
886 		  struct drm_pending_vblank_event *event,
887 		  uint32_t flags,
888 		  struct drm_modeset_acquire_ctx *ctx)
889 {
890 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
891 		return vc4_async_page_flip(crtc, fb, event, flags);
892 	else
893 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
894 }
895 
896 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
897 {
898 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
899 
900 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
901 	if (!vc4_state)
902 		return NULL;
903 
904 	old_vc4_state = to_vc4_crtc_state(crtc->state);
905 	vc4_state->margins = old_vc4_state->margins;
906 	vc4_state->assigned_channel = old_vc4_state->assigned_channel;
907 
908 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
909 	return &vc4_state->base;
910 }
911 
912 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
913 			    struct drm_crtc_state *state)
914 {
915 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
916 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
917 
918 	if (drm_mm_node_allocated(&vc4_state->mm)) {
919 		unsigned long flags;
920 
921 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
922 		drm_mm_remove_node(&vc4_state->mm);
923 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
924 
925 	}
926 
927 	drm_atomic_helper_crtc_destroy_state(crtc, state);
928 }
929 
930 void vc4_crtc_reset(struct drm_crtc *crtc)
931 {
932 	struct vc4_crtc_state *vc4_crtc_state;
933 
934 	if (crtc->state)
935 		vc4_crtc_destroy_state(crtc, crtc->state);
936 
937 	vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
938 	if (!vc4_crtc_state) {
939 		crtc->state = NULL;
940 		return;
941 	}
942 
943 	vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
944 	__drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
945 }
946 
947 static const struct drm_crtc_funcs vc4_crtc_funcs = {
948 	.set_config = drm_atomic_helper_set_config,
949 	.destroy = vc4_crtc_destroy,
950 	.page_flip = vc4_page_flip,
951 	.set_property = NULL,
952 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
953 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
954 	.reset = vc4_crtc_reset,
955 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
956 	.atomic_destroy_state = vc4_crtc_destroy_state,
957 	.enable_vblank = vc4_enable_vblank,
958 	.disable_vblank = vc4_disable_vblank,
959 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
960 };
961 
962 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
963 	.mode_valid = vc4_crtc_mode_valid,
964 	.atomic_check = vc4_crtc_atomic_check,
965 	.atomic_begin = vc4_hvs_atomic_begin,
966 	.atomic_flush = vc4_hvs_atomic_flush,
967 	.atomic_enable = vc4_crtc_atomic_enable,
968 	.atomic_disable = vc4_crtc_atomic_disable,
969 	.get_scanout_position = vc4_crtc_get_scanout_position,
970 };
971 
972 static const struct vc4_pv_data bcm2835_pv0_data = {
973 	.base = {
974 		.hvs_available_channels = BIT(0),
975 		.hvs_output = 0,
976 	},
977 	.debugfs_name = "crtc0_regs",
978 	.fifo_depth = 64,
979 	.pixels_per_clock = 1,
980 	.encoder_types = {
981 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
982 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
983 	},
984 };
985 
986 static const struct vc4_pv_data bcm2835_pv1_data = {
987 	.base = {
988 		.hvs_available_channels = BIT(2),
989 		.hvs_output = 2,
990 	},
991 	.debugfs_name = "crtc1_regs",
992 	.fifo_depth = 64,
993 	.pixels_per_clock = 1,
994 	.encoder_types = {
995 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
996 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
997 	},
998 };
999 
1000 static const struct vc4_pv_data bcm2835_pv2_data = {
1001 	.base = {
1002 		.hvs_available_channels = BIT(1),
1003 		.hvs_output = 1,
1004 	},
1005 	.debugfs_name = "crtc2_regs",
1006 	.fifo_depth = 64,
1007 	.pixels_per_clock = 1,
1008 	.encoder_types = {
