1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: Christian König 24 */ 25 26 /* Pooling of allocated pages is necessary because changing the caching 27 * attributes on x86 of the linear mapping requires a costly cross CPU TLB 28 * invalidate for those addresses. 29 * 30 * Additional to that allocations from the DMA coherent API are pooled as well 31 * cause they are rather slow compared to alloc_pages+map. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/debugfs.h> 37 #include <linux/highmem.h> 38 #include <linux/sched/mm.h> 39 40 #ifdef CONFIG_X86 41 #include <asm/set_memory.h> 42 #endif 43 44 #include <drm/ttm/ttm_pool.h> 45 #include <drm/ttm/ttm_tt.h> 46 #include <drm/ttm/ttm_bo.h> 47 48 #include "ttm_module.h" 49 50 /** 51 * struct ttm_pool_dma - Helper object for coherent DMA mappings 52 * 53 * @addr: original DMA address returned for the mapping 54 * @vaddr: original vaddr return for the mapping and order in the lower bits 55 */ 56 struct ttm_pool_dma { 57 dma_addr_t addr; 58 unsigned long vaddr; 59 }; 60 61 static unsigned long page_pool_size; 62 63 MODULE_PARM_DESC(page_pool_size, "Number of pages in the WC/UC/DMA pool"); 64 module_param(page_pool_size, ulong, 0644); 65 66 static atomic_long_t allocated_pages; 67 68 static struct ttm_pool_type global_write_combined[MAX_ORDER + 1]; 69 static struct ttm_pool_type global_uncached[MAX_ORDER + 1]; 70 71 static struct ttm_pool_type global_dma32_write_combined[MAX_ORDER + 1]; 72 static struct ttm_pool_type global_dma32_uncached[MAX_ORDER + 1]; 73 74 static spinlock_t shrinker_lock; 75 static struct list_head shrinker_list; 76 static struct shrinker mm_shrinker; 77 78 /* Allocate pages of size 1 << order with the given gfp_flags */ 79 static struct page *ttm_pool_alloc_page(struct ttm_pool *pool, gfp_t gfp_flags, 80 unsigned int order) 81 { 82 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS; 83 struct ttm_pool_dma *dma; 84 struct page *p; 85 void *vaddr; 86 87 /* Don't set the __GFP_COMP flag for higher order allocations. 88 * Mapping pages directly into an userspace process and calling 89 * put_page() on a TTM allocated page is illegal. 90 */ 91 if (order) 92 gfp_flags |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | 93 __GFP_KSWAPD_RECLAIM; 94 95 if (!pool->use_dma_alloc) { 96 p = alloc_pages(gfp_flags, order); 97 if (p) 98 p->private = order; 99 return p; 100 } 101 102 dma = kmalloc(sizeof(*dma), GFP_KERNEL); 103 if (!dma) 104 return NULL; 105 106 if (order) 107 attr |= DMA_ATTR_NO_WARN; 108 109 vaddr = dma_alloc_attrs(pool->dev, (1ULL << order) * PAGE_SIZE, 110 &dma->addr, gfp_flags, attr); 111 if (!vaddr) 112 goto error_free; 113 114 /* TODO: This is an illegal abuse of the DMA API, but we need to rework 115 * TTM page fault handling and extend the DMA API to clean this up. 116 */ 117 if (is_vmalloc_addr(vaddr)) 118 p = vmalloc_to_page(vaddr); 119 else 120 p = virt_to_page(vaddr); 121 122 dma->vaddr = (unsigned long)vaddr | order; 123 p->private = (unsigned long)dma; 124 return p; 125 126 error_free: 127 kfree(dma); 128 return NULL; 129 } 130 131 /* Reset the caching and pages of size 1 << order */ 132 static void ttm_pool_free_page(struct ttm_pool *pool, enum ttm_caching caching, 133 unsigned int order, struct page *p) 134 { 135 unsigned long attr = DMA_ATTR_FORCE_CONTIGUOUS; 136 struct ttm_pool_dma *dma; 137 void *vaddr; 138 139 #ifdef CONFIG_X86 140 /* We don't care that set_pages_wb is inefficient here. This is only 141 * used when we have to shrink and CPU overhead is irrelevant then. 142 */ 143 if (caching != ttm_cached && !PageHighMem(p)) 144 set_pages_wb(p, 1 << order); 145 #endif 146 147 if (!pool || !pool->use_dma_alloc) { 148 __free_pages(p, order); 149 return; 150 } 151 152 if (order) 153 attr |= DMA_ATTR_NO_WARN; 154 155 dma = (void *)p->private; 156 vaddr = (void *)(dma->vaddr & PAGE_MASK); 157 dma_free_attrs(pool->dev, (1UL << order) * PAGE_SIZE, vaddr, dma->addr, 158 attr); 159 kfree(dma); 160 } 161 162 /* Apply a new caching to an array of pages */ 163 static int ttm_pool_apply_caching(struct page **first, struct page **last, 164 enum ttm_caching caching) 165 { 166 #ifdef CONFIG_X86 167 unsigned int num_pages = last - first; 168 169 if (!num_pages) 170 return 0; 171 172 switch (caching) { 173 case ttm_cached: 174 break; 175 case ttm_write_combined: 176 return set_pages_array_wc(first, num_pages); 177 case ttm_uncached: 178 return set_pages_array_uc(first, num_pages); 179 } 180 #endif 181 return 0; 182 } 183 184 /* Map pages of 1 << order size and fill the DMA address array */ 185 static int ttm_pool_map(struct ttm_pool *pool, unsigned int order, 186 struct page *p, dma_addr_t **dma_addr) 187 { 188 dma_addr_t addr; 189 unsigned int i; 190 191 if (pool->use_dma_alloc) { 192 struct ttm_pool_dma *dma = (void *)p->private; 193 194 addr = dma->addr; 195 } else { 196 size_t size = (1ULL << order) * PAGE_SIZE; 197 198 addr = dma_map_page(pool->dev, p, 0, size, DMA_BIDIRECTIONAL); 199 if (dma_mapping_error(pool->dev, addr)) 200 return -EFAULT; 201 } 202 203 for (i = 1 << order; i ; --i) { 204 *(*dma_addr)++ = addr; 205 addr += PAGE_SIZE; 206 } 207 208 return 0; 209 } 210 211 /* Unmap pages of 1 << order size */ 212 static void ttm_pool_unmap(struct ttm_pool *pool, dma_addr_t dma_addr, 213 unsigned int num_pages) 214 { 215 /* Unmapped while freeing the page */ 216 if (pool->use_dma_alloc) 217 return; 218 219 dma_unmap_page(pool->dev, dma_addr, (long)num_pages << PAGE_SHIFT, 220 DMA_BIDIRECTIONAL); 221 } 222 223 /* Give pages into a specific pool_type */ 224 static void ttm_pool_type_give(struct ttm_pool_type *pt, struct page *p) 225 { 226 unsigned int i, num_pages = 1 << pt->order; 227 228 for (i = 0; i < num_pages; ++i) { 229 if (PageHighMem(p)) 230 clear_highpage(p + i); 231 else 232 clear_page(page_address(p + i)); 233 } 234 235 spin_lock(&pt->lock); 236 list_add(&p->lru, &pt->pages); 237 spin_unlock(&pt->lock); 238 atomic_long_add(1 << pt->order, &allocated_pages); 239 } 240 241 /* Take pages from a specific pool_type, return NULL when nothing available */ 242 static struct page *ttm_pool_type_take(struct ttm_pool_type *pt) 243 { 244 struct page *p; 245 246 spin_lock(&pt->lock); 247 p = list_first_entry_or_null(&pt->pages, typeof(*p), lru); 248 if (p) { 249 atomic_long_sub(1 << pt->order, &allocated_pages); 250 list_del(&p->lru); 251 } 252 spin_unlock(&pt->lock); 253 254 return p; 255 } 256 257 /* Initialize and add a pool type to the global shrinker list */ 258 static void ttm_pool_type_init(struct ttm_pool_type *pt, struct ttm_pool *pool, 259 enum ttm_caching caching, unsigned int order) 260 { 261 pt->pool = pool; 262 pt->caching = caching; 263 pt->order = order; 264 spin_lock_init(&pt->lock); 265 INIT_LIST_HEAD(&pt->pages); 266 267 spin_lock(&shrinker_lock); 268 list_add_tail(&pt->shrinker_list, &shrinker_list); 269 spin_unlock(&shrinker_lock); 270 } 271 272 /* Remove a pool_type from the global shrinker list and free all pages */ 273 static void ttm_pool_type_fini(struct ttm_pool_type *pt) 274 { 275 struct page *p; 276 277 spin_lock(&shrinker_lock); 278 list_del(&pt->shrinker_list); 