xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_crtc.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34 
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_crtc_helper.h>
38 #include <drm/drm_atomic_uapi.h>
39 #include <linux/clk.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <linux/component.h>
42 #include <linux/of_device.h>
43 #include "vc4_drv.h"
44 #include "vc4_regs.h"
45 
46 struct vc4_crtc_state {
47 	struct drm_crtc_state base;
48 	/* Dlist area for this CRTC configuration. */
49 	struct drm_mm_node mm;
50 	bool feed_txp;
51 	bool txp_armed;
52 };
53 
54 static inline struct vc4_crtc_state *
55 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
56 {
57 	return (struct vc4_crtc_state *)crtc_state;
58 }
59 
60 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
61 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
62 
63 #define CRTC_REG(reg) { reg, #reg }
64 static const struct {
65 	u32 reg;
66 	const char *name;
67 } crtc_regs[] = {
68 	CRTC_REG(PV_CONTROL),
69 	CRTC_REG(PV_V_CONTROL),
70 	CRTC_REG(PV_VSYNCD_EVEN),
71 	CRTC_REG(PV_HORZA),
72 	CRTC_REG(PV_HORZB),
73 	CRTC_REG(PV_VERTA),
74 	CRTC_REG(PV_VERTB),
75 	CRTC_REG(PV_VERTA_EVEN),
76 	CRTC_REG(PV_VERTB_EVEN),
77 	CRTC_REG(PV_INTEN),
78 	CRTC_REG(PV_INTSTAT),
79 	CRTC_REG(PV_STAT),
80 	CRTC_REG(PV_HACT_ACT),
81 };
82 
83 static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
84 {
85 	int i;
86 
87 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
88 		DRM_INFO("0x%04x (%s): 0x%08x\n",
89 			 crtc_regs[i].reg, crtc_regs[i].name,
90 			 CRTC_READ(crtc_regs[i].reg));
91 	}
92 }
93 
94 #ifdef CONFIG_DEBUG_FS
95 int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
96 {
97 	struct drm_info_node *node = (struct drm_info_node *)m->private;
98 	struct drm_device *dev = node->minor->dev;
99 	int crtc_index = (uintptr_t)node->info_ent->data;
100 	struct drm_crtc *crtc;
101 	struct vc4_crtc *vc4_crtc;
102 	int i;
103 
104 	i = 0;
105 	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
106 		if (i == crtc_index)
107 			break;
108 		i++;
109 	}
110 	if (!crtc)
111 		return 0;
112 	vc4_crtc = to_vc4_crtc(crtc);
113 
114 	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
115 		seq_printf(m, "%s (0x%04x): 0x%08x\n",
116 			   crtc_regs[i].name, crtc_regs[i].reg,
117 			   CRTC_READ(crtc_regs[i].reg));
118 	}
119 
120 	return 0;
121 }
122 #endif
123 
124 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
125 			     bool in_vblank_irq, int *vpos, int *hpos,
126 			     ktime_t *stime, ktime_t *etime,
127 			     const struct drm_display_mode *mode)
128 {
129 	struct vc4_dev *vc4 = to_vc4_dev(dev);
130 	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
131 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
132 	u32 val;
133 	int fifo_lines;
134 	int vblank_lines;
135 	bool ret = false;
136 
137 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
138 
139 	/* Get optional system timestamp before query. */
140 	if (stime)
141 		*stime = ktime_get();
142 
143 	/*
144 	 * Read vertical scanline which is currently composed for our
145 	 * pixelvalve by the HVS, and also the scaler status.
146 	 */
147 	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
148 
149 	/* Get optional system timestamp after query. */
150 	if (etime)
151 		*etime = ktime_get();
152 
153 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
154 
155 	/* Vertical position of hvs composed scanline. */
156 	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
157 	*hpos = 0;
158 
159 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
160 		*vpos /= 2;
161 
162 		/* Use hpos to correct for field offset in interlaced mode. */
163 		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
164 			*hpos += mode->crtc_htotal / 2;
165 	}
166 
167 	/* This is the offset we need for translating hvs -> pv scanout pos. */
168 	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
169 
170 	if (fifo_lines > 0)
171 		ret = true;
172 
173 	/* HVS more than fifo_lines into frame for compositing? */
174 	if (*vpos > fifo_lines) {
175 		/*
176 		 * We are in active scanout and can get some meaningful results
177 		 * from HVS. The actual PV scanout can not trail behind more
178 		 * than fifo_lines as that is the fifo's capacity. Assume that
179 		 * in active scanout the HVS and PV work in lockstep wrt. HVS
180 		 * refilling the fifo and PV consuming from the fifo, ie.
181 		 * whenever the PV consumes and frees up a scanline in the
182 		 * fifo, the HVS will immediately refill it, therefore
183 		 * incrementing vpos. Therefore we choose HVS read position -
184 		 * fifo size in scanlines as a estimate of the real scanout
185 		 * position of the PV.
