1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Copyright (C) 2018 Broadcom */ 3 4 /** 5 * DOC: Broadcom V3D scheduling 6 * 7 * The shared DRM GPU scheduler is used to coordinate submitting jobs 8 * to the hardware. Each DRM fd (roughly a client process) gets its 9 * own scheduler entity, which will process jobs in order. The GPU 10 * scheduler will round-robin between clients to submit the next job. 11 * 12 * For simplicity, and in order to keep latency low for interactive 13 * jobs when bulk background jobs are queued up, we submit a new job 14 * to the HW only when it has completed the last one, instead of 15 * filling up the CT[01]Q FIFOs with jobs. Similarly, we use 16 * v3d_job_dependency() to manage the dependency between bin and 17 * render, instead of having the clients submit jobs using the HW's 18 * semaphores to interlock between them. 19 */ 20 21 #include <linux/kthread.h> 22 23 #include "v3d_drv.h" 24 #include "v3d_regs.h" 25 #include "v3d_trace.h" 26 27 static struct v3d_job * 28 to_v3d_job(struct drm_sched_job *sched_job) 29 { 30 return container_of(sched_job, struct v3d_job, base); 31 } 32 33 static void 34 v3d_job_free(struct drm_sched_job *sched_job) 35 { 36 struct v3d_job *job = to_v3d_job(sched_job); 37 38 v3d_exec_put(job->exec); 39 } 40 41 /** 42 * Returns the fences that the bin job depends on, one by one. 43 * v3d_job_run() won't be called until all of them have been signaled. 44 */ 45 static struct dma_fence * 46 v3d_job_dependency(struct drm_sched_job *sched_job, 47 struct drm_sched_entity *s_entity) 48 { 49 struct v3d_job *job = to_v3d_job(sched_job); 50 struct v3d_exec_info *exec = job->exec; 51 enum v3d_queue q = job == &exec->bin ? V3D_BIN : V3D_RENDER; 52 struct dma_fence *fence; 53 54 fence = job->in_fence; 55 if (fence) { 56 job->in_fence = NULL; 57 return fence; 58 } 59 60 if (q == V3D_RENDER) { 61 /* If we had a bin job, the render job definitely depends on 62 * it. We first have to wait for bin to be scheduled, so that 63 * its done_fence is created. 64 */ 65 fence = exec->bin_done_fence; 66 if (fence) { 67 exec->bin_done_fence = NULL; 68 return fence; 69 } 70 } 71 72 /* XXX: Wait on a fence for switching the GMP if necessary, 73 * and then do so. 74 */ 75 76 return fence; 77 } 78 79 static struct dma_fence *v3d_job_run(struct drm_sched_job *sched_job) 80 { 81 struct v3d_job *job = to_v3d_job(sched_job); 82 struct v3d_exec_info *exec = job->exec; 83 enum v3d_queue q = job == &exec->bin ? V3D_BIN : V3D_RENDER; 84 struct v3d_dev *v3d = exec->v3d; 85 struct drm_device *dev = &v3d->drm; 86 struct dma_fence *fence; 87 unsigned long irqflags; 88 89 if (unlikely(job->base.s_fence->finished.error)) 90 return NULL; 91 92 /* Lock required around bin_job update vs 93 * v3d_overflow_mem_work(). 94 */ 95 spin_lock_irqsave(&v3d->job_lock, irqflags); 96 if (q == V3D_BIN) { 97 v3d->bin_job = job->exec; 98 99 /* Clear out the overflow allocation, so we don't 100 * reuse the overflow attached to a previous job. 101 */ 102 V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0); 103 } else { 104 v3d->render_job = job->exec; 105 } 106 spin_unlock_irqrestore(&v3d->job_lock, irqflags); 107 108 /* Can we avoid this flush when q==RENDER? We need to be 109 * careful of scheduling, though -- imagine job0 rendering to 110 * texture and job1 reading, and them being executed as bin0, 111 * bin1, render0, render1, so that render1's flush at bin time 112 * wasn't enough. 