1 /* 2 * Copyright (C) 2015 Broadcom 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version 2 as 6 * published by the Free Software Foundation. 7 */ 8 9 /** 10 * DOC: VC4 CRTC module 11 * 12 * In VC4, the Pixel Valve is what most closely corresponds to the 13 * DRM's concept of a CRTC. The PV generates video timings from the 14 * encoder's clock plus its configuration. It pulls scaled pixels from 15 * the HVS at that timing, and feeds it to the encoder. 16 * 17 * However, the DRM CRTC also collects the configuration of all the 18 * DRM planes attached to it. As a result, the CRTC is also 19 * responsible for writing the display list for the HVS channel that 20 * the CRTC will use. 21 * 22 * The 2835 has 3 different pixel valves. pv0 in the audio power 23 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the 24 * image domain can feed either HDMI or the SDTV controller. The 25 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for 26 * SDTV, etc.) according to which output type is chosen in the mux. 27 * 28 * For power management, the pixel valve's registers are all clocked 29 * by the AXI clock, while the timings and FIFOs make use of the 30 * output-specific clock. Since the encoders also directly consume 31 * the CPRMAN clocks, and know what timings they need, they are the 32 * ones that set the clock. 33 */ 34 35 #include <drm/drm_atomic.h> 36 #include <drm/drm_atomic_helper.h> 37 #include <drm/drm_atomic_uapi.h> 38 #include <drm/drm_print.h> 39 #include <drm/drm_probe_helper.h> 40 #include <linux/clk.h> 41 #include <drm/drm_fb_cma_helper.h> 42 #include <linux/component.h> 43 #include <linux/of_device.h> 44 #include "vc4_drv.h" 45 #include "vc4_regs.h" 46 47 struct vc4_crtc_state { 48 struct drm_crtc_state base; 49 /* Dlist area for this CRTC configuration. */ 50 struct drm_mm_node mm; 51 bool feed_txp; 52 bool txp_armed; 53 54 struct { 55 unsigned int left; 56 unsigned int right; 57 unsigned int top; 58 unsigned int bottom; 59 } margins; 60 }; 61 62 static inline struct vc4_crtc_state * 63 to_vc4_crtc_state(struct drm_crtc_state *crtc_state) 64 { 65 return (struct vc4_crtc_state *)crtc_state; 66 } 67 68 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset)) 69 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset)) 70 71 static const struct debugfs_reg32 crtc_regs[] = { 72 VC4_REG32(PV_CONTROL), 73 VC4_REG32(PV_V_CONTROL), 74 VC4_REG32(PV_VSYNCD_EVEN), 75 VC4_REG32(PV_HORZA), 76 VC4_REG32(PV_HORZB), 77 VC4_REG32(PV_VERTA), 78 VC4_REG32(PV_VERTB), 79 VC4_REG32(PV_VERTA_EVEN), 80 VC4_REG32(PV_VERTB_EVEN), 81 VC4_REG32(PV_INTEN), 82 VC4_REG32(PV_INTSTAT), 83 VC4_REG32(PV_STAT), 84 VC4_REG32(PV_HACT_ACT), 85 }; 86 87 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id, 88 bool in_vblank_irq, int *vpos, int *hpos, 89 ktime_t *stime, ktime_t *etime, 90 const struct drm_display_mode *mode) 91 { 92 struct vc4_dev *vc4 = to_vc4_dev(dev); 93 struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id); 94 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 95 u32 val; 96 int fifo_lines; 97 int vblank_lines; 98 bool ret = false; 99 100 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */ 101 102 /* Get optional system timestamp before query. */ 103 if (stime) 104 *stime = ktime_get(); 105 106 /* 107 * Read vertical scanline which is currently composed for our 108 * pixelvalve by the HVS, and also the scaler status. 109 */ 110 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel)); 111 112 /* Get optional system timestamp after query. */ 113 if (etime) 114 *etime = ktime_get(); 115 116 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */ 117 118 /* Vertical position of hvs composed scanline. */ 119 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE); 120 *hpos = 0; 121 122 if (mode->flags & DRM_MODE_FLAG_INTERLACE) { 123 *vpos /= 2; 124 125 /* Use hpos to correct for field offset in interlaced mode. */ 126 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2) 127 *hpos += mode->crtc_htotal / 2; 128 } 129 130 /* This is the offset we need for translating hvs -> pv scanout pos. */ 131 fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay; 132 133 if (fifo_lines > 0) 134 ret = true; 135 136 /* HVS more than fifo_lines into frame for compositing? */ 137 if (*vpos > fifo_lines) { 138 /* 139 * We are in active scanout and can get some meaningful results 140 * from HVS. The actual PV scanout can not trail behind more 141 * than fifo_lines as that is the fifo's capacity. Assume that 142 * in active scanout the HVS and PV work in lockstep wrt. HVS 143 * refilling the fifo and PV consuming from the fifo, ie. 144 * whenever the PV consumes and frees up a scanline in the 145 * fifo, the HVS will immediately refill it, therefore 146 * incrementing vpos. Therefore we choose HVS read position - 147 * fifo size in scanlines as a estimate of the real scanout 148 * position of the PV. 149 */ 150 *vpos -= fifo_lines + 1; 151 152 return ret; 153 } 154 155 /* 156 * Less: This happens when we are in vblank and the HVS, after getting 157 * the VSTART restart signal from the PV, just started refilling its 158 * fifo with new lines from the top-most lines of the new framebuffers. 