279 spin_unlock(&shrinker_lock); 280 281 while ((p = ttm_pool_type_take(pt))) 282 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p); 283 } 284 285 /* Return the pool_type to use for the given caching and order */ 286 static struct ttm_pool_type *ttm_pool_select_type(struct ttm_pool *pool, 287 enum ttm_caching caching, 288 unsigned int order) 289 { 290 if (pool->use_dma_alloc) 291 return &pool->caching[caching].orders[order]; 292 293 #ifdef CONFIG_X86 294 switch (caching) { 295 case ttm_write_combined: 296 if (pool->use_dma32) 297 return &global_dma32_write_combined[order]; 298 299 return &global_write_combined[order]; 300 case ttm_uncached: 301 if (pool->use_dma32) 302 return &global_dma32_uncached[order]; 303 304 return &global_uncached[order]; 305 default: 306 break; 307 } 308 #endif 309 310 return NULL; 311 } 312 313 /* Free pages using the global shrinker list */ 314 static unsigned int ttm_pool_shrink(void) 315 { 316 struct ttm_pool_type *pt; 317 unsigned int num_pages; 318 struct page *p; 319 320 spin_lock(&shrinker_lock); 321 pt = list_first_entry(&shrinker_list, typeof(*pt), shrinker_list); 322 list_move_tail(&pt->shrinker_list, &shrinker_list); 323 spin_unlock(&shrinker_lock); 324 325 p = ttm_pool_type_take(pt); 326 if (p) { 327 ttm_pool_free_page(pt->pool, pt->caching, pt->order, p); 328 num_pages = 1 << pt->order; 329 } else { 330 num_pages = 0; 331 } 332 333 return num_pages; 334 } 335 336 /* Return the allocation order based for a page */ 337 static unsigned int ttm_pool_page_order(struct ttm_pool *pool, struct page *p) 338 { 339 if (pool->use_dma_alloc) { 340 struct ttm_pool_dma *dma = (void *)p->private; 341 342 return dma->vaddr & ~PAGE_MASK; 343 } 344 345 return p->private; 346 } 347 348 /* Called when we got a page, either from a pool or newly allocated */ 349 static int ttm_pool_page_allocated(struct ttm_pool *pool, unsigned int order, 350 struct page *p, dma_addr_t **dma_addr, 351 unsigned long *num_pages, 352 struct page ***pages) 353 { 354 unsigned int i; 355 int r; 356 357 if (*dma_addr) { 358 r = ttm_pool_map(pool, order, p, dma_addr); 359 if (r) 360 return r; 361 } 362 363 *num_pages -= 1 << order; 364 for (i = 1 << order; i; --i, ++(*pages), ++p) 365 **pages = p; 366 367 return 0; 368 } 369 370 /** 371 * ttm_pool_free_range() - Free a range of TTM pages 372 * @pool: The pool used for allocating. 373 * @tt: The struct ttm_tt holding the page pointers. 374 * @caching: The page caching mode used by the range. 375 * @start_page: index for first page to free. 376 * @end_page: index for last page to free + 1. 377 * 378 * During allocation the ttm_tt page-vector may be populated with ranges of 379 * pages with different attributes if allocation hit an error without being 380 * able to completely fulfill the allocation. This function can be used 381 * to free these individual ranges. 382 */ 383 static void ttm_pool_free_range(struct ttm_pool *pool, struct ttm_tt *tt, 384 enum ttm_caching caching, 385 pgoff_t start_page, pgoff_t end_page) 386 { 387 struct page **pages = tt->pages; 388 unsigned int order; 389 pgoff_t i, nr; 390 391 for (i = start_page; i < end_page; i += nr, pages += nr) { 392 struct ttm_pool_type *pt = NULL; 393 394 order = ttm_pool_page_order(pool, *pages); 395 nr = (1UL << order); 396 if (tt->dma_address) 397 ttm_pool_unmap(pool, tt->dma_address[i], nr); 398 399 pt = ttm_pool_select_type(pool, caching, order); 400 if (pt) 401 ttm_pool_type_give(pt, *pages); 402 else 403 ttm_pool_free_page(pool, caching, order, *pages); 404 } 405 } 406 407 /** 408 * ttm_pool_alloc - Fill a ttm_tt object 409 * 410 * @pool: ttm_pool to use 411 * @tt: ttm_tt object to fill 412 * @ctx: operation context 413 * 414 * Fill the ttm_tt object with pages and also make sure to DMA map them when 415 * necessary. 