113 */ 114 v3d_invalidate_caches(v3d); 115 116 fence = v3d_fence_create(v3d, q); 117 if (IS_ERR(fence)) 118 return NULL; 119 120 if (job->done_fence) 121 dma_fence_put(job->done_fence); 122 job->done_fence = dma_fence_get(fence); 123 124 trace_v3d_submit_cl(dev, q == V3D_RENDER, to_v3d_fence(fence)->seqno, 125 job->start, job->end); 126 127 if (q == V3D_BIN) { 128 if (exec->qma) { 129 V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, exec->qma); 130 V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, exec->qms); 131 } 132 if (exec->qts) { 133 V3D_CORE_WRITE(0, V3D_CLE_CT0QTS, 134 V3D_CLE_CT0QTS_ENABLE | 135 exec->qts); 136 } 137 } else { 138 /* XXX: Set the QCFG */ 139 } 140 141 /* Set the current and end address of the control list. 142 * Writing the end register is what starts the job. 143 */ 144 V3D_CORE_WRITE(0, V3D_CLE_CTNQBA(q), job->start); 145 V3D_CORE_WRITE(0, V3D_CLE_CTNQEA(q), job->end); 146 147 return fence; 148 } 149 150 static void 151 v3d_job_timedout(struct drm_sched_job *sched_job) 152 { 153 struct v3d_job *job = to_v3d_job(sched_job); 154 struct v3d_exec_info *exec = job->exec; 155 struct v3d_dev *v3d = exec->v3d; 156 enum v3d_queue job_q = job == &exec->bin ? V3D_BIN : V3D_RENDER; 157 enum v3d_queue q; 158 u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(job_q)); 159 u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(job_q)); 160 161 /* If the current address or return address have changed, then 162 * the GPU has probably made progress and we should delay the 163 * reset. This could fail if the GPU got in an infinite loop 164 * in the CL, but that is pretty unlikely outside of an i-g-t 165 * testcase. 166 */ 167 if (job->timedout_ctca != ctca || job->timedout_ctra != ctra) { 168 job->timedout_ctca = ctca; 169 job->timedout_ctra = ctra; 170 171 schedule_delayed_work(&job->base.sched->work_tdr, 172 job->base.sched->timeout); 173 return; 174 } 175 176 mutex_lock(&v3d->reset_lock); 177 178 /* block scheduler */ 179 for (q = 0; q < V3D_MAX_QUEUES; q++) { 180 struct drm_gpu_scheduler *sched = &v3d->queue[q].sched; 181 182 kthread_park(sched->thread); 183 drm_sched_hw_job_reset(sched, (sched_job->sched == sched ? 184 sched_job : NULL)); 185 } 186 187 /* get the GPU back into the init state */ 188 v3d_reset(v3d); 189 190 /* Unblock schedulers and restart their jobs. */ 191 for (q = 0; q < V3D_MAX_QUEUES; q++) { 192 drm_sched_job_recovery(&v3d->queue[q].sched); 193 kthread_unpark(v3d->queue[q].sched.thread); 194 } 195 196 mutex_unlock(&v3d->reset_lock); 197 } 198 199 static const struct drm_sched_backend_ops v3d_sched_ops = { 200 .dependency = v3d_job_dependency, 201 .run_job = v3d_job_run, 202 .timedout_job = v3d_job_timedout, 203 .free_job = v3d_job_free 204 }; 205 206 int 207 v3d_sched_init(struct v3d_dev *v3d) 208 { 209 int hw_jobs_limit = 1; 210 int job_hang_limit = 0; 211 int hang_limit_ms = 500; 212 int ret; 213 214 ret = drm_sched_init(&v3d->queue[V3D_BIN].sched, 215 &v3d_sched_ops, 216 hw_jobs_limit, job_hang_limit, 217 msecs_to_jiffies(hang_limit_ms), 218 "v3d_bin"); 219 if (ret) { 220 dev_err(v3d->dev, "Failed to create bin scheduler: %d.", ret); 221 return ret; 222 } 223 224 ret = drm_sched_init(&v3d->queue[V3D_RENDER].sched, 225 &v3d_sched_ops, 226 hw_jobs_limit, job_hang_limit, 227 msecs_to_jiffies(hang_limit_ms), 228 "v3d_render"); 229 if (ret) { 230 dev_err(v3d->dev, "Failed to create render scheduler: %d.", 231 ret); 232 drm_sched_fini(&v3d->queue[V3D_BIN].sched); 233 return ret; 234 } 235 236 return 0; 237 } 238 239 void 240 v3d_sched_fini(struct v3d_dev *v3d) 241 { 242 enum v3d_queue q; 243 244 for (q = 0; q < V3D_MAX_QUEUES; q++) 245 drm_sched_fini(&v3d->queue[q].sched); 246 } 247