159 * The PV does not scan out in vblank, so does not remove lines from 160 * the fifo, so the fifo will be full quickly and the HVS has to pause. 161 * We can't get meaningful readings wrt. scanline position of the PV 162 * and need to make things up in a approximative but consistent way. 163 */ 164 vblank_lines = mode->vtotal - mode->vdisplay; 165 166 if (in_vblank_irq) { 167 /* 168 * Assume the irq handler got called close to first 169 * line of vblank, so PV has about a full vblank 170 * scanlines to go, and as a base timestamp use the 171 * one taken at entry into vblank irq handler, so it 172 * is not affected by random delays due to lock 173 * contention on event_lock or vblank_time lock in 174 * the core. 175 */ 176 *vpos = -vblank_lines; 177 178 if (stime) 179 *stime = vc4_crtc->t_vblank; 180 if (etime) 181 *etime = vc4_crtc->t_vblank; 182 183 /* 184 * If the HVS fifo is not yet full then we know for certain 185 * we are at the very beginning of vblank, as the hvs just 186 * started refilling, and the stime and etime timestamps 187 * truly correspond to start of vblank. 188 * 189 * Unfortunately there's no way to report this to upper levels 190 * and make it more useful. 191 */ 192 } else { 193 /* 194 * No clue where we are inside vblank. Return a vpos of zero, 195 * which will cause calling code to just return the etime 196 * timestamp uncorrected. At least this is no worse than the 197 * standard fallback. 198 */ 199 *vpos = 0; 200 } 201 202 return ret; 203 } 204 205 static void vc4_crtc_destroy(struct drm_crtc *crtc) 206 { 207 drm_crtc_cleanup(crtc); 208 } 209 210 static void 211 vc4_crtc_lut_load(struct drm_crtc *crtc) 212 { 213 struct drm_device *dev = crtc->dev; 214 struct vc4_dev *vc4 = to_vc4_dev(dev); 215 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 216 u32 i; 217 218 /* The LUT memory is laid out with each HVS channel in order, 219 * each of which takes 256 writes for R, 256 for G, then 256 220 * for B. 221 */ 222 HVS_WRITE(SCALER_GAMADDR, 223 SCALER_GAMADDR_AUTOINC | 224 (vc4_crtc->channel * 3 * crtc->gamma_size)); 225 226 for (i = 0; i < crtc->gamma_size; i++) 227 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]); 228 for (i = 0; i < crtc->gamma_size; i++) 229 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]); 230 for (i = 0; i < crtc->gamma_size; i++) 231 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]); 232 } 233 234 static void 235 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc) 236 { 237 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 238 struct drm_color_lut *lut = crtc->state->gamma_lut->data; 239 u32 length = drm_color_lut_size(crtc->state->gamma_lut); 240 u32 i; 241 242 for (i = 0; i < length; i++) { 243 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8); 244 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8); 245 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8); 246 } 247 248 vc4_crtc_lut_load(crtc); 249 } 250 251 static u32 vc4_get_fifo_full_level(u32 format) 252 { 253 static const u32 fifo_len_bytes = 64; 254 static const u32 hvs_latency_pix = 6; 255 256 switch (format) { 257 case PV_CONTROL_FORMAT_DSIV_16: 258 case PV_CONTROL_FORMAT_DSIC_16: 259 return fifo_len_bytes - 2 * hvs_latency_pix; 260 case PV_CONTROL_FORMAT_DSIV_18: 261 return fifo_len_bytes - 14; 262 case PV_CONTROL_FORMAT_24: 263 case PV_CONTROL_FORMAT_DSIV_24: 264 default: 265 return fifo_len_bytes - 3 * hvs_latency_pix; 266 } 267 } 268 269 /* 270 * Returns the encoder attached to the CRTC. 271 * 272 * VC4 can only scan out to one encoder at a time, while the DRM core 273 * allows drivers to push pixels to more than one encoder from the 274 * same CRTC. 275 */ 276 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc) 277 { 278 struct drm_connector *connector; 279 struct drm_connector_list_iter conn_iter; 280 281 drm_connector_list_iter_begin(crtc->dev, &conn_iter); 282 drm_for_each_connector_iter(connector, &conn_iter) { 283 if (connector->state->crtc == crtc) { 284 drm_connector_list_iter_end(&conn_iter); 285 return connector->encoder; 286 } 287 } 288 drm_connector_list_iter_end(&conn_iter); 289 290 return NULL; 291 } 292 293 static void vc4_crtc_config_pv(struct drm_crtc *crtc) 294 { 295 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc); 296 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder); 297 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 298 struct drm_crtc_state *state = crtc->state; 299 struct drm_display_mode *mode = &state->adjusted_mode; 300 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 301 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; 302 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 || 303 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1); 304 u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24; 305 306 /* Reset the PV fifo. */ 307 CRTC_WRITE(PV_CONTROL, 0); 308 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN); 309 CRTC_WRITE(PV_CONTROL, 0); 310 311 CRTC_WRITE(PV_HORZA, 312 VC4_SET_FIELD((mode->htotal - 313 mode->hsync_end) * pixel_rep, 314 PV_HORZA_HBP) | 315 VC4_SET_FIELD((mode->hsync_end - 316 mode->hsync_start) * pixel_rep, 317 PV_HORZA_HSYNC)); 318 