1 // SPDX-License-Identifier: GPL-2.0+ 2 /* Copyright (C) 2018 Broadcom */ 3 4 /** 5 * DOC: Broadcom V3D scheduling 6 * 7 * The shared DRM GPU scheduler is used to coordinate submitting jobs 8 * to the hardware. Each DRM fd (roughly a client process) gets its 9 * own scheduler entity, which will process jobs in order. The GPU 10 * scheduler will round-robin between clients to submit the next job. 11 * 12 * For simplicity, and in order to keep latency low for interactive 13 * jobs when bulk background jobs are queued up, we submit a new job 14 * to the HW only when it has completed the last one, instead of 15 * filling up the CT[01]Q FIFOs with jobs. Similarly, we use 16 * v3d_job_dependency() to manage the dependency between bin and 17 * render, instead of having the clients submit jobs using the HW's 18 * semaphores to interlock between them. 19 */ 20 21 #include <linux/kthread.h> 22 23 #include "v3d_drv.h" 24 #include "v3d_regs.h" 25 #include "v3d_trace.h" 26 27 static struct v3d_job * 28 to_v3d_job(struct drm_sched_job *sched_job) 29 { 30 return container_of(sched_job, struct v3d_job, base); 31 } 32 33 static struct v3d_bin_job * 34 to_bin_job(struct drm_sched_job *sched_job) 35 { 36 return container_of(sched_job, struct v3d_bin_job, base.base); 37 } 38 39 static struct v3d_render_job * 40 to_render_job(struct drm_sched_job *sched_job) 41 { 42 return container_of(sched_job, struct v3d_render_job, base.base); 43 } 44 45 static struct v3d_tfu_job * 46 to_tfu_job(struct drm_sched_job *sched_job) 47 { 48 return container_of(sched_job, struct v3d_tfu_job, base.base); 49 } 50 51 static struct v3d_csd_job * 52 to_csd_job(struct drm_sched_job *sched_job) 53 { 54 return container_of(sched_job, struct v3d_csd_job, base.base); 55 } 56 57 static void 58 v3d_job_free(struct drm_sched_job *sched_job) 59 { 60 struct v3d_job *job = to_v3d_job(sched_job); 61 62 drm_sched_job_cleanup(sched_job); 63 v3d_job_put(job); 64 } 65 66 static void 67 v3d_switch_perfmon(struct v3d_dev *v3d, struct v3d_job *job) 68 { 69 if (job->perfmon != v3d->active_perfmon) 70 v3d_perfmon_stop(v3d, v3d->active_perfmon, true); 71 72 if (job->perfmon && v3d->active_perfmon != job->perfmon) 73 v3d_perfmon_start(v3d, job->perfmon); 74 } 75 76 /* 77 * Returns the fences that the job depends on, one by one. 78 * 79 * If placed in the scheduler's .dependency method, the corresponding 80 * .run_job won't be called until all of them have been signaled. 