416 * 417 * Returns: 0 on successe, negative error code otherwise. 418 */ 419 int ttm_pool_alloc(struct ttm_pool *pool, struct ttm_tt *tt, 420 struct ttm_operation_ctx *ctx) 421 { 422 pgoff_t num_pages = tt->num_pages; 423 dma_addr_t *dma_addr = tt->dma_address; 424 struct page **caching = tt->pages; 425 struct page **pages = tt->pages; 426 enum ttm_caching page_caching; 427 gfp_t gfp_flags = GFP_USER; 428 pgoff_t caching_divide; 429 unsigned int order; 430 struct page *p; 431 int r; 432 433 WARN_ON(!num_pages || ttm_tt_is_populated(tt)); 434 WARN_ON(dma_addr && !pool->dev); 435 436 if (tt->page_flags & TTM_TT_FLAG_ZERO_ALLOC) 437 gfp_flags |= __GFP_ZERO; 438 439 if (ctx->gfp_retry_mayfail) 440 gfp_flags |= __GFP_RETRY_MAYFAIL; 441 442 if (pool->use_dma32) 443 gfp_flags |= GFP_DMA32; 444 else 445 gfp_flags |= GFP_HIGHUSER; 446 447 for (order = min_t(unsigned int, MAX_ORDER, __fls(num_pages)); 448 num_pages; 449 order = min_t(unsigned int, order, __fls(num_pages))) { 450 struct ttm_pool_type *pt; 451 452 page_caching = tt->caching; 453 pt = ttm_pool_select_type(pool, tt->caching, order); 454 p = pt ? ttm_pool_type_take(pt) : NULL; 455 if (p) { 456 r = ttm_pool_apply_caching(caching, pages, 457 tt->caching); 458 if (r) 459 goto error_free_page; 460 461 caching = pages; 462 do { 463 r = ttm_pool_page_allocated(pool, order, p, 464 &dma_addr, 465 &num_pages, 466 &pages); 467 if (r) 468 goto error_free_page; 469 470 caching = pages; 471 if (num_pages < (1 << order)) 472 break; 473 474 p = ttm_pool_type_take(pt); 475 } while (p); 476 } 477 478 page_caching = ttm_cached; 479 while (num_pages >= (1 << order) && 480 (p = ttm_pool_alloc_page(pool, gfp_flags, order))) { 481 482 if (PageHighMem(p)) { 483 r = ttm_pool_apply_caching(caching, pages, 484 tt->caching); 485 if (r) 486 goto error_free_page; 487 caching = pages; 488 } 489 r = ttm_pool_page_allocated(pool, order, p, &dma_addr, 490 &num_pages, &pages); 491 if (r) 492 goto error_free_page; 493 if (PageHighMem(p)) 494 caching = pages; 495 } 496 497 if (!p) { 498 if (order) { 499 --order; 500 continue; 501 } 502 r = -ENOMEM; 503 goto error_free_all; 504 } 505 } 506 507 r = ttm_pool_apply_caching(caching, pages, tt->caching); 508 if (r) 509 goto error_free_all; 510 511 return 0; 512 513 error_free_page: 514 ttm_pool_free_page(pool, page_caching, order, p); 515 516 error_free_all: 517 num_pages = tt->num_pages - num_pages; 518 caching_divide = caching - tt->pages; 519 ttm_pool_free_range(pool, tt, tt->caching, 0, caching_divide); 520 ttm_pool_free_range(pool, tt, ttm_cached, caching_divide, num_pages); 521 522 return r; 523 } 524 EXPORT_SYMBOL(ttm_pool_alloc); 525 526 /** 527 * ttm_pool_free - Free the backing pages from a ttm_tt object 528 * 529 * @pool: Pool to give pages back to. 530 * @tt: ttm_tt object to unpopulate 531 * 532 * Give the packing pages back to a pool or free them 533 */ 534 void ttm_pool_free(struct ttm_pool *pool, struct ttm_tt *tt) 535 { 536 ttm_pool_free_range(pool, tt, tt->caching, 0, tt->num_pages); 537 538 while (atomic_long_read(&allocated_pages) > page_pool_size) 539 ttm_pool_shrink(); 540 } 541 EXPORT_SYMBOL(ttm_pool_free); 542 543 /** 544 * ttm_pool_init - Initialize a pool 545 * 546 * @pool: the pool to initialize 547 * @dev: device for DMA allocations and mappings 548 * @use_dma_alloc: true if coherent DMA alloc should be used 549 * @use_dma32: true if GFP_DMA32 should be used 550 * 551 * Initialize the pool and its pool types. 