CRTC_WRITE(PV_HORZB, 319 VC4_SET_FIELD((mode->hsync_start - 320 mode->hdisplay) * pixel_rep, 321 PV_HORZB_HFP) | 322 VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE)); 323 324 CRTC_WRITE(PV_VERTA, 325 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, 326 PV_VERTA_VBP) | 327 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, 328 PV_VERTA_VSYNC)); 329 CRTC_WRITE(PV_VERTB, 330 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, 331 PV_VERTB_VFP) | 332 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 333 334 if (interlace) { 335 CRTC_WRITE(PV_VERTA_EVEN, 336 VC4_SET_FIELD(mode->crtc_vtotal - 337 mode->crtc_vsync_end - 1, 338 PV_VERTA_VBP) | 339 VC4_SET_FIELD(mode->crtc_vsync_end - 340 mode->crtc_vsync_start, 341 PV_VERTA_VSYNC)); 342 CRTC_WRITE(PV_VERTB_EVEN, 343 VC4_SET_FIELD(mode->crtc_vsync_start - 344 mode->crtc_vdisplay, 345 PV_VERTB_VFP) | 346 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE)); 347 348 /* We set up first field even mode for HDMI. VEC's 349 * NTSC mode would want first field odd instead, once 350 * we support it (to do so, set ODD_FIRST and put the 351 * delay in VSYNCD_EVEN instead). 352 */ 353 CRTC_WRITE(PV_V_CONTROL, 354 PV_VCONTROL_CONTINUOUS | 355 (is_dsi ? PV_VCONTROL_DSI : 0) | 356 PV_VCONTROL_INTERLACE | 357 VC4_SET_FIELD(mode->htotal * pixel_rep / 2, 358 PV_VCONTROL_ODD_DELAY)); 359 CRTC_WRITE(PV_VSYNCD_EVEN, 0); 360 } else { 361 CRTC_WRITE(PV_V_CONTROL, 362 PV_VCONTROL_CONTINUOUS | 363 (is_dsi ? PV_VCONTROL_DSI : 0)); 364 } 365 366 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep); 367 368 CRTC_WRITE(PV_CONTROL, 369 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) | 370 VC4_SET_FIELD(vc4_get_fifo_full_level(format), 371 PV_CONTROL_FIFO_LEVEL) | 372 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) | 373 PV_CONTROL_CLR_AT_START | 374 PV_CONTROL_TRIGGER_UNDERFLOW | 375 PV_CONTROL_WAIT_HSTART | 376 VC4_SET_FIELD(vc4_encoder->clock_select, 377 PV_CONTROL_CLK_SELECT) | 378 PV_CONTROL_FIFO_CLR | 379 PV_CONTROL_EN); 380 } 381 382 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc) 383 { 384 struct drm_device *dev = crtc->dev; 385 struct vc4_dev *vc4 = to_vc4_dev(dev); 386 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 387 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 388 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 389 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE; 390 bool debug_dump_regs = false; 391 392 if (debug_dump_regs) { 393 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 394 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n", 395 drm_crtc_index(crtc)); 396 drm_print_regset32(&p, &vc4_crtc->regset); 397 } 398 399 if (vc4_crtc->channel == 2) { 400 u32 dispctrl; 401 u32 dsp3_mux; 402 403 /* 404 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to 405 * FIFO X'. 406 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'. 407 * 408 * DSP3 is connected to FIFO2 unless the transposer is 409 * enabled. In this case, FIFO 2 is directly accessed by the 410 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1 411 * route. 412 */ 413 if (vc4_state->feed_txp) 414 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX); 415 else 416 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX); 417 418 dispctrl = HVS_READ(SCALER_DISPCTRL) & 419 ~SCALER_DISPCTRL_DSP3_MUX_MASK; 420 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux); 421 } 422 423 if (!vc4_state->feed_txp) 424 vc4_crtc_config_pv(crtc); 425 426 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 427 SCALER_DISPBKGND_AUTOHS | 428 SCALER_DISPBKGND_GAMMA | 429 (interlace ? SCALER_DISPBKGND_INTERLACE : 0)); 430 431 /* Reload the LUT, since the SRAMs would have been disabled if 432 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once. 433 */ 434 vc4_crtc_lut_load(crtc); 435 436 if (debug_dump_regs) { 437 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev); 438 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n", 439 drm_crtc_index(crtc)); 440 drm_print_regset32(&p, &vc4_crtc->regset); 441 } 442 } 443 444 static void require_hvs_enabled(struct drm_device *dev) 445 { 446 struct vc4_dev *vc4 = to_vc4_dev(dev); 447 448 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) != 449 SCALER_DISPCTRL_ENABLE); 450 } 451 452 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc, 453 struct drm_crtc_state *old_state) 454 { 455 struct drm_device *dev = crtc->dev; 456 struct vc4_dev *vc4 = to_vc4_dev(dev); 457 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 458 u32 chan = vc4_crtc->channel; 459 int ret; 460 require_hvs_enabled(dev); 461 462 /* Disable vblank irq handling before crtc is disabled. */ 463 drm_crtc_vblank_off(crtc); 464 465 CRTC_WRITE(PV_V_CONTROL, 466 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN); 467 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1); 468 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n"); 469 470 if (HVS_READ(SCALER_DISPCTRLX(chan)) & 471 SCALER_DISPCTRLX_ENABLE) { 472 HVS_WRITE(SCALER_DISPCTRLX(chan), 473 SCALER_DISPCTRLX_RESET); 474 475 /* While the docs say that reset is self-clearing, it 476 * seems it doesn't actually. 