xref: /openbmc/linux/drivers/gpu/drm/ttm/ttm_tt.c (revision 407e7517)
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30 
31 #define pr_fmt(fmt) "[TTM] " fmt
32 
33 #include <linux/sched.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/file.h>
38 #include <linux/swap.h>
39 #include <linux/slab.h>
40 #include <linux/export.h>
41 #include <drm/drm_cache.h>
42 #include <drm/ttm/ttm_module.h>
43 #include <drm/ttm/ttm_bo_driver.h>
44 #include <drm/ttm/ttm_placement.h>
45 #include <drm/ttm/ttm_page_alloc.h>
46 #ifdef CONFIG_X86
47 #include <asm/set_memory.h>
48 #endif
49 
50 /**
51  * Allocates storage for pointers to the pages that back the ttm.
52  */
53 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
54 {
55 	ttm->pages = kvmalloc_array(ttm->num_pages, sizeof(void*),
56 			GFP_KERNEL | __GFP_ZERO);
57 }
58 
59 static void ttm_dma_tt_alloc_page_directory(struct ttm_dma_tt *ttm)
60 {
61 	ttm->ttm.pages = kvmalloc_array(ttm->ttm.num_pages,
62 					  sizeof(*ttm->ttm.pages) +
63 					  sizeof(*ttm->dma_address),
64 					  GFP_KERNEL | __GFP_ZERO);
65 	ttm->dma_address = (void *) (ttm->ttm.pages + ttm->ttm.num_pages);
66 }
67 
68 #ifdef CONFIG_X86
69 static inline int ttm_tt_set_page_caching(struct page *p,
70 					  enum ttm_caching_state c_old,
71 					  enum ttm_caching_state c_new)
72 {
73 	int ret = 0;
74 
75 	if (PageHighMem(p))
76 		return 0;
77 
78 	if (c_old != tt_cached) {
79 		/* p isn't in the default caching state, set it to
80 		 * writeback first to free its current memtype. */
81 
82 		ret = set_pages_wb(p, 1);
83 		if (ret)
84 			return ret;
85 	}
86 
87 	if (c_new == tt_wc)
88 		ret = set_memory_wc((unsigned long) page_address(p), 1);
89 	else if (c_new == tt_uncached)
90 		ret = set_pages_uc(p, 1);
91 
92 	return ret;
93 }
94 #else /* CONFIG_X86 */
95 static inline int ttm_tt_set_page_caching(struct page *p,
96 					  enum ttm_caching_state c_old,
97 					  enum ttm_caching_state c_new)
98 {
99 	return 0;
100 }
101 #endif /* CONFIG_X86 */
102 
103 /*
104  * Change caching policy for the linear kernel map
105  * for range of pages in a ttm.
106  */
107 
108 static int ttm_tt_set_caching(struct ttm_tt *ttm,
109 			      enum ttm_caching_state c_state)
110 {
111 	int i, j;
112 	struct page *cur_page;
113 	int ret;
114 
115 	if (ttm->caching_state == c_state)
116 		return 0;
117 
118 	if (ttm->state == tt_unpopulated) {
119 		/* Change caching but don't populate */
120 		ttm->caching_state = c_state;
121 		return 0;
122 	}
123 
124 	if (ttm->caching_state == tt_cached)
125 		drm_clflush_pages(ttm->pages, ttm->num_pages);
126 
127 	for (i = 0; i < ttm->num_pages; ++i) {
128 		cur_page = ttm->pages[i];
129 		if (likely(cur_page != NULL)) {
130 			ret = ttm_tt_set_page_caching(cur_page,
131 						      ttm->caching_state,
132 						      c_state);
133 			if (unlikely(ret != 0))
134 				goto out_err;
135 		}
136 	}
137 
138 	ttm->caching_state = c_state;
139 
140 	return 0;
141 
142 out_err:
143 	for (j = 0; j < i; ++j) {
144 		cur_page = ttm->pages[j];
145 		if (likely(cur_page != NULL)) {
146 			(void)ttm_tt_set_page_caching(cur_page, c_state,
147 						      ttm->caching_state);
148 		}
149 	}
150 
151 	return ret;
152 }
153 
154 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
155 {
156 	enum ttm_caching_state state;