186 		 */
187 		*vpos -= fifo_lines + 1;
188 
189 		return ret;
190 	}
191 
192 	/*
193 	 * Less: This happens when we are in vblank and the HVS, after getting
194 	 * the VSTART restart signal from the PV, just started refilling its
195 	 * fifo with new lines from the top-most lines of the new framebuffers.
196 	 * The PV does not scan out in vblank, so does not remove lines from
197 	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
198 	 * We can't get meaningful readings wrt. scanline position of the PV
199 	 * and need to make things up in a approximative but consistent way.
200 	 */
201 	vblank_lines = mode->vtotal - mode->vdisplay;
202 
203 	if (in_vblank_irq) {
204 		/*
205 		 * Assume the irq handler got called close to first
206 		 * line of vblank, so PV has about a full vblank
207 		 * scanlines to go, and as a base timestamp use the
208 		 * one taken at entry into vblank irq handler, so it
209 		 * is not affected by random delays due to lock
210 		 * contention on event_lock or vblank_time lock in
211 		 * the core.
212 		 */
213 		*vpos = -vblank_lines;
214 
215 		if (stime)
216 			*stime = vc4_crtc->t_vblank;
217 		if (etime)
218 			*etime = vc4_crtc->t_vblank;
219 
220 		/*
221 		 * If the HVS fifo is not yet full then we know for certain
222 		 * we are at the very beginning of vblank, as the hvs just
223 		 * started refilling, and the stime and etime timestamps
224 		 * truly correspond to start of vblank.
225 		 *
226 		 * Unfortunately there's no way to report this to upper levels
227 		 * and make it more useful.
228 		 */
229 	} else {
230 		/*
231 		 * No clue where we are inside vblank. Return a vpos of zero,
232 		 * which will cause calling code to just return the etime
233 		 * timestamp uncorrected. At least this is no worse than the
234 		 * standard fallback.
235 		 */
236 		*vpos = 0;
237 	}
238 
239 	return ret;
240 }
241 
242 static void vc4_crtc_destroy(struct drm_crtc *crtc)
243 {
244 	drm_crtc_cleanup(crtc);
245 }
246 
247 static void
248 vc4_crtc_lut_load(struct drm_crtc *crtc)
249 {
250 	struct drm_device *dev = crtc->dev;
251 	struct vc4_dev *vc4 = to_vc4_dev(dev);
252 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
253 	u32 i;
254 
255 	/* The LUT memory is laid out with each HVS channel in order,
256 	 * each of which takes 256 writes for R, 256 for G, then 256
257 	 * for B.
258 	 */
259 	HVS_WRITE(SCALER_GAMADDR,
260 		  SCALER_GAMADDR_AUTOINC |
261 		  (vc4_crtc->channel * 3 * crtc->gamma_size));
262 
263 	for (i = 0; i < crtc->gamma_size; i++)
264 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
265 	for (i = 0; i < crtc->gamma_size; i++)
266 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
267 	for (i = 0; i < crtc->gamma_size; i++)
268 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
269 }
270 
271 static void
272 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
273 {
274 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
275 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
276 	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
277 	u32 i;
278 
279 	for (i = 0; i < length; i++) {
280 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
281 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
282 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
283 	}
284 
285 	vc4_crtc_lut_load(crtc);
286 }
287 
288 static u32 vc4_get_fifo_full_level(u32 format)
289 {
290 	static const u32 fifo_len_bytes = 64;
291 	static const u32 hvs_latency_pix = 6;
292 
293 	switch (format) {
294 	case PV_CONTROL_FORMAT_DSIV_16:
295 	case PV_CONTROL_FORMAT_DSIC_16:
296 		return fifo_len_bytes - 2 * hvs_latency_pix;
297 	case PV_CONTROL_FORMAT_DSIV_18:
298 		return fifo_len_bytes - 14;
299 	case PV_CONTROL_FORMAT_24:
300 	case PV_CONTROL_FORMAT_DSIV_24:
301 	default:
302 		return fifo_len_bytes - 3 * hvs_latency_pix;
303 	}
304 }
305 
306 /*
307  * Returns the encoder attached to the CRTC.
308  *
309  * VC4 can only scan out to one encoder at a time, while the DRM core
310  * allows drivers to push pixels to more than one encoder from the
311  * same CRTC.