477 */ 478 HVS_WRITE(SCALER_DISPCTRLX(chan), 0); 479 } 480 481 /* Once we leave, the scaler should be disabled and its fifo empty. */ 482 483 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET); 484 485 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)), 486 SCALER_DISPSTATX_MODE) != 487 SCALER_DISPSTATX_MODE_DISABLED); 488 489 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) & 490 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) != 491 SCALER_DISPSTATX_EMPTY); 492 493 /* 494 * Make sure we issue a vblank event after disabling the CRTC if 495 * someone was waiting it. 496 */ 497 if (crtc->state->event) { 498 unsigned long flags; 499 500 spin_lock_irqsave(&dev->event_lock, flags); 501 drm_crtc_send_vblank_event(crtc, crtc->state->event); 502 crtc->state->event = NULL; 503 spin_unlock_irqrestore(&dev->event_lock, flags); 504 } 505 } 506 507 void vc4_crtc_txp_armed(struct drm_crtc_state *state) 508 { 509 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 510 511 vc4_state->txp_armed = true; 512 } 513 514 static void vc4_crtc_update_dlist(struct drm_crtc *crtc) 515 { 516 struct drm_device *dev = crtc->dev; 517 struct vc4_dev *vc4 = to_vc4_dev(dev); 518 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 519 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 520 521 if (crtc->state->event) { 522 unsigned long flags; 523 524 crtc->state->event->pipe = drm_crtc_index(crtc); 525 526 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 527 528 spin_lock_irqsave(&dev->event_lock, flags); 529 530 if (!vc4_state->feed_txp || vc4_state->txp_armed) { 531 vc4_crtc->event = crtc->state->event; 532 crtc->state->event = NULL; 533 } 534 535 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 536 vc4_state->mm.start); 537 538 spin_unlock_irqrestore(&dev->event_lock, flags); 539 } else { 540 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel), 541 vc4_state->mm.start); 542 } 543 } 544 545 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc, 546 struct drm_crtc_state *old_state) 547 { 548 struct drm_device *dev = crtc->dev; 549 struct vc4_dev *vc4 = to_vc4_dev(dev); 550 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 551 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 552 struct drm_display_mode *mode = &crtc->state->adjusted_mode; 553 554 require_hvs_enabled(dev); 555 556 /* Enable vblank irq handling before crtc is started otherwise 557 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist(). 558 */ 559 drm_crtc_vblank_on(crtc); 560 vc4_crtc_update_dlist(crtc); 561 562 /* Turn on the scaler, which will wait for vstart to start 563 * compositing. 564 * When feeding the transposer, we should operate in oneshot 565 * mode. 566 */ 567 HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel), 568 VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) | 569 VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) | 570 SCALER_DISPCTRLX_ENABLE | 571 (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0)); 572 573 /* When feeding the transposer block the pixelvalve is unneeded and 574 * should not be enabled. 575 */ 576 if (!vc4_state->feed_txp) 577 CRTC_WRITE(PV_V_CONTROL, 578 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN); 579 } 580 581 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc, 582 const struct drm_display_mode *mode) 583 { 584 /* Do not allow doublescan modes from user space */ 585 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { 586 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n", 587 crtc->base.id); 588 return MODE_NO_DBLESCAN; 589 } 590 591 return MODE_OK; 592 } 593 594 void vc4_crtc_get_margins(struct drm_crtc_state *state, 595 unsigned int *left, unsigned int *right, 596 unsigned int *top, unsigned int *bottom) 597 { 598 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 599 struct drm_connector_state *conn_state; 600 struct drm_connector *conn; 601 int i; 602 603 *left = vc4_state->margins.left; 604 *right = vc4_state->margins.right; 605 *top = vc4_state->margins.top; 606 *bottom = vc4_state->margins.bottom; 607 608 /* We have to interate over all new connector states because 609 * vc4_crtc_get_margins() might be called before 610 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state 611 * might be outdated. 612 */ 613 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 614 if (conn_state->crtc != state->crtc) 615 continue; 616 617 *left = conn_state->tv.margins.left; 618 *right = conn_state->tv.margins.right; 619 *top = conn_state->tv.margins.top; 620 *bottom = conn_state->tv.margins.bottom; 621 break; 622 } 623 } 624 625 static int vc4_crtc_atomic_check(struct drm_crtc *crtc, 626 struct drm_crtc_state *state) 627 { 628 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 629 struct drm_device *dev = crtc->dev; 630 struct vc4_dev *vc4 = to_vc4_dev(dev); 631 struct drm_plane *plane; 632 unsigned long flags; 633 const struct drm_plane_state *plane_state; 634 struct drm_connector *conn; 635 struct drm_connector_state *conn_state; 636 u32 dlist_count = 0; 637 int ret, i; 638 639 /* The pixelvalve can only feed one encoder (and encoders are 640 * 1:1 with connectors.) 