552 */ 553 void ttm_pool_init(struct ttm_pool *pool, struct device *dev, 554 bool use_dma_alloc, bool use_dma32) 555 { 556 unsigned int i, j; 557 558 WARN_ON(!dev && use_dma_alloc); 559 560 pool->dev = dev; 561 pool->use_dma_alloc = use_dma_alloc; 562 pool->use_dma32 = use_dma32; 563 564 if (use_dma_alloc) { 565 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) 566 for (j = 0; j <= MAX_ORDER; ++j) 567 ttm_pool_type_init(&pool->caching[i].orders[j], 568 pool, i, j); 569 } 570 } 571 572 /** 573 * ttm_pool_fini - Cleanup a pool 574 * 575 * @pool: the pool to clean up 576 * 577 * Free all pages in the pool and unregister the types from the global 578 * shrinker. 579 */ 580 void ttm_pool_fini(struct ttm_pool *pool) 581 { 582 unsigned int i, j; 583 584 if (pool->use_dma_alloc) { 585 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) 586 for (j = 0; j <= MAX_ORDER; ++j) 587 ttm_pool_type_fini(&pool->caching[i].orders[j]); 588 } 589 590 /* We removed the pool types from the LRU, but we need to also make sure 591 * that no shrinker is concurrently freeing pages from the pool. 592 */ 593 synchronize_shrinkers(); 594 } 595 596 /* As long as pages are available make sure to release at least one */ 597 static unsigned long ttm_pool_shrinker_scan(struct shrinker *shrink, 598 struct shrink_control *sc) 599 { 600 unsigned long num_freed = 0; 601 602 do 603 num_freed += ttm_pool_shrink(); 604 while (!num_freed && atomic_long_read(&allocated_pages)); 605 606 return num_freed; 607 } 608 609 /* Return the number of pages available or SHRINK_EMPTY if we have none */ 610 static unsigned long ttm_pool_shrinker_count(struct shrinker *shrink, 611 struct shrink_control *sc) 612 { 613 unsigned long num_pages = atomic_long_read(&allocated_pages); 614 615 return num_pages ? num_pages : SHRINK_EMPTY; 616 } 617 618 #ifdef CONFIG_DEBUG_FS 619 /* Count the number of pages available in a pool_type */ 620 static unsigned int ttm_pool_type_count(struct ttm_pool_type *pt) 621 { 622 unsigned int count = 0; 623 struct page *p; 624 625 spin_lock(&pt->lock); 626 /* Only used for debugfs, the overhead doesn't matter */ 627 list_for_each_entry(p, &pt->pages, lru) 628 ++count; 629 spin_unlock(&pt->lock); 630 631 return count; 632 } 633 634 /* Print a nice header for the order */ 635 static void ttm_pool_debugfs_header(struct seq_file *m) 636 { 637 unsigned int i; 638 639 seq_puts(m, "\t "); 640 for (i = 0; i <= MAX_ORDER; ++i) 641 seq_printf(m, " ---%2u---", i); 642 seq_puts(m, "\n"); 643 } 644 645 /* Dump information about the different pool types */ 646 static void ttm_pool_debugfs_orders(struct ttm_pool_type *pt, 647 struct seq_file *m) 648 { 649 unsigned int i; 650 651 for (i = 0; i <= MAX_ORDER; ++i) 652 seq_printf(m, " %8u", ttm_pool_type_count(&pt[i])); 653 seq_puts(m, "\n"); 654 } 655 656 /* Dump the total amount of allocated pages */ 657 static void ttm_pool_debugfs_footer(struct seq_file *m) 658 { 659 seq_printf(m, "\ntotal\t: %8lu of %8lu\n", 660 atomic_long_read(&allocated_pages), page_pool_size); 661 } 662 663 /* Dump the information for the global pools */ 664 static int ttm_pool_debugfs_globals_show(struct seq_file *m, void *data) 665 { 666 ttm_pool_debugfs_header(m); 667 668 spin_lock(&shrinker_lock); 669 seq_puts(m, "wc\t:"); 670 ttm_pool_debugfs_orders(global_write_combined, m); 671 seq_puts(m, "uc\t:"); 672 ttm_pool_debugfs_orders(global_uncached, m); 673 