1009 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1010 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1011 	},
1012 };
1013 
1014 static const struct vc4_pv_data bcm2711_pv0_data = {
1015 	.base = {
1016 		.hvs_available_channels = BIT(0),
1017 		.hvs_output = 0,
1018 	},
1019 	.debugfs_name = "crtc0_regs",
1020 	.fifo_depth = 64,
1021 	.pixels_per_clock = 1,
1022 	.encoder_types = {
1023 		[0] = VC4_ENCODER_TYPE_DSI0,
1024 		[1] = VC4_ENCODER_TYPE_DPI,
1025 	},
1026 };
1027 
1028 static const struct vc4_pv_data bcm2711_pv1_data = {
1029 	.base = {
1030 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1031 		.hvs_output = 3,
1032 	},
1033 	.debugfs_name = "crtc1_regs",
1034 	.fifo_depth = 64,
1035 	.pixels_per_clock = 1,
1036 	.encoder_types = {
1037 		[0] = VC4_ENCODER_TYPE_DSI1,
1038 		[1] = VC4_ENCODER_TYPE_SMI,
1039 	},
1040 };
1041 
1042 static const struct vc4_pv_data bcm2711_pv2_data = {
1043 	.base = {
1044 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1045 		.hvs_output = 4,
1046 	},
1047 	.debugfs_name = "crtc2_regs",
1048 	.fifo_depth = 256,
1049 	.pixels_per_clock = 2,
1050 	.encoder_types = {
1051 		[0] = VC4_ENCODER_TYPE_HDMI0,
1052 	},
1053 };
1054 
1055 static const struct vc4_pv_data bcm2711_pv3_data = {
1056 	.base = {
1057 		.hvs_available_channels = BIT(1),
1058 		.hvs_output = 1,
1059 	},
1060 	.debugfs_name = "crtc3_regs",
1061 	.fifo_depth = 64,
1062 	.pixels_per_clock = 1,
1063 	.encoder_types = {
1064 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1065 	},
1066 };
1067 
1068 static const struct vc4_pv_data bcm2711_pv4_data = {
1069 	.base = {
1070 		.hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1071 		.hvs_output = 5,
1072 	},
1073 	.debugfs_name = "crtc4_regs",
1074 	.fifo_depth = 64,
1075 	.pixels_per_clock = 2,
1076 	.encoder_types = {
1077 		[0] = VC4_ENCODER_TYPE_HDMI1,
1078 	},
1079 };
1080 
1081 static const struct of_device_id vc4_crtc_dt_match[] = {
1082 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1083 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1084 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1085 	{ .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1086 	{ .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1087 	{ .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1088 	{ .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1089 	{ .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1090 	{}
1091 };
1092 
1093 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1094 					struct drm_crtc *crtc)
1095 {
1096 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1097 	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1098 	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1099 	struct drm_encoder *encoder;
1100 
1101 	drm_for_each_encoder(encoder, drm) {
1102 		struct vc4_encoder *vc4_encoder;
1103 		int i;
1104 
1105 		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1106 			continue;
1107 
1108 		vc4_encoder = to_vc4_encoder(encoder);
1109 		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1110 			if (vc4_encoder->type == encoder_types[i]) {
1111 				vc4_encoder->clock_select = i;
1112 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1113 				break;
1114 			}
1115 		}
1116 	}
1117 }
1118 
1119 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1120 		  const struct drm_crtc_funcs *crtc_funcs,
1121 		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1122 {
1123 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1124 	struct drm_crtc *crtc = &vc4_crtc->base;
1125 	struct drm_plane *primary_plane;
1126 	unsigned int i;
1127 
1128 	/* For now, we create just the primary and the legacy cursor
1129 	 * planes.  We should be able to stack more planes on easily,
1130 	 * but to do that we would need to compute the bandwidth
1131 	 * requirement of the plane configuration, and reject ones
1132 	 * that will take too much.