641 */ 642 if (hweight32(state->connector_mask) > 1) 643 return -EINVAL; 644 645 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state) 646 dlist_count += vc4_plane_dlist_size(plane_state); 647 648 dlist_count++; /* Account for SCALER_CTL0_END. */ 649 650 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 651 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm, 652 dlist_count); 653 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 654 if (ret) 655 return ret; 656 657 for_each_new_connector_in_state(state->state, conn, conn_state, i) { 658 if (conn_state->crtc != crtc) 659 continue; 660 661 /* The writeback connector is implemented using the transposer 662 * block which is directly taking its data from the HVS FIFO. 663 */ 664 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) { 665 state->no_vblank = true; 666 vc4_state->feed_txp = true; 667 } else { 668 state->no_vblank = false; 669 vc4_state->feed_txp = false; 670 } 671 672 vc4_state->margins.left = conn_state->tv.margins.left; 673 vc4_state->margins.right = conn_state->tv.margins.right; 674 vc4_state->margins.top = conn_state->tv.margins.top; 675 vc4_state->margins.bottom = conn_state->tv.margins.bottom; 676 break; 677 } 678 679 return 0; 680 } 681 682 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc, 683 struct drm_crtc_state *old_state) 684 { 685 struct drm_device *dev = crtc->dev; 686 struct vc4_dev *vc4 = to_vc4_dev(dev); 687 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 688 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 689 struct drm_plane *plane; 690 struct vc4_plane_state *vc4_plane_state; 691 bool debug_dump_regs = false; 692 bool enable_bg_fill = false; 693 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start; 694 u32 __iomem *dlist_next = dlist_start; 695 696 if (debug_dump_regs) { 697 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc)); 698 vc4_hvs_dump_state(dev); 699 } 700 701 /* Copy all the active planes' dlist contents to the hardware dlist. */ 702 drm_atomic_crtc_for_each_plane(plane, crtc) { 703 /* Is this the first active plane? */ 704 if (dlist_next == dlist_start) { 705 /* We need to enable background fill when a plane 706 * could be alpha blending from the background, i.e. 707 * where no other plane is underneath. It suffices to 708 * consider the first active plane here since we set 709 * needs_bg_fill such that either the first plane 710 * already needs it or all planes on top blend from 711 * the first or a lower plane. 712 */ 713 vc4_plane_state = to_vc4_plane_state(plane->state); 714 enable_bg_fill = vc4_plane_state->needs_bg_fill; 715 } 716 717 dlist_next += vc4_plane_write_dlist(plane, dlist_next); 718 } 719 720 writel(SCALER_CTL0_END, dlist_next); 721 dlist_next++; 722 723 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size); 724 725 if (enable_bg_fill) 726 /* This sets a black background color fill, as is the case 727 * with other DRM drivers. 728 */ 729 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), 730 HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) | 731 SCALER_DISPBKGND_FILL); 732 733 /* Only update DISPLIST if the CRTC was already running and is not 734 * being disabled. 735 * vc4_crtc_enable() takes care of updating the dlist just after 736 * re-enabling VBLANK interrupts and before enabling the engine. 737 * If the CRTC is being disabled, there's no point in updating this 738 * information. 739 */ 740 if (crtc->state->active && old_state->active) 741 vc4_crtc_update_dlist(crtc); 742 743 if (crtc->state->color_mgmt_changed) { 744 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)); 745 746 if (crtc->state->gamma_lut) { 747 vc4_crtc_update_gamma_lut(crtc); 748 dispbkgndx |= SCALER_DISPBKGND_GAMMA; 749 } else { 750 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step 751 * in hardware, which is the same as a linear lut that 752 * DRM expects us to use in absence of a user lut. 753 */ 754 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA; 755 } 756 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx); 757 } 758 759 if (debug_dump_regs) { 760 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc)); 761 vc4_hvs_dump_state(dev); 762 } 763 } 764 765 static int vc4_enable_vblank(struct drm_crtc *crtc) 766 { 767 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 768 769 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START); 770 771 return 0; 772 } 773 774 static void vc4_disable_vblank(struct drm_crtc *crtc) 775 { 776 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 777 778 CRTC_WRITE(PV_INTEN, 0); 779 } 780 781 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc) 782 { 783 struct drm_crtc *crtc = &vc4_crtc->base; 784 struct drm_device *dev = crtc->dev; 785 struct vc4_dev *vc4 = to_vc4_dev(dev); 786 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state); 787 u32 chan = vc4_crtc->channel; 788 unsigned long flags; 789 790 spin_lock_irqsave(&dev->event_lock, flags); 791 if (vc4_crtc->event && 792 (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) || 793 vc4_state->feed_txp)) { 794 drm_crtc_send_vblank_event(crtc, vc4_crtc->event); 795 vc4_crtc->event = NULL; 796 drm_crtc_vblank_put(crtc); 797 798 /* Wait for the page flip to unmask the underrun to ensure that 799 * the display