81 */ 82 static struct dma_fence * 83 v3d_job_dependency(struct drm_sched_job *sched_job, 84 struct drm_sched_entity *s_entity) 85 { 86 struct v3d_job *job = to_v3d_job(sched_job); 87 88 /* XXX: Wait on a fence for switching the GMP if necessary, 89 * and then do so. 90 */ 91 92 if (!xa_empty(&job->deps)) 93 return xa_erase(&job->deps, job->last_dep++); 94 95 return NULL; 96 } 97 98 static struct dma_fence *v3d_bin_job_run(struct drm_sched_job *sched_job) 99 { 100 struct v3d_bin_job *job = to_bin_job(sched_job); 101 struct v3d_dev *v3d = job->base.v3d; 102 struct drm_device *dev = &v3d->drm; 103 struct dma_fence *fence; 104 unsigned long irqflags; 105 106 if (unlikely(job->base.base.s_fence->finished.error)) 107 return NULL; 108 109 /* Lock required around bin_job update vs 110 * v3d_overflow_mem_work(). 111 */ 112 spin_lock_irqsave(&v3d->job_lock, irqflags); 113 v3d->bin_job = job; 114 /* Clear out the overflow allocation, so we don't 115 * reuse the overflow attached to a previous job. 116 */ 117 V3D_CORE_WRITE(0, V3D_PTB_BPOS, 0); 118 spin_unlock_irqrestore(&v3d->job_lock, irqflags); 119 120 v3d_invalidate_caches(v3d); 121 122 fence = v3d_fence_create(v3d, V3D_BIN); 123 if (IS_ERR(fence)) 124 return NULL; 125 126 if (job->base.irq_fence) 127 dma_fence_put(job->base.irq_fence); 128 job->base.irq_fence = dma_fence_get(fence); 129 130 trace_v3d_submit_cl(dev, false, to_v3d_fence(fence)->seqno, 131 job->start, job->end); 132 133 v3d_switch_perfmon(v3d, &job->base); 134 135 /* Set the current and end address of the control list. 136 * Writing the end register is what starts the job. 137 */ 138 if (job->qma) { 139 V3D_CORE_WRITE(0, V3D_CLE_CT0QMA, job->qma); 140 V3D_CORE_WRITE(0, V3D_CLE_CT0QMS, job->qms); 141 } 142 if (job->qts) { 143 V3D_CORE_WRITE(0, V3D_CLE_CT0QTS, 144 V3D_CLE_CT0QTS_ENABLE | 145 job->qts); 146 } 147 V3D_CORE_WRITE(0, V3D_CLE_CT0QBA, job->start); 148 V3D_CORE_WRITE(0, V3D_CLE_CT0QEA, job->end); 149 150 return fence; 151 } 152 153 static struct dma_fence *v3d_render_job_run(struct drm_sched_job *sched_job) 154 { 155 struct v3d_render_job *job = to_render_job(sched_job); 156 struct v3d_dev *v3d = job->base.v3d; 157 struct drm_device *dev = &v3d->drm; 158 struct dma_fence *fence; 159 160 if (unlikely(job->base.base.s_fence->finished.error)) 161 return NULL; 162 163 v3d->render_job = job; 164 165 /* Can we avoid this flush? We need to be careful of 166 * scheduling, though -- imagine job0 rendering to texture and 167 * job1 reading, and them being executed as bin0, bin1, 168 * render0, render1, so that render1's flush at bin time 169 * wasn't enough. 170 */ 171 v3d_invalidate_caches(v3d); 172 173 fence = v3d_fence_create(v3d, V3D_RENDER); 174 if (IS_ERR(fence)) 175 return NULL; 176 177 if (job->base.irq_fence) 178 dma_fence_put(job->base.irq_fence); 179 job->base.irq_fence = dma_fence_get(fence); 180 181 trace_v3d_submit_cl(dev, true, to_v3d_fence(fence)->seqno, 182 job->start, job->end); 183 184 v3d_switch_perfmon(v3d, &job->base); 185 186 /* XXX: Set the QCFG */ 187 188 /* Set the current and end address of the control list. 189 * Writing the end register is what starts the job. 190 */ 191 V3D_CORE_WRITE(0, V3D_CLE_CT1QBA, job->start); 192 