1133 	 */
1134 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1135 	if (IS_ERR(primary_plane)) {
1136 		dev_err(drm->dev, "failed to construct primary plane\n");
1137 		return PTR_ERR(primary_plane);
1138 	}
1139 
1140 	spin_lock_init(&vc4_crtc->irq_lock);
1141 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1142 				  crtc_funcs, NULL);
1143 	drm_crtc_helper_add(crtc, crtc_helper_funcs);
1144 
1145 	if (!vc4->hvs->hvs5) {
1146 		drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1147 
1148 		drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1149 
1150 		/* We support CTM, but only for one CRTC at a time. It's therefore
1151 		 * implemented as private driver state in vc4_kms, not here.
1152 		 */
1153 		drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1154 	}
1155 
1156 	for (i = 0; i < crtc->gamma_size; i++) {
1157 		vc4_crtc->lut_r[i] = i;
1158 		vc4_crtc->lut_g[i] = i;
1159 		vc4_crtc->lut_b[i] = i;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1166 {
1167 	struct platform_device *pdev = to_platform_device(dev);
1168 	struct drm_device *drm = dev_get_drvdata(master);
1169 	const struct vc4_pv_data *pv_data;
1170 	struct vc4_crtc *vc4_crtc;
1171 	struct drm_crtc *crtc;
1172 	struct drm_plane *destroy_plane, *temp;
1173 	int ret;
1174 
1175 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1176 	if (!vc4_crtc)
1177 		return -ENOMEM;
1178 	crtc = &vc4_crtc->base;
1179 
1180 	pv_data = of_device_get_match_data(dev);
1181 	if (!pv_data)
1182 		return -ENODEV;
1183 	vc4_crtc->data = &pv_data->base;
1184 	vc4_crtc->pdev = pdev;
1185 
1186 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1187 	if (IS_ERR(vc4_crtc->regs))
1188 		return PTR_ERR(vc4_crtc->regs);
1189 
1190 	vc4_crtc->regset.base = vc4_crtc->regs;
1191 	vc4_crtc->regset.regs = crtc_regs;
1192 	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1193 
1194 	ret = vc4_crtc_init(drm, vc4_crtc,
1195 			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1196 	if (ret)
1197 		return ret;
1198 	vc4_set_crtc_possible_masks(drm, crtc);
1199 
1200 	CRTC_WRITE(PV_INTEN, 0);
1201 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1202 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1203 			       vc4_crtc_irq_handler,
1204 			       IRQF_SHARED,
1205 			       "vc4 crtc", vc4_crtc);
1206 	if (ret)
1207 		goto err_destroy_planes;
1208 
1209 	platform_set_drvdata(pdev, vc4_crtc);
1210 
1211 	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1212 				 &vc4_crtc->regset);
1213 
1214 	return 0;
1215 
1216 err_destroy_planes:
1217 	list_for_each_entry_safe(destroy_plane, temp,
1218 				 &drm->mode_config.plane_list, head) {
1219 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1220 		    destroy_plane->funcs->destroy(destroy_plane);
1221 	}
1222 
1223 	return ret;
1224 }
1225 
1226 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1227 			    void *data)
1228 {
1229 	struct platform_device *pdev = to_platform_device(dev);
1230 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1231 
1232 	vc4_crtc_destroy(&vc4_crtc->base);
1233 
1234 	CRTC_WRITE(PV_INTEN, 0);
1235 
1236 	platform_set_drvdata(pdev, NULL);
1237 }
1238 
1239 static const struct component_ops vc4_crtc_ops = {
1240 	.bind   = vc4_crtc_bind,
1241 	.unbind = vc4_crtc_unbind,
1242 };
1243 
1244 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1245 {
1246 	return component_add(&pdev->dev, &vc4_crtc_ops);
1247 }
1248 
1249 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1250 {
1251 	component_del(&pdev->dev, &vc4_crtc_ops);
1252 	return 0;
1253 }
1254 
1255 struct platform_driver vc4_crtc_driver = {
1256 	.probe = vc4_crtc_dev_probe,
1257 	.remove = vc4_crtc_dev_remove,
1258 	.driver = {
1259 		.name = "vc4_crtc",
1260 		.of_match_table = vc4_crtc_dt_match,
1261 	},
1262 };
1263