list was updated by the hardware. Before that 800 * happens, the HVS will be using the previous display list with 801 * the CRTC and encoder already reconfigured, leading to 802 * underruns. This can be seen when reconfiguring the CRTC. 803 */ 804 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel); 805 } 806 spin_unlock_irqrestore(&dev->event_lock, flags); 807 } 808 809 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc) 810 { 811 crtc->t_vblank = ktime_get(); 812 drm_crtc_handle_vblank(&crtc->base); 813 vc4_crtc_handle_page_flip(crtc); 814 } 815 816 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data) 817 { 818 struct vc4_crtc *vc4_crtc = data; 819 u32 stat = CRTC_READ(PV_INTSTAT); 820 irqreturn_t ret = IRQ_NONE; 821 822 if (stat & PV_INT_VFP_START) { 823 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 824 vc4_crtc_handle_vblank(vc4_crtc); 825 ret = IRQ_HANDLED; 826 } 827 828 return ret; 829 } 830 831 struct vc4_async_flip_state { 832 struct drm_crtc *crtc; 833 struct drm_framebuffer *fb; 834 struct drm_framebuffer *old_fb; 835 struct drm_pending_vblank_event *event; 836 837 struct vc4_seqno_cb cb; 838 }; 839 840 /* Called when the V3D execution for the BO being flipped to is done, so that 841 * we can actually update the plane's address to point to it. 842 */ 843 static void 844 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb) 845 { 846 struct vc4_async_flip_state *flip_state = 847 container_of(cb, struct vc4_async_flip_state, cb); 848 struct drm_crtc *crtc = flip_state->crtc; 849 struct drm_device *dev = crtc->dev; 850 struct vc4_dev *vc4 = to_vc4_dev(dev); 851 struct drm_plane *plane = crtc->primary; 852 853 vc4_plane_async_set_fb(plane, flip_state->fb); 854 if (flip_state->event) { 855 unsigned long flags; 856 857 spin_lock_irqsave(&dev->event_lock, flags); 858 drm_crtc_send_vblank_event(crtc, flip_state->event); 859 spin_unlock_irqrestore(&dev->event_lock, flags); 860 } 861 862 drm_crtc_vblank_put(crtc); 863 drm_framebuffer_put(flip_state->fb); 864 865 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced 866 * when the planes are updated through the async update path. 867 * FIXME: we should move to generic async-page-flip when it's 868 * available, so that we can get rid of this hand-made cleanup_fb() 869 * logic. 870 */ 871 if (flip_state->old_fb) { 872 struct drm_gem_cma_object *cma_bo; 873 struct vc4_bo *bo; 874 875 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0); 876 bo = to_vc4_bo(&cma_bo->base); 877 vc4_bo_dec_usecnt(bo); 878 drm_framebuffer_put(flip_state->old_fb); 879 } 880 881 kfree(flip_state); 882 883 up(&vc4->async_modeset); 884 } 885 886 /* Implements async (non-vblank-synced) page flips. 887 * 888 * The page flip ioctl needs to return immediately, so we grab the 889 * modeset semaphore on the pipe, and queue the address update for 890 * when V3D is done with the BO being flipped to. 891 */ 892 static int vc4_async_page_flip(struct drm_crtc *crtc, 893 struct drm_framebuffer *fb, 894 struct drm_pending_vblank_event *event, 895 uint32_t flags) 896 { 897 struct drm_device *dev = crtc->dev; 898 struct vc4_dev *vc4 = to_vc4_dev(dev); 899 struct drm_plane *plane = crtc->primary; 900 int ret = 0; 901 struct vc4_async_flip_state *flip_state; 902 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0); 903 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base); 904 905 /* Increment the BO usecnt here, so that we never end up with an 906 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the 907 * plane is later updated through the non-async path. 908 * FIXME: we should move to generic async-page-flip when it's 909 * available, so that we can get rid of this hand-made prepare_fb() 910 * logic. 911 */ 912 ret = vc4_bo_inc_usecnt(bo); 913 if (ret) 914 return ret; 915 916 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL); 917 if (!flip_state) { 918 vc4_bo_dec_usecnt(bo); 919 return -ENOMEM; 920 } 921 922 drm_framebuffer_get(fb); 923 flip_state->fb = fb; 924 flip_state->crtc = crtc; 925 flip_state->event = event; 926 927 /* Make sure all other async modesetes have landed. */ 928 ret = down_interruptible(&vc4->async_modeset); 929 if (ret) { 930 drm_framebuffer_put(fb); 931 vc4_bo_dec_usecnt(bo); 932 kfree(flip_state); 933 return ret; 934 } 935 936 /* Save the current FB before it's replaced by the new one in 937 * drm_atomic_set_fb_for_plane(). We'll need the old FB in 938 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep 939 * it consistent. 940 * FIXME: we should move to generic async-page-flip when it's 941 * available, so that we can get rid of this hand-made cleanup_fb() 942 * logic. 943 */ 944 flip_state->old_fb = plane->state->fb; 945 if (flip_state->old_fb) 946 drm_framebuffer_get(flip_state->old_fb); 947 948 WARN_ON(drm_crtc_vblank_get(crtc) != 0); 949 950 /* Immediately update the plane's legacy fb pointer, so that later 951 * modeset prep sees the state that will be present when the semaphore 952 * is released. 