312  */
313 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
314 {
315 	struct drm_connector *connector;
316 	struct drm_connector_list_iter conn_iter;
317 
318 	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
319 	drm_for_each_connector_iter(connector, &conn_iter) {
320 		if (connector->state->crtc == crtc) {
321 			drm_connector_list_iter_end(&conn_iter);
322 			return connector->encoder;
323 		}
324 	}
325 	drm_connector_list_iter_end(&conn_iter);
326 
327 	return NULL;
328 }
329 
330 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
331 {
332 	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
333 	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
334 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
335 	struct drm_crtc_state *state = crtc->state;
336 	struct drm_display_mode *mode = &state->adjusted_mode;
337 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
338 	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
339 	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
340 		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
341 	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
342 
343 	/* Reset the PV fifo. */
344 	CRTC_WRITE(PV_CONTROL, 0);
345 	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
346 	CRTC_WRITE(PV_CONTROL, 0);
347 
348 	CRTC_WRITE(PV_HORZA,
349 		   VC4_SET_FIELD((mode->htotal -
350 				  mode->hsync_end) * pixel_rep,
351 				 PV_HORZA_HBP) |
352 		   VC4_SET_FIELD((mode->hsync_end -
353 				  mode->hsync_start) * pixel_rep,
354 				 PV_HORZA_HSYNC));
355 	CRTC_WRITE(PV_HORZB,
356 		   VC4_SET_FIELD((mode->hsync_start -
357 				  mode->hdisplay) * pixel_rep,
358 				 PV_HORZB_HFP) |
359 		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
360 
361 	CRTC_WRITE(PV_VERTA,
362 		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
363 				 PV_VERTA_VBP) |
364 		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
365 				 PV_VERTA_VSYNC));
366 	CRTC_WRITE(PV_VERTB,
367 		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
368 				 PV_VERTB_VFP) |
369 		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
370 
371 	if (interlace) {
372 		CRTC_WRITE(PV_VERTA_EVEN,
373 			   VC4_SET_FIELD(mode->crtc_vtotal -
374 					 mode->crtc_vsync_end - 1,
375 					 PV_VERTA_VBP) |
376 			   VC4_SET_FIELD(mode->crtc_vsync_end -
377 					 mode->crtc_vsync_start,
378 					 PV_VERTA_VSYNC));
379 		CRTC_WRITE(PV_VERTB_EVEN,
380 			   VC4_SET_FIELD(mode->crtc_vsync_start -
381 					 mode->crtc_vdisplay,
382 					 PV_VERTB_VFP) |
383 			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
384 
385 		/* We set up first field even mode for HDMI.  VEC's
386 		 * NTSC mode would want first field odd instead, once
387 		 * we support it (to do so, set ODD_FIRST and put the
388 		 * delay in VSYNCD_EVEN instead).
389 		 */
390 		CRTC_WRITE(PV_V_CONTROL,
391 			   PV_VCONTROL_CONTINUOUS |
392 			   (is_dsi ? PV_VCONTROL_DSI : 0) |
393 			   PV_VCONTROL_INTERLACE |
394 			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
395 					 PV_VCONTROL_ODD_DELAY));
396 		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
397 	} else {
398 		CRTC_WRITE(PV_V_CONTROL,
399 			   PV_VCONTROL_CONTINUOUS |
400 			   (is_dsi ? PV_VCONTROL_DSI : 0));
401 	}
402 
403 	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
404 
405 	CRTC_WRITE(PV_CONTROL,
406 		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
407 		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
408 				 PV_CONTROL_FIFO_LEVEL) |
409 		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
410 		   PV_CONTROL_CLR_AT_START |
411 		   PV_CONTROL_TRIGGER_UNDERFLOW |
412 		   PV_CONTROL_WAIT_HSTART |
413 		   VC4_SET_FIELD(vc4_encoder->clock_select,
414 				 PV_CONTROL_CLK_SELECT) |
415 		   PV_CONTROL_FIFO_CLR |
416 		   PV_CONTROL_EN);
417 }
418 
419 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
420 {
421 	struct drm_device *dev = crtc->dev;
422 	struct vc4_dev *vc4 = to_vc4_dev(dev);
423 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
424 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
425 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
426 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
427 	bool debug_dump_regs = false;
428 
429 	if (debug_dump_regs) {
430 		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
431 		vc4_crtc_dump_regs(vc4_crtc);
432 	}
433 
434 	if (vc4_crtc->channel == 2) {
435 		u32 dispctrl;
436 		u32 dsp3_mux;
437 
438 		/*
439 		 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
440 		 * FIFO X'.
441 		 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
442 		 *
443 		 * DSP3 is connected to FIFO2 unless the transposer is
444 		 * enabled. In this case, FIFO 2 is directly accessed by the
445 		 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
446 		 * route.