V3D_CORE_WRITE(0, V3D_CLE_CT1QEA, job->end); 193 194 return fence; 195 } 196 197 static struct dma_fence * 198 v3d_tfu_job_run(struct drm_sched_job *sched_job) 199 { 200 struct v3d_tfu_job *job = to_tfu_job(sched_job); 201 struct v3d_dev *v3d = job->base.v3d; 202 struct drm_device *dev = &v3d->drm; 203 struct dma_fence *fence; 204 205 fence = v3d_fence_create(v3d, V3D_TFU); 206 if (IS_ERR(fence)) 207 return NULL; 208 209 v3d->tfu_job = job; 210 if (job->base.irq_fence) 211 dma_fence_put(job->base.irq_fence); 212 job->base.irq_fence = dma_fence_get(fence); 213 214 trace_v3d_submit_tfu(dev, to_v3d_fence(fence)->seqno); 215 216 V3D_WRITE(V3D_TFU_IIA, job->args.iia); 217 V3D_WRITE(V3D_TFU_IIS, job->args.iis); 218 V3D_WRITE(V3D_TFU_ICA, job->args.ica); 219 V3D_WRITE(V3D_TFU_IUA, job->args.iua); 220 V3D_WRITE(V3D_TFU_IOA, job->args.ioa); 221 V3D_WRITE(V3D_TFU_IOS, job->args.ios); 222 V3D_WRITE(V3D_TFU_COEF0, job->args.coef[0]); 223 if (job->args.coef[0] & V3D_TFU_COEF0_USECOEF) { 224 V3D_WRITE(V3D_TFU_COEF1, job->args.coef[1]); 225 V3D_WRITE(V3D_TFU_COEF2, job->args.coef[2]); 226 V3D_WRITE(V3D_TFU_COEF3, job->args.coef[3]); 227 } 228 /* ICFG kicks off the job. */ 229 V3D_WRITE(V3D_TFU_ICFG, job->args.icfg | V3D_TFU_ICFG_IOC); 230 231 return fence; 232 } 233 234 static struct dma_fence * 235 v3d_csd_job_run(struct drm_sched_job *sched_job) 236 { 237 struct v3d_csd_job *job = to_csd_job(sched_job); 238 struct v3d_dev *v3d = job->base.v3d; 239 struct drm_device *dev = &v3d->drm; 240 struct dma_fence *fence; 241 int i; 242 243 v3d->csd_job = job; 244 245 v3d_invalidate_caches(v3d); 246 247 fence = v3d_fence_create(v3d, V3D_CSD); 248 if (IS_ERR(fence)) 249 return NULL; 250 251 if (job->base.irq_fence) 252 dma_fence_put(job->base.irq_fence); 253 job->base.irq_fence = dma_fence_get(fence); 254 255 trace_v3d_submit_csd(dev, to_v3d_fence(fence)->seqno); 256 257 v3d_switch_perfmon(v3d, &job->base); 258 259 for (i = 1; i <= 6; i++) 260 V3D_CORE_WRITE(0, V3D_CSD_QUEUED_CFG0 + 4 * i, job->args.cfg[i]); 261 /* CFG0 write kicks off the job. */ 262 V3D_CORE_WRITE(0, V3D_CSD_QUEUED_CFG0, job->args.cfg[0]); 263 264 return fence; 265 } 266 267 static struct dma_fence * 268 v3d_cache_clean_job_run(struct drm_sched_job *sched_job) 269 { 270 struct v3d_job *job = to_v3d_job(sched_job); 271 struct v3d_dev *v3d = job->v3d; 272 273 v3d_clean_caches(v3d); 274 275 return NULL; 276 } 277 278 static enum drm_gpu_sched_stat 279 v3d_gpu_reset_for_timeout(struct v3d_dev *v3d, struct drm_sched_job *sched_job) 280 { 281 enum v3d_queue q; 282 283 mutex_lock(&v3d->reset_lock); 284 285 /* block scheduler */ 286 for (q = 0; q < V3D_MAX_QUEUES; q++) 287 drm_sched_stop(&v3d->queue[q].sched, sched_job); 288 289 if (sched_job) 290 drm_sched_increase_karma(sched_job); 291 292 /* get the GPU back into the init state */ 293 v3d_reset(v3d); 