953 */ 954 drm_atomic_set_fb_for_plane(plane->state, fb); 955 956 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno, 957 vc4_async_page_flip_complete); 958 959 /* Driver takes ownership of state on successful async commit. */ 960 return 0; 961 } 962 963 static int vc4_page_flip(struct drm_crtc *crtc, 964 struct drm_framebuffer *fb, 965 struct drm_pending_vblank_event *event, 966 uint32_t flags, 967 struct drm_modeset_acquire_ctx *ctx) 968 { 969 if (flags & DRM_MODE_PAGE_FLIP_ASYNC) 970 return vc4_async_page_flip(crtc, fb, event, flags); 971 else 972 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx); 973 } 974 975 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc) 976 { 977 struct vc4_crtc_state *vc4_state, *old_vc4_state; 978 979 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); 980 if (!vc4_state) 981 return NULL; 982 983 old_vc4_state = to_vc4_crtc_state(crtc->state); 984 vc4_state->feed_txp = old_vc4_state->feed_txp; 985 vc4_state->margins = old_vc4_state->margins; 986 987 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base); 988 return &vc4_state->base; 989 } 990 991 static void vc4_crtc_destroy_state(struct drm_crtc *crtc, 992 struct drm_crtc_state *state) 993 { 994 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev); 995 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state); 996 997 if (vc4_state->mm.allocated) { 998 unsigned long flags; 999 1000 spin_lock_irqsave(&vc4->hvs->mm_lock, flags); 1001 drm_mm_remove_node(&vc4_state->mm); 1002 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags); 1003 1004 } 1005 1006 drm_atomic_helper_crtc_destroy_state(crtc, state); 1007 } 1008 1009 static void 1010 vc4_crtc_reset(struct drm_crtc *crtc) 1011 { 1012 if (crtc->state) 1013 vc4_crtc_destroy_state(crtc, crtc->state); 1014 1015 crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL); 1016 if (crtc->state) 1017 crtc->state->crtc = crtc; 1018 } 1019 1020 static const struct drm_crtc_funcs vc4_crtc_funcs = { 1021 .set_config = drm_atomic_helper_set_config, 1022 .destroy = vc4_crtc_destroy, 1023 .page_flip = vc4_page_flip, 1024 .set_property = NULL, 1025 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */ 1026 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */ 1027 .reset = vc4_crtc_reset, 1028 .atomic_duplicate_state = vc4_crtc_duplicate_state, 1029 .atomic_destroy_state = vc4_crtc_destroy_state, 1030 .gamma_set = drm_atomic_helper_legacy_gamma_set, 1031 .enable_vblank = vc4_enable_vblank, 1032 .disable_vblank = vc4_disable_vblank, 1033 }; 1034 1035 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = { 1036 .mode_set_nofb = vc4_crtc_mode_set_nofb, 1037 .mode_valid = vc4_crtc_mode_valid, 1038 .atomic_check = vc4_crtc_atomic_check, 1039 .atomic_flush = vc4_crtc_atomic_flush, 1040 .atomic_enable = vc4_crtc_atomic_enable, 1041 .atomic_disable = vc4_crtc_atomic_disable, 1042 }; 1043 1044 static const struct vc4_crtc_data pv0_data = { 1045 .hvs_channel = 0, 1046 .debugfs_name = "crtc0_regs", 1047 .encoder_types = { 1048 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0, 1049 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI, 1050 }, 1051 }; 1052 1053 static const struct vc4_crtc_data pv1_data = { 1054 .hvs_channel = 2, 1055 .debugfs_name = "crtc1_regs", 1056 .encoder_types = { 1057 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1, 1058 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI, 1059 }, 1060 }; 1061 1062 static const struct vc4_crtc_data pv2_data = { 1063 .hvs_channel = 1, 1064 .debugfs_name = "crtc2_regs", 1065 .encoder_types = { 1066 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI, 1067 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC, 1068 }, 1069 }; 1070 1071 static const struct of_device_id vc4_crtc_dt_match[] = { 1072 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data }, 1073 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data }, 1074 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data }, 1075 {} 1076 }; 1077 1078 static void vc4_set_crtc_possible_masks(struct drm_device *drm, 1079 struct drm_crtc *crtc) 1080 { 1081 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc); 1082 const struct vc4_crtc_data *crtc_data = vc4_crtc->data; 1083 const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types; 1084 struct drm_encoder *encoder; 1085 1086 drm_for_each_encoder(encoder, drm) { 1087 struct vc4_encoder *vc4_encoder; 1088 int i; 1089 1090 /* HVS FIFO2 can feed the TXP IP. */ 1091 if (crtc_data->hvs_channel == 2 && 1092 encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) { 1093 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1094 continue; 1095 } 1096 1097 vc4_encoder = to_vc4_encoder(encoder); 1098 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) { 1099 if (vc4_encoder->type == encoder_types[i]) { 1100 vc4_encoder->clock_select = i; 1101 encoder->possible_crtcs |= drm_crtc_mask(crtc); 1102 break; 1103 } 1104 } 1105 } 1106 } 1107 1108 static void 1109 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc) 1110 { 1111 struct drm_device *drm = vc4_crtc->base.dev; 1112 struct vc4_dev *vc4 = to_vc4_dev(drm); 1113 u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel)); 1114 /* Top/base are supposed to be 4-pixel aligned, but the 1115 * Raspberry Pi firmware fills the low bits (which are 1116 * presumably ignored). 