447 		 */
448 		if (vc4_state->feed_txp)
449 			dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
450 		else
451 			dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
452 
453 		dispctrl = HVS_READ(SCALER_DISPCTRL) &
454 			   ~SCALER_DISPCTRL_DSP3_MUX_MASK;
455 		HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
456 	}
457 
458 	if (!vc4_state->feed_txp)
459 		vc4_crtc_config_pv(crtc);
460 
461 	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
462 		  SCALER_DISPBKGND_AUTOHS |
463 		  SCALER_DISPBKGND_GAMMA |
464 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
465 
466 	/* Reload the LUT, since the SRAMs would have been disabled if
467 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
468 	 */
469 	vc4_crtc_lut_load(crtc);
470 
471 	if (debug_dump_regs) {
472 		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
473 		vc4_crtc_dump_regs(vc4_crtc);
474 	}
475 }
476 
477 static void require_hvs_enabled(struct drm_device *dev)
478 {
479 	struct vc4_dev *vc4 = to_vc4_dev(dev);
480 
481 	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
482 		     SCALER_DISPCTRL_ENABLE);
483 }
484 
485 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
486 				    struct drm_crtc_state *old_state)
487 {
488 	struct drm_device *dev = crtc->dev;
489 	struct vc4_dev *vc4 = to_vc4_dev(dev);
490 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
491 	u32 chan = vc4_crtc->channel;
492 	int ret;
493 	require_hvs_enabled(dev);
494 
495 	/* Disable vblank irq handling before crtc is disabled. */
496 	drm_crtc_vblank_off(crtc);
497 
498 	CRTC_WRITE(PV_V_CONTROL,
499 		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
500 	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
501 	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
502 
503 	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
504 	    SCALER_DISPCTRLX_ENABLE) {
505 		HVS_WRITE(SCALER_DISPCTRLX(chan),
506 			  SCALER_DISPCTRLX_RESET);
507 
508 		/* While the docs say that reset is self-clearing, it
509 		 * seems it doesn't actually.
510 		 */
511 		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
512 	}
513 
514 	/* Once we leave, the scaler should be disabled and its fifo empty. */
515 
516 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
517 
518 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
519 				   SCALER_DISPSTATX_MODE) !=
520 		     SCALER_DISPSTATX_MODE_DISABLED);
521 
522 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
523 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
524 		     SCALER_DISPSTATX_EMPTY);
525 
526 	/*
527 	 * Make sure we issue a vblank event after disabling the CRTC if
528 	 * someone was waiting it.
529 	 */
530 	if (crtc->state->event) {
531 		unsigned long flags;
532 
533 		spin_lock_irqsave(&dev->event_lock, flags);
534 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
535 		crtc->state->event = NULL;
536 		spin_unlock_irqrestore(&dev->event_lock, flags);
537 	}
538 }
539 
540 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
541 {
542 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
543 
544 	vc4_state->txp_armed = true;
545 }
546 
547 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
548 {
549 	struct drm_device *dev = crtc->dev;
550 	struct vc4_dev *vc4 = to_vc4_dev(dev);
551 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
552 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
553 
554 	if (crtc->state->event) {
555 		unsigned long flags;
556 
557 		crtc->state->event->pipe = drm_crtc_index(crtc);
558 
559 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
560 
561 		spin_lock_irqsave(&dev->event_lock, flags);
562 
563 		if (!vc4_state->feed_txp || vc4_state->txp_armed) {
564 			vc4_crtc->event = crtc->state->event;
565 			crtc->state->event = NULL;
566 		}
567 
568 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
569 			  vc4_state->mm.start);
570 
571 		spin_unlock_irqrestore(&dev->event_lock, flags);
572 	} else {
573 		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
574 			  vc4_state->mm.start);
575 	}
576 }
577 
578 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
579 				   struct drm_crtc_state *old_state)
580 {
581 	struct drm_device *dev = crtc->dev;
582 	struct vc4_dev *vc4 = to_vc4_dev(dev);
583 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
584 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
585 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
586 
587 	require_hvs_enabled(dev);
588 
589 	/* Enable vblank irq handling before crtc is started otherwise
590 	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
591 	 */
592 	drm_crtc_vblank_on(crtc);
593 	vc4_crtc_update_dlist(crtc);
594 
595 	/* Turn on the scaler, which will wait for vstart to start
596 	 * compositing.
597 	 * When feeding the transposer, we should operate in oneshot
598 	 * mode.
599 	 */
600 	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
601 		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
602 		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
603 		  SCALER_DISPCTRLX_ENABLE |
604 		  (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
605 
606 	/* When feeding the transposer block the pixelvalve is unneeded and
607 	 * should not be enabled.
608 	 */
609 	if (!vc4_state->feed_txp)
610 		CRTC_WRITE(PV_V_CONTROL,
611 			   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
612 }
613 
614 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
615 						const struct drm_display_mode *mode)
616 {
617 	/* Do not allow doublescan modes from user space */
618 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
619 		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
620 			      crtc->base.id);
621 		return MODE_NO_DBLESCAN;
622 	}
623 
624 	return MODE_OK;
625 }
626 
627 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
628 				 struct drm_crtc_state *state)
629 {
630 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
631 	struct drm_device *dev = crtc->dev;
632 	struct vc4_dev *vc4 = to_vc4_dev(dev);
633 	struct drm_plane *plane;
634 	unsigned long flags;
635 	const struct drm_plane_state *plane_state;
636 	struct drm_connector *conn;
637 	struct drm_connector_state *conn_state;
638 	u32 dlist_count = 0;
639 	int ret, i;
640 
641 	/* The pixelvalve can only feed one encoder (and encoders are
642 	 * 1:1 with connectors.)