157 
158 	if (placement & TTM_PL_FLAG_WC)
159 		state = tt_wc;
160 	else if (placement & TTM_PL_FLAG_UNCACHED)
161 		state = tt_uncached;
162 	else
163 		state = tt_cached;
164 
165 	return ttm_tt_set_caching(ttm, state);
166 }
167 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
168 
169 void ttm_tt_destroy(struct ttm_tt *ttm)
170 {
171 	if (ttm == NULL)
172 		return;
173 
174 	ttm_tt_unbind(ttm);
175 
176 	if (ttm->state == tt_unbound)
177 		ttm_tt_unpopulate(ttm);
178 
179 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP) &&
180 	    ttm->swap_storage)
181 		fput(ttm->swap_storage);
182 
183 	ttm->swap_storage = NULL;
184 	ttm->func->destroy(ttm);
185 }
186 
187 int ttm_tt_init(struct ttm_tt *ttm, struct ttm_bo_device *bdev,
188 		unsigned long size, uint32_t page_flags,
189 		struct page *dummy_read_page)
190 {
191 	ttm->bdev = bdev;
192 	ttm->glob = bdev->glob;
193 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
194 	ttm->caching_state = tt_cached;
195 	ttm->page_flags = page_flags;
196 	ttm->dummy_read_page = dummy_read_page;
197 	ttm->state = tt_unpopulated;
198 	ttm->swap_storage = NULL;
199 
200 	ttm_tt_alloc_page_directory(ttm);
201 	if (!ttm->pages) {
202 		ttm_tt_destroy(ttm);
203 		pr_err("Failed allocating page table\n");
204 		return -ENOMEM;
205 	}
206 	return 0;
207 }
208 EXPORT_SYMBOL(ttm_tt_init);
209 
210 void ttm_tt_fini(struct ttm_tt *ttm)
211 {
212 	kvfree(ttm->pages);
213 	ttm->pages = NULL;
214 }
215 EXPORT_SYMBOL(ttm_tt_fini);
216 
217 int ttm_dma_tt_init(struct ttm_dma_tt *ttm_dma, struct ttm_bo_device *bdev,
218 		unsigned long size, uint32_t page_flags,
219 		struct page *dummy_read_page)
220 {
221 	struct ttm_tt *ttm = &ttm_dma->ttm;
222 
223 	ttm->bdev = bdev;
224 	ttm->glob = bdev->glob;
225 	ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
226 	ttm->caching_state = tt_cached;
227 	ttm->page_flags = page_flags;
228 	ttm->dummy_read_page = dummy_read_page;
229 	ttm->state = tt_unpopulated;
230 	ttm->swap_storage = NULL;
231 
232 	INIT_LIST_HEAD(&ttm_dma->pages_list);
233 	ttm_dma_tt_alloc_page_directory(ttm_dma);
234 	if (!ttm->pages) {
235 		ttm_tt_destroy(ttm);
236 		pr_err("Failed allocating page table\n");
237 		return -ENOMEM;
238 	}
239 	return 0;
240 }
241 EXPORT_SYMBOL(ttm_dma_tt_init);
242 
243 void ttm_dma_tt_fini(struct ttm_dma_tt *ttm_dma)
244 {
245 	struct ttm_tt *ttm = &ttm_dma->ttm;
246 
247 	kvfree(ttm->pages);
248 	ttm->pages = NULL;
249 	ttm_dma->dma_address = NULL;
250 }
251 EXPORT_SYMBOL(ttm_dma_tt_fini);
252 
253 void ttm_tt_unbind(struct ttm_tt *ttm)
254 {
255 	int ret;
256 
257 	if (ttm->state == tt_bound) {
258 		ret = ttm->func->unbind(ttm);
259 		BUG_ON(ret);
260 		ttm->state = tt_unbound;
261 	}
262 }
263 
264 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem,
265 		struct ttm_operation_ctx *ctx)
266 {
267 	int ret = 0;
268 
269 	if (!ttm)
270 		return -EINVAL;
271 
272 	if (ttm->state == tt_bound)
273 		return 0;
274 
275 	ret = ttm->bdev->driver->ttm_tt_populate(ttm, ctx);
276 	if (ret)
277 		return ret;
278 
279 	ret = ttm->func->bind(ttm, bo_mem);
280 	if (unlikely(ret != 0))
281 		return ret;
282 
283 	ttm->state = tt_bound;
284 
285 	return 0;
286 }
287 EXPORT_SYMBOL(ttm_tt_bind);
288 
289 int ttm_tt_swapin(struct ttm_tt *ttm)
290 {