294 295 for (q = 0; q < V3D_MAX_QUEUES; q++) 296 drm_sched_resubmit_jobs(&v3d->queue[q].sched); 297 298 /* Unblock schedulers and restart their jobs. */ 299 for (q = 0; q < V3D_MAX_QUEUES; q++) { 300 drm_sched_start(&v3d->queue[q].sched, true); 301 } 302 303 mutex_unlock(&v3d->reset_lock); 304 305 return DRM_GPU_SCHED_STAT_NOMINAL; 306 } 307 308 /* If the current address or return address have changed, then the GPU 309 * has probably made progress and we should delay the reset. This 310 * could fail if the GPU got in an infinite loop in the CL, but that 311 * is pretty unlikely outside of an i-g-t testcase. 312 */ 313 static enum drm_gpu_sched_stat 314 v3d_cl_job_timedout(struct drm_sched_job *sched_job, enum v3d_queue q, 315 u32 *timedout_ctca, u32 *timedout_ctra) 316 { 317 struct v3d_job *job = to_v3d_job(sched_job); 318 struct v3d_dev *v3d = job->v3d; 319 u32 ctca = V3D_CORE_READ(0, V3D_CLE_CTNCA(q)); 320 u32 ctra = V3D_CORE_READ(0, V3D_CLE_CTNRA(q)); 321 322 if (*timedout_ctca != ctca || *timedout_ctra != ctra) { 323 *timedout_ctca = ctca; 324 *timedout_ctra = ctra; 325 return DRM_GPU_SCHED_STAT_NOMINAL; 326 } 327 328 return v3d_gpu_reset_for_timeout(v3d, sched_job); 329 } 330 331 static enum drm_gpu_sched_stat 332 v3d_bin_job_timedout(struct drm_sched_job *sched_job) 333 { 334 struct v3d_bin_job *job = to_bin_job(sched_job); 335 336 return v3d_cl_job_timedout(sched_job, V3D_BIN, 337 &job->timedout_ctca, &job->timedout_ctra); 338 } 339 340 static enum drm_gpu_sched_stat 341 v3d_render_job_timedout(struct drm_sched_job *sched_job) 342 { 343 struct v3d_render_job *job = to_render_job(sched_job); 344 345 return v3d_cl_job_timedout(sched_job, V3D_RENDER, 346 &job->timedout_ctca, &job->timedout_ctra); 347 } 348 349 static enum drm_gpu_sched_stat 350 v3d_generic_job_timedout(struct drm_sched_job *sched_job) 351 { 352 struct v3d_job *job = to_v3d_job(sched_job); 353 354 return v3d_gpu_reset_for_timeout(job->v3d, sched_job); 355 } 356 357 static enum drm_gpu_sched_stat 358 v3d_csd_job_timedout(struct drm_sched_job *sched_job) 359 { 360 struct v3d_csd_job *job = to_csd_job(sched_job); 361 struct v3d_dev *v3d = job->base.v3d; 362 u32 batches = V3D_CORE_READ(0, V3D_CSD_CURRENT_CFG4); 363 364 /* If we've made progress, skip reset and let the timer get 365 * rearmed. 366 */ 367 if (job->timedout_batches != batches) { 368 job->timedout_batches = batches; 369 return DRM_GPU_SCHED_STAT_NOMINAL; 370 } 371 372 return v3d_gpu_reset_for_timeout(v3d, sched_job); 373 } 374 375 static const struct drm_sched_backend_ops v3d_bin_sched_ops = { 376 .dependency = v3d_job_dependency, 377 .run_job = v3d_bin_job_run, 378 .timedout_job = v3d_bin_job_timedout, 379 .free_job = v3d_job_free, 380 }; 381 382 static const struct drm_sched_backend_ops v3d_render_sched_ops = { 383 .dependency = v3d_job_dependency, 384 .run_job = v3d_render_job_run, 385 .timedout_job = v3d_render_job_timedout, 386 .free_job = v3d_job_free, 387 }; 388 389 static const struct drm_sched_backend_ops v3d_tfu_sched_ops = { 390 .dependency = v3d_job_dependency, 391 .run_job = v3d_tfu_job_run, 392 .timedout_job = v3d_generic_job_timedout, 393 .free_job = v3d_job_free, 394 }; 395 396 static const struct drm_sched_backend_ops v3d_csd_sched_ops = { 397 .dependency = v3d_job_dependency, 398 .run_job = v3d_csd_job_run, 399 .timedout_job = v3d_csd_job_timedout, 400 .free_job = v3d_job_free 401 }; 402 403 static const struct drm_sched_backend_ops v3d_cache_clean_sched_ops = { 404 .dependency = v3d_job_dependency, 405 .run_job = v3d_cache_clean_job_run, 406 .timedout_job = v3d_generic_job_timedout, 407 .free_job = v3d_job_free 408 }; 409 410 int 411 v3d_sched_init(struct v3d_dev *v3d) 412 { 413 int hw_jobs_limit = 1; 414 int job_hang_limit = 0; 415 int hang_limit_ms = 500; 416 int ret; 417 418 ret = drm_sched_init(&v3d->queue[V3D_BIN].sched, 419 &v3d_bin_sched_ops, 420 hw_jobs_limit, job_hang_limit, 421 msecs_to_jiffies(hang_limit_ms), NULL, 422 NULL, "v3d_bin"); 423 if (ret) { 424 dev_err(v3d->drm.dev, "Failed to create bin scheduler: %d.", ret); 425 return ret; 426 } 427 428 ret = drm_sched_init(&v3d->queue[V3D_RENDER].sched, 429 &v3d_render_sched_ops, 430 hw_jobs_limit, job_hang_limit, 431 msecs_to_jiffies(hang_limit_ms), NULL, 432 NULL, "v3d_render"); 433 if (ret) { 434 dev_err(v3d->drm.dev, "Failed to create render scheduler: %d.", 435 ret); 436 v3d_sched_fini(v3d); 437 return ret; 438 } 439 440 ret = drm_sched_init(&v3d->queue[V3D_TFU].sched, 441 &v3d_tfu_sched_ops, 442 hw_jobs_limit, job_hang_limit, 443 msecs_to_jiffies(hang_limit_ms), NULL, 444 NULL, "v3d_tfu"); 445 if (ret) { 446 dev_err(v3d->drm.dev, "Failed to create TFU scheduler: %d.", 447 ret); 448 v3d_sched_fini(v3d); 449 return ret; 450 } 451 452 if (v3d_has_csd(v3d)) { 453 ret = drm_sched_init(&v3d->queue[V3D_CSD].sched, 454 &v3d_csd_sched_ops, 455 hw_jobs_limit, job_hang_limit, 456 msecs_to_jiffies(hang_limit_ms), NULL, 457 NULL, "v3d_csd"); 458 if (ret) { 459 dev_err(v3d->drm.dev, "Failed to create CSD scheduler: %d.", 460 ret); 461 v3d_sched_fini(v3d); 462 return ret; 463 } 464 465 ret = drm_sched_init(&v3d->queue[V3D_CACHE_CLEAN].sched, 466 &v3d_cache_clean_sched_ops, 467 hw_jobs_limit, job_hang_limit, 468 msecs_to_jiffies(hang_limit_ms), NULL, 469 NULL, "v3d_cache_clean"); 470 if (ret) { 471 dev_err(v3d->drm.dev, "Failed to create CACHE_CLEAN scheduler: %d.", 472 ret); 473 v3d_sched_fini(v3d); 474 return ret; 475 } 476 } 477 478 return 0; 479 } 480 481 void 482 v3d_sched_fini(struct v3d_dev *v3d) 483 { 484 enum v3d_queue q; 485 486 for (q = 0; q < V3D_MAX_QUEUES; q++) { 487 if (v3d->queue[q].sched.ready) 488 drm_sched_fini(&v3d->queue[q].sched); 489 } 490 } 491