643 	 */
644 	if (hweight32(state->connector_mask) > 1)
645 		return -EINVAL;
646 
647 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
648 		dlist_count += vc4_plane_dlist_size(plane_state);
649 
650 	dlist_count++; /* Account for SCALER_CTL0_END. */
651 
652 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
653 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
654 				 dlist_count);
655 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
656 	if (ret)
657 		return ret;
658 
659 	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
660 		if (conn_state->crtc != crtc)
661 			continue;
662 
663 		/* The writeback connector is implemented using the transposer
664 		 * block which is directly taking its data from the HVS FIFO.
665 		 */
666 		if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
667 			state->no_vblank = true;
668 			vc4_state->feed_txp = true;
669 		} else {
670 			state->no_vblank = false;
671 			vc4_state->feed_txp = false;
672 		}
673 
674 		break;
675 	}
676 
677 	return 0;
678 }
679 
680 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
681 				  struct drm_crtc_state *old_state)
682 {
683 	struct drm_device *dev = crtc->dev;
684 	struct vc4_dev *vc4 = to_vc4_dev(dev);
685 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
686 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
687 	struct drm_plane *plane;
688 	struct vc4_plane_state *vc4_plane_state;
689 	bool debug_dump_regs = false;
690 	bool enable_bg_fill = false;
691 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
692 	u32 __iomem *dlist_next = dlist_start;
693 
694 	if (debug_dump_regs) {
695 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
696 		vc4_hvs_dump_state(dev);
697 	}
698 
699 	/* Copy all the active planes' dlist contents to the hardware dlist. */
700 	drm_atomic_crtc_for_each_plane(plane, crtc) {
701 		/* Is this the first active plane? */
702 		if (dlist_next == dlist_start) {
703 			/* We need to enable background fill when a plane
704 			 * could be alpha blending from the background, i.e.
705 			 * where no other plane is underneath. It suffices to
706 			 * consider the first active plane here since we set
707 			 * needs_bg_fill such that either the first plane
708 			 * already needs it or all planes on top blend from
709 			 * the first or a lower plane.
710 			 */
711 			vc4_plane_state = to_vc4_plane_state(plane->state);
712 			enable_bg_fill = vc4_plane_state->needs_bg_fill;
713 		}
714 
715 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
716 	}
717 
718 	writel(SCALER_CTL0_END, dlist_next);
719 	dlist_next++;
720 
721 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
722 
723 	if (enable_bg_fill)
724 		/* This sets a black background color fill, as is the case
725 		 * with other DRM drivers.
726 		 */
727 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
728 			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
729 			  SCALER_DISPBKGND_FILL);
730 
731 	/* Only update DISPLIST if the CRTC was already running and is not
732 	 * being disabled.
733 	 * vc4_crtc_enable() takes care of updating the dlist just after
734 	 * re-enabling VBLANK interrupts and before enabling the engine.
735 	 * If the CRTC is being disabled, there's no point in updating this
736 	 * information.
737 	 */
738 	if (crtc->state->active && old_state->active)
739 		vc4_crtc_update_dlist(crtc);
740 
741 	if (crtc->state->color_mgmt_changed) {
742 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
743 
744 		if (crtc->state->gamma_lut) {
745 			vc4_crtc_update_gamma_lut(crtc);
746 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
747 		} else {
748 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
749 			 * in hardware, which is the same as a linear lut that
750 			 * DRM expects us to use in absence of a user lut.
751 			 */
752 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
753 		}
754 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
755 	}
756 
757 	if (debug_dump_regs) {
758 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
759 		vc4_hvs_dump_state(dev);
760 	}
761 }
762 
763 static int vc4_enable_vblank(struct drm_crtc *crtc)
764 {
765 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
766 
767 	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
768 
769 	return 0;
770 }
771 
772 static void vc4_disable_vblank(struct drm_crtc *crtc)
773 {
774 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
775 
776 	CRTC_WRITE(PV_INTEN, 0);
777 }
778 
779 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
780 {
781 	struct drm_crtc *crtc = &vc4_crtc->base;
782 	struct drm_device *dev = crtc->dev;
783 	struct vc4_dev *vc4 = to_vc4_dev(dev);
784 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
785 	u32 chan = vc4_crtc->channel;
786 	unsigned long flags;
787 
788 	spin_lock_irqsave(&dev->event_lock, flags);
789 	if (vc4_crtc->event &&
790 	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
791 	     vc4_state->feed_txp)) {
792 		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
793 		vc4_crtc->event = NULL;
794 		drm_crtc_vblank_put(crtc);
795 	}
796 	spin_unlock_irqrestore(&dev->event_lock, flags);
797 }
798 
799 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
800 {
801 	crtc->t_vblank = ktime_get();
802 	drm_crtc_handle_vblank(&crtc->base);
803 	vc4_crtc_handle_page_flip(crtc);
804 }
805 
806 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
807 {
808 	struct vc4_crtc *vc4_crtc = data;
809 	u32 stat = CRTC_READ(PV_INTSTAT);
810 	irqreturn_t ret = IRQ_NONE;
811 
812 	if (stat & PV_INT_VFP_START) {
813 		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
814 		vc4_crtc_handle_vblank(vc4_crtc);
815 		ret = IRQ_HANDLED;
816 	}
817 
818 	return ret;
819 }
820 
821 struct vc4_async_flip_state {
822 	struct drm_crtc *crtc;
823 	struct drm_framebuffer *fb;
824 	struct drm_framebuffer *old_fb;
825 	struct drm_pending_vblank_event *event;
826 
827 	struct vc4_seqno_cb cb;
828 };
829 
830 /* Called when the V3D execution for the BO being flipped to is done, so that
831  * we can actually update the plane's address to point to it.