291 	struct address_space *swap_space;
292 	struct file *swap_storage;
293 	struct page *from_page;
294 	struct page *to_page;
295 	int i;
296 	int ret = -ENOMEM;
297 
298 	swap_storage = ttm->swap_storage;
299 	BUG_ON(swap_storage == NULL);
300 
301 	swap_space = swap_storage->f_mapping;
302 
303 	for (i = 0; i < ttm->num_pages; ++i) {
304 		gfp_t gfp_mask = mapping_gfp_mask(swap_space);
305 
306 		gfp_mask |= (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY ? __GFP_RETRY_MAYFAIL : 0);
307 		from_page = shmem_read_mapping_page_gfp(swap_space, i, gfp_mask);
308 
309 		if (IS_ERR(from_page)) {
310 			ret = PTR_ERR(from_page);
311 			goto out_err;
312 		}
313 		to_page = ttm->pages[i];
314 		if (unlikely(to_page == NULL))
315 			goto out_err;
316 
317 		copy_highpage(to_page, from_page);
318 		put_page(from_page);
319 	}
320 
321 	if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTENT_SWAP))
322 		fput(swap_storage);
323 	ttm->swap_storage = NULL;
324 	ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
325 
326 	return 0;
327 out_err:
328 	return ret;
329 }
330 
331 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistent_swap_storage)
332 {
333 	struct address_space *swap_space;
334 	struct file *swap_storage;
335 	struct page *from_page;
336 	struct page *to_page;
337 	int i;
338 	int ret = -ENOMEM;
339 
340 	BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
341 	BUG_ON(ttm->caching_state != tt_cached);
342 
343 	if (!persistent_swap_storage) {
344 		swap_storage = shmem_file_setup("ttm swap",
345 						ttm->num_pages << PAGE_SHIFT,
346 						0);
347 		if (IS_ERR(swap_storage)) {
348 			pr_err("Failed allocating swap storage\n");
349 			return PTR_ERR(swap_storage);
350 		}
351 	} else
352 		swap_storage = persistent_swap_storage;
353 
354 	swap_space = swap_storage->f_mapping;
355 
356 	for (i = 0; i < ttm->num_pages; ++i) {
357 		gfp_t gfp_mask = mapping_gfp_mask(swap_space);
358 
359 		gfp_mask |= (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY ? __GFP_RETRY_MAYFAIL : 0);
360 
361 		from_page = ttm->pages[i];
362 		if (unlikely(from_page == NULL))
363 			continue;
364 
365 		to_page = shmem_read_mapping_page_gfp(swap_space, i, gfp_mask);
366 		if (IS_ERR(to_page)) {
367 			ret = PTR_ERR(to_page);
368 			goto out_err;
369 		}
370 		copy_highpage(to_page, from_page);
371 		set_page_dirty(to_page);
372 		mark_page_accessed(to_page);
373 		put_page(to_page);
374 	}
375 
376 	ttm_tt_unpopulate(ttm);
377 	ttm->swap_storage = swap_storage;
378 	ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
379 	if (persistent_swap_storage)
380 		ttm->page_flags |= TTM_PAGE_FLAG_PERSISTENT_SWAP;
381 
382 	return 0;
383 out_err:
384 	if (!persistent_swap_storage)
385 		fput(swap_storage);
386 
387 	return ret;
388 }
389 
390 static void ttm_tt_clear_mapping(struct ttm_tt *ttm)
391 {
392 	pgoff_t i;
393 	struct page **page = ttm->pages;
394 
395 	if (ttm->page_flags & TTM_PAGE_FLAG_SG)
396 		return;
397 
398 	for (i = 0; i < ttm->num_pages; ++i) {
399 		(*page)->mapping = NULL;
400 		(*page++)->index = 0;
401 	}
402 }
403 
404 void ttm_tt_unpopulate(struct ttm_tt *ttm)
405 {
406 	if (ttm->state == tt_unpopulated)
407 		return;
408 
409 	ttm_tt_clear_mapping(ttm);
410 	ttm->bdev->driver->ttm_tt_unpopulate(ttm);
411 }
412