1117 */ 1118 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3; 1119 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3; 1120 1121 vc4_crtc->cob_size = top - base + 4; 1122 } 1123 1124 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data) 1125 { 1126 struct platform_device *pdev = to_platform_device(dev); 1127 struct drm_device *drm = dev_get_drvdata(master); 1128 struct vc4_crtc *vc4_crtc; 1129 struct drm_crtc *crtc; 1130 struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp; 1131 const struct of_device_id *match; 1132 int ret, i; 1133 1134 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL); 1135 if (!vc4_crtc) 1136 return -ENOMEM; 1137 crtc = &vc4_crtc->base; 1138 1139 match = of_match_device(vc4_crtc_dt_match, dev); 1140 if (!match) 1141 return -ENODEV; 1142 vc4_crtc->data = match->data; 1143 vc4_crtc->pdev = pdev; 1144 1145 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0); 1146 if (IS_ERR(vc4_crtc->regs)) 1147 return PTR_ERR(vc4_crtc->regs); 1148 1149 vc4_crtc->regset.base = vc4_crtc->regs; 1150 vc4_crtc->regset.regs = crtc_regs; 1151 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs); 1152 1153 /* For now, we create just the primary and the legacy cursor 1154 * planes. We should be able to stack more planes on easily, 1155 * but to do that we would need to compute the bandwidth 1156 * requirement of the plane configuration, and reject ones 1157 * that will take too much. 1158 */ 1159 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY); 1160 if (IS_ERR(primary_plane)) { 1161 dev_err(dev, "failed to construct primary plane\n"); 1162 ret = PTR_ERR(primary_plane); 1163 goto err; 1164 } 1165 1166 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL, 1167 &vc4_crtc_funcs, NULL); 1168 drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs); 1169 vc4_crtc->channel = vc4_crtc->data->hvs_channel; 1170 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r)); 1171 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size); 1172 1173 /* We support CTM, but only for one CRTC at a time. It's therefore 1174 * implemented as private driver state in vc4_kms, not here. 1175 */ 1176 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size); 1177 1178 /* Set up some arbitrary number of planes. We're not limited 1179 * by a set number of physical registers, just the space in 1180 * the HVS (16k) and how small an plane can be (28 bytes). 1181 * However, each plane we set up takes up some memory, and 1182 * increases the cost of looping over planes, which atomic 1183 * modesetting does quite a bit. As a result, we pick a 1184 * modest number of planes to expose, that should hopefully 1185 * still cover any sane usecase. 1186 */ 1187 for (i = 0; i < 8; i++) { 1188 struct drm_plane *plane = 1189 vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY); 1190 1191 if (IS_ERR(plane)) 1192 continue; 1193 1194 plane->possible_crtcs = drm_crtc_mask(crtc); 1195 } 1196 1197 /* Set up the legacy cursor after overlay initialization, 1198 * since we overlay planes on the CRTC in the order they were 1199 * initialized. 1200 */ 1201 cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR); 1202 if (!IS_ERR(cursor_plane)) { 1203 cursor_plane->possible_crtcs = drm_crtc_mask(crtc); 1204 crtc->cursor = cursor_plane; 1205 } 1206 1207 vc4_crtc_get_cob_allocation(vc4_crtc); 1208 1209 CRTC_WRITE(PV_INTEN, 0); 1210 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START); 1211 ret = devm_request_irq(dev, platform_get_irq(pdev, 0), 1212 vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc); 1213 if (ret) 1214 goto err_destroy_planes; 1215 1216 vc4_set_crtc_possible_masks(drm, crtc); 1217 1218 for (i = 0; i < crtc->gamma_size; i++) { 1219 vc4_crtc->lut_r[i] = i; 1220 vc4_crtc->lut_g[i] = i; 1221 vc4_crtc->lut_b[i] = i; 1222 } 1223 1224 platform_set_drvdata(pdev, vc4_crtc); 1225 1226 vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name, 1227 &vc4_crtc->regset); 1228 1229 return 0; 1230 1231 err_destroy_planes: 1232 list_for_each_entry_safe(destroy_plane, temp, 1233 &drm->mode_config.plane_list, head) { 1234 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc)) 1235 destroy_plane->funcs->destroy(destroy_plane); 1236 } 1237 err: 1238 return ret; 1239 } 1240 1241 static void vc4_crtc_unbind(struct device *dev, struct device *master, 1242 void *data) 1243 { 1244 struct platform_device *pdev = to_platform_device(dev); 1245 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev); 1246 1247 vc4_crtc_destroy(&vc4_crtc->base); 1248 1249 CRTC_WRITE(PV_INTEN, 0); 1250 1251 platform_set_drvdata(pdev, NULL); 1252 } 1253 1254 static const struct component_ops vc4_crtc_ops = { 1255 .bind = vc4_crtc_bind, 1256 .unbind = vc4_crtc_unbind, 1257 }; 1258 1259 static int vc4_crtc_dev_probe(struct platform_device *pdev) 1260 { 1261 return component_add(&pdev->dev, &vc4_crtc_ops); 1262 } 1263 1264 static int vc4_crtc_dev_remove(struct platform_device *pdev) 1265 { 1266 component_del(&pdev->dev, &vc4_crtc_ops); 1267 return 0; 1268 } 1269 1270 struct platform_driver vc4_crtc_driver = { 1271 .probe = vc4_crtc_dev_probe, 1272 .remove = vc4_crtc_dev_remove, 1273 .driver = { 1274 .name = "vc4_crtc", 1275 .of_match_table = vc4_crtc_dt_match, 1276 }, 1277 }; 1278