832  */
833 static void
834 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
835 {
836 	struct vc4_async_flip_state *flip_state =
837 		container_of(cb, struct vc4_async_flip_state, cb);
838 	struct drm_crtc *crtc = flip_state->crtc;
839 	struct drm_device *dev = crtc->dev;
840 	struct vc4_dev *vc4 = to_vc4_dev(dev);
841 	struct drm_plane *plane = crtc->primary;
842 
843 	vc4_plane_async_set_fb(plane, flip_state->fb);
844 	if (flip_state->event) {
845 		unsigned long flags;
846 
847 		spin_lock_irqsave(&dev->event_lock, flags);
848 		drm_crtc_send_vblank_event(crtc, flip_state->event);
849 		spin_unlock_irqrestore(&dev->event_lock, flags);
850 	}
851 
852 	drm_crtc_vblank_put(crtc);
853 	drm_framebuffer_put(flip_state->fb);
854 
855 	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
856 	 * when the planes are updated through the async update path.
857 	 * FIXME: we should move to generic async-page-flip when it's
858 	 * available, so that we can get rid of this hand-made cleanup_fb()
859 	 * logic.
860 	 */
861 	if (flip_state->old_fb) {
862 		struct drm_gem_cma_object *cma_bo;
863 		struct vc4_bo *bo;
864 
865 		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
866 		bo = to_vc4_bo(&cma_bo->base);
867 		vc4_bo_dec_usecnt(bo);
868 		drm_framebuffer_put(flip_state->old_fb);
869 	}
870 
871 	kfree(flip_state);
872 
873 	up(&vc4->async_modeset);
874 }
875 
876 /* Implements async (non-vblank-synced) page flips.
877  *
878  * The page flip ioctl needs to return immediately, so we grab the
879  * modeset semaphore on the pipe, and queue the address update for
880  * when V3D is done with the BO being flipped to.
881  */
882 static int vc4_async_page_flip(struct drm_crtc *crtc,
883 			       struct drm_framebuffer *fb,
884 			       struct drm_pending_vblank_event *event,
885 			       uint32_t flags)
886 {
887 	struct drm_device *dev = crtc->dev;
888 	struct vc4_dev *vc4 = to_vc4_dev(dev);
889 	struct drm_plane *plane = crtc->primary;
890 	int ret = 0;
891 	struct vc4_async_flip_state *flip_state;
892 	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
893 	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
894 
895 	/* Increment the BO usecnt here, so that we never end up with an
896 	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
897 	 * plane is later updated through the non-async path.
898 	 * FIXME: we should move to generic async-page-flip when it's
899 	 * available, so that we can get rid of this hand-made prepare_fb()
900 	 * logic.
901 	 */
902 	ret = vc4_bo_inc_usecnt(bo);
903 	if (ret)
904 		return ret;
905 
906 	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
907 	if (!flip_state) {
908 		vc4_bo_dec_usecnt(bo);
909 		return -ENOMEM;
910 	}
911 
912 	drm_framebuffer_get(fb);
913 	flip_state->fb = fb;
914 	flip_state->crtc = crtc;
915 	flip_state->event = event;
916 
917 	/* Make sure all other async modesetes have landed. */
918 	ret = down_interruptible(&vc4->async_modeset);
919 	if (ret) {
920 		drm_framebuffer_put(fb);
921 		vc4_bo_dec_usecnt(bo);
922 		kfree(flip_state);
923 		return ret;
924 	}
925 
926 	/* Save the current FB before it's replaced by the new one in
927 	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
928 	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
929 	 * it consistent.
930 	 * FIXME: we should move to generic async-page-flip when it's
931 	 * available, so that we can get rid of this hand-made cleanup_fb()
932 	 * logic.
933 	 */
934 	flip_state->old_fb = plane->state->fb;
935 	if (flip_state->old_fb)
936 		drm_framebuffer_get(flip_state->old_fb);
937 
938 	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
939 
940 	/* Immediately update the plane's legacy fb pointer, so that later
941 	 * modeset prep sees the state that will be present when the semaphore
942 	 * is released.