seq_puts(m, "wc 32\t:"); 674 ttm_pool_debugfs_orders(global_dma32_write_combined, m); 675 seq_puts(m, "uc 32\t:"); 676 ttm_pool_debugfs_orders(global_dma32_uncached, m); 677 spin_unlock(&shrinker_lock); 678 679 ttm_pool_debugfs_footer(m); 680 681 return 0; 682 } 683 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_globals); 684 685 /** 686 * ttm_pool_debugfs - Debugfs dump function for a pool 687 * 688 * @pool: the pool to dump the information for 689 * @m: seq_file to dump to 690 * 691 * Make a debugfs dump with the per pool and global information. 692 */ 693 int ttm_pool_debugfs(struct ttm_pool *pool, struct seq_file *m) 694 { 695 unsigned int i; 696 697 if (!pool->use_dma_alloc) { 698 seq_puts(m, "unused\n"); 699 return 0; 700 } 701 702 ttm_pool_debugfs_header(m); 703 704 spin_lock(&shrinker_lock); 705 for (i = 0; i < TTM_NUM_CACHING_TYPES; ++i) { 706 seq_puts(m, "DMA "); 707 switch (i) { 708 case ttm_cached: 709 seq_puts(m, "\t:"); 710 break; 711 case ttm_write_combined: 712 seq_puts(m, "wc\t:"); 713 break; 714 case ttm_uncached: 715 seq_puts(m, "uc\t:"); 716 break; 717 } 718 ttm_pool_debugfs_orders(pool->caching[i].orders, m); 719 } 720 spin_unlock(&shrinker_lock); 721 722 ttm_pool_debugfs_footer(m); 723 return 0; 724 } 725 EXPORT_SYMBOL(ttm_pool_debugfs); 726 727 /* Test the shrinker functions and dump the result */ 728 static int ttm_pool_debugfs_shrink_show(struct seq_file *m, void *data) 729 { 730 struct shrink_control sc = { .gfp_mask = GFP_NOFS }; 731 732 fs_reclaim_acquire(GFP_KERNEL); 733 seq_printf(m, "%lu/%lu\n", ttm_pool_shrinker_count(&mm_shrinker, &sc), 734 ttm_pool_shrinker_scan(&mm_shrinker, &sc)); 735 fs_reclaim_release(GFP_KERNEL); 736 737 return 0; 738 } 739 DEFINE_SHOW_ATTRIBUTE(ttm_pool_debugfs_shrink); 740 741 #endif 742 743 /** 744 * ttm_pool_mgr_init - Initialize globals 745 * 746 * @num_pages: default number of pages 747 * 748 * Initialize the global locks and lists for the MM shrinker. 749 */ 750 int ttm_pool_mgr_init(unsigned long num_pages) 751 { 752 unsigned int i; 753 754 if (!page_pool_size) 755 page_pool_size = num_pages; 756 757 spin_lock_init(&shrinker_lock); 758 INIT_LIST_HEAD(&shrinker_list); 759 760 for (i = 0; i <= MAX_ORDER; ++i) { 761 ttm_pool_type_init(&global_write_combined[i], NULL, 762 ttm_write_combined, i); 763 ttm_pool_type_init(&global_uncached[i], NULL, ttm_uncached, i); 764 765 ttm_pool_type_init(&global_dma32_write_combined[i], NULL, 766 ttm_write_combined, i); 767 ttm_pool_type_init(&global_dma32_uncached[i], NULL, 768 ttm_uncached, i); 769 } 770 771 #ifdef CONFIG_DEBUG_FS 772 debugfs_create_file("page_pool", 0444, ttm_debugfs_root, NULL, 773 &ttm_pool_debugfs_globals_fops); 774 debugfs_create_file("page_pool_shrink", 0400, ttm_debugfs_root, NULL, 775 &ttm_pool_debugfs_shrink_fops); 776 #endif 777 778 mm_shrinker.count_objects = ttm_pool_shrinker_count; 779 mm_shrinker.scan_objects = ttm_pool_shrinker_scan; 780 mm_shrinker.seeks = 1; 781 return register_shrinker(&mm_shrinker, "drm-ttm_pool"); 782 } 783 784 /** 785 * ttm_pool_mgr_fini - Finalize globals 786 * 787 * Cleanup the global pools and unregister the MM shrinker. 788 */ 789 void ttm_pool_mgr_fini(void) 790 { 791 unsigned int i; 792 793 for (i = 0; i <= MAX_ORDER; ++i) { 794 ttm_pool_type_fini(&global_write_combined[i]); 795 ttm_pool_type_fini(&global_uncached[i]); 796 797 ttm_pool_type_fini(&global_dma32_write_combined[i]); 798 ttm_pool_type_fini(&global_dma32_uncached[i]); 799 } 800 801 unregister_shrinker(&mm_shrinker); 802 WARN_ON(!list_empty(&shrinker_list)); 803 } 804