943 	 */
944 	drm_atomic_set_fb_for_plane(plane->state, fb);
945 
946 	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
947 			   vc4_async_page_flip_complete);
948 
949 	/* Driver takes ownership of state on successful async commit. */
950 	return 0;
951 }
952 
953 static int vc4_page_flip(struct drm_crtc *crtc,
954 			 struct drm_framebuffer *fb,
955 			 struct drm_pending_vblank_event *event,
956 			 uint32_t flags,
957 			 struct drm_modeset_acquire_ctx *ctx)
958 {
959 	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
960 		return vc4_async_page_flip(crtc, fb, event, flags);
961 	else
962 		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
963 }
964 
965 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
966 {
967 	struct vc4_crtc_state *vc4_state, *old_vc4_state;
968 
969 	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
970 	if (!vc4_state)
971 		return NULL;
972 
973 	old_vc4_state = to_vc4_crtc_state(crtc->state);
974 	vc4_state->feed_txp = old_vc4_state->feed_txp;
975 
976 	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
977 	return &vc4_state->base;
978 }
979 
980 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
981 				   struct drm_crtc_state *state)
982 {
983 	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
984 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
985 
986 	if (vc4_state->mm.allocated) {
987 		unsigned long flags;
988 
989 		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
990 		drm_mm_remove_node(&vc4_state->mm);
991 		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
992 
993 	}
994 
995 	drm_atomic_helper_crtc_destroy_state(crtc, state);
996 }
997 
998 static void
999 vc4_crtc_reset(struct drm_crtc *crtc)
1000 {
1001 	if (crtc->state)
1002 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1003 
1004 	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1005 	if (crtc->state)
1006 		crtc->state->crtc = crtc;
1007 }
1008 
1009 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1010 	.set_config = drm_atomic_helper_set_config,
1011 	.destroy = vc4_crtc_destroy,
1012 	.page_flip = vc4_page_flip,
1013 	.set_property = NULL,
1014 	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1015 	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1016 	.reset = vc4_crtc_reset,
1017 	.atomic_duplicate_state = vc4_crtc_duplicate_state,
1018 	.atomic_destroy_state = vc4_crtc_destroy_state,
1019 	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1020 	.enable_vblank = vc4_enable_vblank,
1021 	.disable_vblank = vc4_disable_vblank,
1022 };
1023 
1024 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1025 	.mode_set_nofb = vc4_crtc_mode_set_nofb,
1026 	.mode_valid = vc4_crtc_mode_valid,
1027 	.atomic_check = vc4_crtc_atomic_check,
1028 	.atomic_flush = vc4_crtc_atomic_flush,
1029 	.atomic_enable = vc4_crtc_atomic_enable,
1030 	.atomic_disable = vc4_crtc_atomic_disable,
1031 };
1032 
1033 static const struct vc4_crtc_data pv0_data = {
1034 	.hvs_channel = 0,
1035 	.encoder_types = {
1036 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1037 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1038 	},
1039 };
1040 
1041 static const struct vc4_crtc_data pv1_data = {
1042 	.hvs_channel = 2,
1043 	.encoder_types = {
1044 		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1045 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1046 	},
1047 };
1048 
1049 static const struct vc4_crtc_data pv2_data = {
1050 	.hvs_channel = 1,
1051 	.encoder_types = {
1052 		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1053 		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1054 	},
1055 };
1056 
1057 static const struct of_device_id vc4_crtc_dt_match[] = {
1058 	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1059 	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1060 	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1061 	{}
1062 };
1063 
1064 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1065 					struct drm_crtc *crtc)
1066 {
1067 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1068 	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1069 	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1070 	struct drm_encoder *encoder;
1071 
1072 	drm_for_each_encoder(encoder, drm) {
1073 		struct vc4_encoder *vc4_encoder;
1074 		int i;
1075 
1076 		/* HVS FIFO2 can feed the TXP IP. */
1077 		if (crtc_data->hvs_channel == 2 &&
1078 		    encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1079 			encoder->possible_crtcs |= drm_crtc_mask(crtc);
1080 			continue;
1081 		}
1082 
1083 		vc4_encoder = to_vc4_encoder(encoder);
1084 		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1085 			if (vc4_encoder->type == encoder_types[i]) {
1086 				vc4_encoder->clock_select = i;
1087 				encoder->possible_crtcs |= drm_crtc_mask(crtc);
1088 				break;
1089 			}
1090 		}
1091 	}
1092 }
1093 
1094 static void
1095 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1096 {
1097 	struct drm_device *drm = vc4_crtc->base.dev;
1098 	struct vc4_dev *vc4 = to_vc4_dev(drm);
1099 	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1100 	/* Top/base are supposed to be 4-pixel aligned, but the
1101 	 * Raspberry Pi firmware fills the low bits (which are
1102 	 * presumably ignored).
1103 	 */
1104 	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1105 	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1106 
1107 	vc4_crtc->cob_size = top - base + 4;
1108 }
1109 
1110 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1111 {
1112 	struct platform_device *pdev = to_platform_device(dev);
1113 	struct drm_device *drm = dev_get_drvdata(master);
1114 	struct vc4_crtc *vc4_crtc;
1115 	struct drm_crtc *crtc;
1116 	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1117 	const struct of_device_id *match;
1118 	int ret, i;
1119 
1120 	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1121 	if (!vc4_crtc)
1122 		return -ENOMEM;
1123 	crtc = &vc4_crtc->base;
1124 
1125 	match = of_match_device(vc4_crtc_dt_match, dev);
1126 	if (!match)
1127 		return -ENODEV;
1128 	vc4_crtc->data = match->data;
1129 
1130 	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1131 	if (IS_ERR(vc4_crtc->regs))
1132 		return PTR_ERR(vc4_crtc->regs);
1133 
1134 	/* For now, we create just the primary and the legacy cursor
1135 	 * planes.  We should be able to stack more planes on easily,
1136 	 * but to do that we would need to compute the bandwidth
1137 	 * requirement of the plane configuration, and reject ones
1138 	 * that will take too much.
1139 	 */
1140 	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1141 	if (IS_ERR(primary_plane)) {
1142 		dev_err(dev, "failed to construct primary plane\n");
1143 		ret = PTR_ERR(primary_plane);
1144 		goto err;
1145 	}
1146 
1147 	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1148 				  &vc4_crtc_funcs, NULL);
1149 	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1150 	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1151 	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1152 	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1153 
1154 	/* We support CTM, but only for one CRTC at a time. It's therefore
1155 	 * implemented as private driver state in vc4_kms, not here.
1156 	 */
1157 	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1158 
1159 	/* Set up some arbitrary number of planes.  We're not limited
1160 	 * by a set number of physical registers, just the space in
1161 	 * the HVS (16k) and how small an plane can be (28 bytes).
1162 	 * However, each plane we set up takes up some memory, and
1163 	 * increases the cost of looping over planes, which atomic
1164 	 * modesetting does quite a bit.  As a result, we pick a
1165 	 * modest number of planes to expose, that should hopefully
1166 	 * still cover any sane usecase.
1167 	 */
1168 	for (i = 0; i < 8; i++) {
1169 		struct drm_plane *plane =
1170 			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1171 
1172 		if (IS_ERR(plane))
1173 			continue;
1174 
1175 		plane->possible_crtcs = drm_crtc_mask(crtc);
1176 	}
1177 
1178 	/* Set up the legacy cursor after overlay initialization,
1179 	 * since we overlay planes on the CRTC in the order they were
1180 	 * initialized.
1181 	 */
1182 	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1183 	if (!IS_ERR(cursor_plane)) {
1184 		cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1185 		crtc->cursor = cursor_plane;
1186 	}
1187 
1188 	vc4_crtc_get_cob_allocation(vc4_crtc);
1189 
1190 	CRTC_WRITE(PV_INTEN, 0);
1191 	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1192 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1193 			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1194 	if (ret)
1195 		goto err_destroy_planes;
1196 
1197 	vc4_set_crtc_possible_masks(drm, crtc);
1198 
1199 	for (i = 0; i < crtc->gamma_size; i++) {
1200 		vc4_crtc->lut_r[i] = i;
1201 		vc4_crtc->lut_g[i] = i;
1202 		vc4_crtc->lut_b[i] = i;
1203 	}
1204 
1205 	platform_set_drvdata(pdev, vc4_crtc);
1206 
1207 	return 0;
1208 
1209 err_destroy_planes:
1210 	list_for_each_entry_safe(destroy_plane, temp,
1211 				 &drm->mode_config.plane_list, head) {
1212 		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1213 		    destroy_plane->funcs->destroy(destroy_plane);
1214 	}
1215 err:
1216 	return ret;
1217 }
1218 
1219 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1220 			    void *data)
1221 {
1222 	struct platform_device *pdev = to_platform_device(dev);
1223 	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1224 
1225 	vc4_crtc_destroy(&vc4_crtc->base);
1226 
1227 	CRTC_WRITE(PV_INTEN, 0);
1228 
1229 	platform_set_drvdata(pdev, NULL);
1230 }
1231 
1232 static const struct component_ops vc4_crtc_ops = {
1233 	.bind   = vc4_crtc_bind,
1234 	.unbind = vc4_crtc_unbind,
1235 };
1236 
1237 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1238 {
1239 	return component_add(&pdev->dev, &vc4_crtc_ops);
1240 }
1241 
1242 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1243 {
1244 	component_del(&pdev->dev, &vc4_crtc_ops);
1245 	return 0;
1246 }
1247 
1248 struct platform_driver vc4_crtc_driver = {
1249 	.probe = vc4_crtc_dev_probe,
1250 	.remove = vc4_crtc_dev_remove,
1251 	.driver = {
1252 		.name = "vc4_crtc",
1253 		.of_match_table = vc4_crtc_dt_match,
1254 	},
1255 };
1256